TAIWANESE JOURNAL OF MATHEMATICS Vol. 5, No. 3, pp. 603-608, September 2001 This paper is available online at http://www.math.nthu.edu.tw/tjm/

PERTURBATIONS AND APPROXIMATE MINIMUM IN CONSTRAINED OPTIMIZATION

B. D. Craven

Abstract. An approximate minimum, for the minimization of a function f over a feasible set S, is a point ξ such that $f(x) \ge f(\xi) - \epsilon$ for all feasible x near the minimum point p of f on S. This concept is relevant when the problem data, or the computation, are approximate. Under regularity assumptions, an approximate minimum is a local minimum of a perturbation of the given problem. This depends on the property of a strict local minimum, that a small perturbation moves the minimum point only by a small amount.

1. INTRODUCTION AND DEFINITIONS

Suppose that the constrained minimization problem:

(1) MIN
$$J(x)$$
 subject to $g(x) \le 0$,

reaches a local minimum at $x = \bar{x}$, where $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}^m$ are continuous functions. If the data for the problem, of the computation, are approximate, one may wish to consider *approximate minima*, namely, those points ξ in a neighbourhood of \bar{x} for which $f(\xi) \leq f(\bar{x}) + \epsilon$. Since \bar{x} is a minimum, $f(\bar{x}) \leq f(\xi)$.

Note that an unconstrained approximate minimum point is not necessarily one where the gradient is small; there are counterexamples [1, 2].

These approximate minima may be related to exact minima of suitably perturbed problems. Consider the perturbed problem:

(2)
$$\operatorname{MIN}_{x} f(x,q) \text{ subject to } g(x,q) \leq 0,$$

Communicated by P. Y. Wu.

Received February 29, 2000; revised July 31, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 90C30.

Key words and phrases: Perturbation, approximate minimum, strict local minimum.

in which q is a perturbation parameter, and f(x, 0) = f(x), g(x, 0) = g(x), and in particular the linearly perturbed problem:

(3)
$$\operatorname{MIN}_{x} f(x) + b^{T}(x - \bar{x}) \text{ subject to } g(x) \leq r,$$

in which the vectors b and r comprise the perturbation parameter q, with ||q|| assumed to be sufficiently small. In (3), the gradient of the objective and the level of the constraint are each perturbed by a small amount. If (3) is minimized at a point $\hat{x}(q)$, denote $\Phi(q) := f(\hat{x}(q), q)$. Under some regularity conditions (see, e.g., Craven [5]),

(4)
$$\Phi'(0) = f_q(\bar{x}, 0) + \bar{\lambda}g_q(\bar{x}, 0),$$

where $\overline{\lambda}$ is the Lagrange multiplier for the minimum of (1), and f_q and g_q denote partial derivatives with respect to q. However, the linear approximation:

$$\epsilon \ge f(\xi) - f(\bar{x}) = \Phi(q) - \Phi(0) \approx \Phi'(0)q$$

may not be sufficient; quadratic terms may be needed.

The results depend on the following definitions and theorem.

Definition 1. A local minimum of (1) is a *strict local minimum* if for all sufficiently small $\rho > 0$, there exists positive ξ such that $f(x) \ge f(x) + \xi$ whenever x is feasible and $||x - \bar{x}|| = \rho$.

Theorem 1. Perturbation of strict local minimum (Craven [6, Theorem 4.7.1]). *For problem* (2), *assume that*

- (i) the unperturbed problem (with q = 0) reaches a strict local minimum at $x = \bar{x}$,
- (ii) for each $q, g(\bar{x}, q) = g(\bar{x})$,
- (iii) the functions f(.,.) and g(.,.) are uniformly continuous on bounded sets,
- (iv) when $q \neq 0$, f(.,q) reaches a minimum on each closed bounded set.

Then, whenever ||q|| is sufficiently small, the perturbed problem (2) reaches a local minimum at a point $\bar{x}(q)$, where $\bar{x}(q) \rightarrow 0$ as $q \rightarrow 0$.

