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PERTURBATIONS AND APPROXIMATE MINIMUM

IN CONSTRAINED OPTIMIZATION

B. D. Craven

Abstract. An approximate minimum, for the minimization of a function f over
a feasible set S, is a point ξ such that f(x) ≥ f(ξ) − ε for all feasible x near
the minimum point p of f on S. This concept is relevant when the problem
data, or the computation, are approximate. Under regularity assumptions,

an approximate minimum is a local minimum of a perturbation of the given

problem. This depends on the property of a strict local minimum, that a small

perturbation moves the minimum point only by a small amount.

1. INTRODUCTION AND DEFINITIONS

Suppose that the constrained minimization problem:

MIN J(x) subject to g(x) ≤ 0,(1)

reaches a local minimum at x = x̄, where f : Rn → R and g : Rn → Rm

are continuous functions. If the data for the problem, of the computation, are

approximate, one may wish to consider approximate minima, namely, those points

ξ in a neighbourhood of x̄ for which f(ξ) ≤ f(x̄) + ε. Since x̄ is a minimum,
f(x̄) ≤ f(ξ).

Note that an unconstrained approximate minimum point is not necessarily one

where the gradient is small; there are counterexamples [1, 2].

These approximate minima may be related to exact minima of suitably perturbed

problems. Consider the perturbed problem:

MINx f(x, q) subject to g(x, q) ≤ 0,(2)
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in which q is a perturbation parameter, and f(x, 0) = f(x), g(x, 0) = g(x), and in
particular the linearly perturbed problem:

MINx f(x) + bT (x− x̄) subject to g(x) ≤ r,(3)

in which the vectors b and r comprise the perturbation parameter q, with ||q||
assumed to be sufficiently small. In (3), the gradient of the objective and the level

of the constraint are each perturbed by a small amount. If (3) is minimized at a

point x̂(q), denote Φ(q) := f(x̂(q), q). Under some regularity conditions (see, e.g.,
Craven [5]),

Φ′(0) = fq(x̄, 0) + λ̄gq(x̄, 0),(4)

where λ̄ is the Lagrange multiplier for the minimum of (1), and fq and gq denote

partial derivatives with respect to q. However, the linear approximation:

ε ≥ f(ξ) − f(x̄) = Φ(q)− Φ(0) ≈ Φ′(0)q

may not be sufficient; quadratic terms may be needed.

The results depend on the following definitions and theorem.

Definition 1. A local minimum of (1) is a strict local minimum if for all

sufficiently small ρ > 0, there exists positive ξ such that f(x) ≥ f(x)+ξ whenever
x is feasible and ||x− x̄|| = ρ.

Theorem 1. Perturbation of strict local minimum (Craven [6, Theorem 4.7.1]).

For problem (2), assume that

(i) the unperturbed problem (with q = 0) reaches a strict local minimum at
x = x̄,

(ii) for each q, g(x̄, q) = g(x̄),
(iii) the functions f(., .) and g(., .) are uniformly continuous on bounded sets,
(iv) when q 6= 0, f(., q) reaches a minimum on each closed bounded set.

Then, whenever ||q|| is sufficiently small, the perturbed problem (2) reaches a
local minimum at a point x̄(q), where x̄(q) → 0 as q → 0.

Remarks. If x̄ is a strict minimum, then there is no feasible curve x =
ω(α)(α ≥ 0) starting at x̄, with f constant along the curve. In the proof of Theorem

1, the strong feasibility assumption (ii) is used only to ensure that g(x̄, q) ≤ 0, so
the latter may be assumed instead. Assumption (iii) follows from continuity in finite

dimensions. A strict minimum is not enough to ensure that the Lagrange multiplier

λ̂ corresponding to x̂ converges to the multiplier λ̄ corresponding to x̂.
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Definition 2. Problem (2) (or (3)) is called locally unique if for all sufficiently

small ||q|| (or ||(b, r)||), at most one point ξ in a neighbourhood of x̄ satisfies (for
some multiplier λ) the condition:

fx(ξ, q) + λTgx(ξ, q) = 0, λTg(ξ, q) = 0(5)

(or f ′(ξ) + bT + λT g′(ξ) = 0, λT(g(ξ)− r) = 0).(6)

Remarks. Such points will be called KKT points. Note that (4), together with

λ ≥ 0, is the necessary Karush-Kuhn-Tucker condition for a minimum of (2) at ξ.