Remarks. If \bar{x} is a strict minimum, then there is no feasible curve $x = \omega(\alpha)(\alpha \ge 0)$ starting at \bar{x} , with f constant along the curve. In the proof of Theorem 1, the strong feasibility assumption (ii) is used only to ensure that $g(\bar{x},q) \le 0$, so the latter may be assumed instead. Assumption (iii) follows from continuity in finite dimensions. A *strict minimum* is not enough to ensure that the Lagrange multiplier $\hat{\lambda}$ corresponding to \hat{x} .

Definition 2. Problem (2) (or (3)) is called *locally unique* if for all sufficiently small ||q|| (or ||(b, r)||), at most one point ξ in a neighbourhood of \bar{x} satisfies (for some multiplier λ) the condition:

(5)
$$f_x(\xi, q) + \lambda^T g_x(\xi, q) = 0, \lambda^T g(\xi, q) = 0$$

(6) (or
$$f'(\xi) + b^T + \lambda^T g'(\xi) = 0, \lambda^T (g(\xi) - r) = 0).$$

Remarks. Such points will be called *KKT points*. Note that (4), together with $\lambda \ge 0$, is the necessary Karush-Kuhn-Tucker condition for a minimum of (2) at ξ . Condition (4), with $\lambda \ge 0$, is also necessary and sufficient for a *quasimin* of (2) at ξ (see [4]), namely,

(7)
$$f(x) - f(\xi) + \mathbf{o}(||x - \xi||) \ge 0 \text{ for feasible } x \to \xi.$$

If f(.,q) and g(.,q) are C^2 , and all constraints are assumed active (thus $g(\bar{x}) = 0$, $g(\xi, q) = 0$), then *locally unique* holds if the matrix

(8)
$$\begin{bmatrix} f_{xx}(\bar{x},0) & g_x(\bar{x},0)^T \\ g_x(\bar{x},0) & 0 \end{bmatrix}$$

is nonsingular, for then $f_x(\xi, q) + \lambda^T g_x(\xi, q) = 0$, $g(\xi, q) = 0$ can be solved locally for ξ and λ . (It suffices if $f_{xx}(\bar{x}, 0)$ is nonsingular and $g_x(\bar{x}, 0)$ has full rank.) Less restrictively, it suffices, using Clarke's implicit function theorem [3], if $f_x(., q)$ and $g_x(., q)$ are Lipschitz functions, and the matrix,

(9)
$$\begin{bmatrix} A & K^T \\ K & 0 \end{bmatrix}$$

is nonsingular for each A in the generalized Jacobian $\partial f_x(\bar{x}, 0)$ and $K \in g_x(\bar{x}, 0)$. The matrix is nonsingular if each A is nonsingular and each K has full rank (using, the partitioned inverse matrix theorem).

Example 0. Let $f(x) = |x|, x \in \mathbb{R}$. Then f reaches an unconstrained strict minimum at 0. A linear perturbation to |x| + qx with |q| < 1 does not move the minimum away from 0. A perturbation (with q > 0) to

(10)
$$f(x,q) = -x(x \le q), x - 2q(x > q),$$

moves the minimum to q. Note that, for 0 < x < q, f(x,q) - f(x,0) = -2x, but the coefficient -2 is not sufficiently small.

Example 1. Let $f(x) := (1/2)x^T A x (x \in \mathbb{R}^n)$, where A is a positive definite matrix; then $\bar{x} = 0$, and ξ is an (unconstrained) approximate minimum when

(11)
$$\frac{1}{2}x^T A x \ge \frac{1}{2}\xi^T A \xi - \epsilon, \forall x$$

thus when $(1/2)\xi^T A \xi \leq \epsilon$. Let $f(x,q) := (1/2)x^T A x + q^T x$; then f(.,q) is minimized at $x = \hat{x} : -A^{-1}b$, and $f(\hat{x},q) = -(1/2)q^T A^{-1}q$. Now \hat{x} is an approximate minimum of f(.) exactly when q lies in the ellipsoid $(1/2)q^T A^{-1}q \leq \epsilon$.

2. Approximate Unconstrained Minimum

Proposition 1. Let the C^1 function $f : \mathbb{R}^n \to \mathbb{R}$ reach a strict local minimum at \bar{x} . Let the linearly perturbed problem,

(12)
$$\operatorname{MIN}_{x} \bar{f}(x) := f(x) + q^{T}(x - \bar{x}),$$

be locally unique. Then, for sufficiently small $\epsilon > 0, \xi$ is an approximate minimum of f(.) exactly when ξ is a local minimum of \hat{f} for some constant vector q.

Proof. Choose an approximate minimum ξ satisfying $f(\xi) = f(\bar{x}) + \epsilon$ for some $\epsilon > 0$; then $||\xi - \bar{x}||$ is small if ϵ is small. Now ξ is a stationary point of $\hat{f}(.)$ if q is chosen as $-f'(\xi)^T$. Since f is C^1 , $q \to 0$ as $\epsilon \to 0$. From Theorem 1, if ||q|| is sufficiently small, $\bar{f}(.)$ reaches a local minimum at a point \hat{x} , where $\hat{x} \to 0$ as $q \to 0$, and thus $f'(\hat{x}) = -q^T$. By the *locally unique* assumption, $\hat{x} = \xi$; thus ξ is a local minimum of $\bar{f}(.)$.

Remarks. If, in particular, f is C^2 , and $f''(\bar{x})$ is nonsingular, and b is given, then $f'(\bar{x}) = 0$ and $f'(\xi) = -q^T$ give, for each component i, that $-q_i = (f')'_i(\hat{\zeta}_i)(\xi - \bar{x})$ for intermediate points ζ_i . Construct a matrix M with rows $(f')'_i(\zeta_i)$; then M is nonsingular since $f''(\bar{x})$ is, for ||q|| small, so ξ is determined uniquely. Less stringently, suppose that f'(.) is Lipschitz, and every element of the Clarke generalized Jacobian $\partial f'(\bar{x})$ is nonsingular; then ξ is determined uniquely.

The conclusion of Proposition 1 does not hold if f is not differentiable (see Example 0).

3. Approximate Constrained Minimum

This linear-quadratic example serves to approximate smooth problems.

Example 2.

(13) MIN
$$f(x) := \frac{1}{2}x^T A x + a^T x$$
 subject to $K_x \le k$,

606

where now the matrix A need not be positive definite. The Karush-Kuhn-Tucker conditions require that $A\bar{x} + a + K^T\bar{\lambda} = 0$, $\bar{\lambda} \ge 0$. If the origin is shifted to make the solution $\bar{x} = 0$, $f(\bar{x}) = 0$, then the approximate minimum points ξ must satisfy $f(\xi) \le \epsilon + f(x)$ whenever $Kx \le k$, and hence $f(\xi) \le \epsilon$.

Consider a perturbed problem:

(14) MIN
$$\frac{1}{2}x^T A x + a^T x + b^T x$$
 subject to $K_x \le k + r$,

where b and r are small (vector) parameters. If inactive constraints are omitted for the unconstrained problem, and if the perturbation does not change the list of active constraints, and (14) reaches a minimum at \hat{x} , then KKT requires, for some multiplier $\bar{\lambda}$, that

(15)
$$\begin{bmatrix} A & K^T \\ K & 0 \end{bmatrix} \begin{bmatrix} \hat{x} - \bar{x} \\ \hat{\lambda} - \bar{\lambda} \end{bmatrix} = \begin{bmatrix} -b \\ r \end{bmatrix}$$

So the optimum \hat{x} is a linear function of b and r, and is unique under conditions stated above for (9).

To each $(\hat{x}, \hat{\lambda})$ in a neighbourhood of $(\bar{x}, \bar{\lambda})$ there correspond perturbation parameters (b, r). Conversely, assume that A is nonsingular and K has full rank; then the matrix in (15) is nonsingular, and (15) determines $(\hat{x}, \hat{\lambda})$ uniquely as a continuous function of (b, r); thus *locally unique* holds.

Proposition 2. Let $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}^m$ be C^1 functions; let f(x) reach a strict local minimum, subject to $g(x) \leq 0$, at $x = \bar{x}$; and let a constraint qualification hold. Assume that the perturbed problem (3) is locally unique, and that the list of active constraints does not change with a small perturbation. Assume that the constraint $g(\bar{x}) = r$ is feasible, for sufficiently small ||r||, and $f(x) + b^T x$ reaches a minimum on each closed bounded set. Then, when $\epsilon > 0$ is sufficiently small, ξ is an approximate minimum of the given problem exactly when ξ is a local minimum of the perturbed problem, for some suitable b and r of sufficiently small norm.

Proof. Inactive constraints have no effect; therefore omit them, thus assuming $g(\bar{x}) = 0$. Choose an approximate minimum ξ of the given problem, satisfying, for some $\epsilon > 0$, $f(\xi) = f(\bar{x}) + r$. Choose $r = g(\xi)$. Now ξ will satisfy the Karush-Kuhn-Tucker conditions for (3) if b is chosen as $-[f'(\xi) + \lambda^T g'(\xi)]^T$. Here λ is chosen with $\|\lambda - \bar{\lambda}\|$ sufficiently small, so that $\|b\|$ and $\|r\|$ are sufficiently small that Theorem 1 applies.

Given this b and r, Theorem 1, applied to the strict minimum, shows that the perturbed problem has a local minimum at $x = \hat{x}$, where $\hat{x} \to \bar{x}$ as $||b|| \to 0$,

 $||r|| \to 0$. Denote by $\hat{\lambda}$ the Lagrange multiplier corresponding to \hat{x} . Thus KKT conditions (6) hold, with the same (b, r), both for (ξ, λ) and for $(\hat{x}, \hat{\lambda})$. From the *locally unique* hypothesis, $\hat{x} = \xi$, hence also $\hat{\lambda} = \lambda$.

4. DISCUSSION AND APPLICATIONS

If the data for the given optimization problem (1) are somewhat fuzzy, then a more descriptive formulation might replace (1) by a family of perturbed problems (2) or (3), with the perturbation parameters required to be small, in some sense. There is then the possibility of a second optimization, over the perturbation parameters in a specified region. The objective for the second optimization could be the original objective, or a different secondary objetive. Many optimization problems are by nature multi-objective, and a choice of a single objective is then rather arbitrary.

Consider, in particular, the auxiliary objective $c^T q$, with $c = \phi'(0)$ from 4), and a constraint $q^T Q q \leq \delta$, specifying a small region for q. Then $c^T q$ is bounded by $\pm (\delta c^T Q^{-1} c)^{1/2}$, giving a tolerance for the objective value for the given problem (1).

ACKNOWLEDGEMENT

Thanks are given to a referee for correcting various misprints.

References

- A. Auslender and J. P. Crouzeix, Well behaved asymptotical convex functions, *Analyse Non-Linéaire* (1989), 101-122.
- 2. S. Bolintineanu, Vector variational principles towards asymptotically well behaved vector convex functions, University of Pau, France, Preprint, 1999.
- 3. F. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
- B. D. Craven, Lagrangean conditions and quasiduality, *Bull. Austral. Math. Soc.* 16 (1977), 325-339.
- 5. B. D. Craven, Lagrangian conditions for a minimax, Proc. Centre Math. Appl. Austral. Nat. Univ. (1998), 24-33.
- 6. B. D. Craven, Control and Optimization, Chapman & Hall, London, 1995.

Department of Mathematics & Statistics, University of Melbourne, Victoria 3010, Australia