Condition (4), with λ ≥ 0, is also necessary and sufficient for a quasimin of (2) at
ξ (see [4]), namely,

f(x)− f(ξ) + o(||x− ξ||) ≥ 0 for feasible x → ξ.(7)

If f(., q) and g(., q) are C2, and all constraints are assumed active (thus g(x̄) =
0, g(ξ, q) = 0), then locally unique holds if the matrix

[
fxx(x̄, 0) gx(x̄, 0)T

gx(x̄, 0) 0

]
(8)

is nonsingular, for then fx(ξ, q)+λTgx(ξ, q) = 0, g(ξ, q) = 0 can be solved locally
for ξ and λ. (It suffices if fxx(x̄, 0) is nonsingular and gx(x̄, 0) has full rank.) Less
restrictively, it suffices, using Clarke’s implicit function theorem [3], if fx(., q) and
gx(., q) are Lipschitz functions, and the matrix,

[
A KT

K 0

]
(9)

is nonsingular for each A in the generalized Jacobian ∂fx(x̄, 0) and K ∈ gx(x̄, 0).
The matrix is nonsingular if each A is nonsingular and each K has full rank (using,

the partitioned inverse matrix theorem).

Example 0. Let f(x) = |x|, x ∈ R. Then f reaches an unconstrained strict

minimum at 0. A linear perturbation to |x| + qx with |q| < 1 does not move the
minimum away from 0. A perturbation (with q > 0) to

f(x, q) = −x(x ≤ q), x− 2q(x > q),(10)

moves the minimum to q. Note that, for 0 < x < q, f(x, q)− f(x, 0) = −2x, but

the coefficient -2 is not sufficiently small.
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Example 1. Let f(x) := (1/2)xTAx(x ∈ Rn), where A is a positive definite

matrix; then x̄ = 0, and ξ is an (unconstrained) approximate minimum when

1
2
xT Ax ≥ 1

2
ξT Aξ − ε, ∀x(11)

thus when (1/2)ξTAξ ≤ ε. Let f(x, q) := (1/2)xTAx + qTx; then f(., q) is
minimized at x = x̂ : −A−1b, and f(x̂, q) = −(1/2)qTA−1q. Now x̂ is an

approximate minimum of f(.) exactly when q lies in the ellipsoid (1/2)qTA−1q ≤ ε.

2. APPROXIMATE UNCONSTRAINED MINIMUM

Proposition 1. Let the C1 function f : Rn → R reach a strict local minimum

at x̄. Let the linearly perturbed problem,

MINx f̄(x) := f(x) + qT (x− x̄),(12)

be locally unique. Then, for sufficiently small ε > 0, ξ is an approximate minimum

of f(.) exactly when ξ is a local minimum of f̂ for some constant vector q.

Proof. Choose an approximate minimum ξ satisfying f(ξ) = f(x̄)+ε for some

ε > 0; then ||ξ − x̄|| is small if ε is small. Now ξ is a stationary point of f̂(.) if q
is chosen as −f ′(ξ)T . Since f is C1, q → 0 as ε → 0. From Theorem 1, if ||q||
is sufficiently small, f̄(.) reaches a local minimum at a point x̂, where x̂ → 0 as
q → 0, and thus f ′(x̂) = −qT . By the locally unique assumption, x̂ = ξ; thus ξ is
a local minimum of f̄(.).

Remarks. If, in particular, f is C2, and f ′′(x̄) is nonsingular, and b is

given, then f ′(x̄) = 0 and f ′(ξ) = −qT give, for each component i, that −qi =
(f ′)′i(ζ̂i)(ξ−x̄) for intermediate points ζi. Construct a matrixM with rows (f ′)′i(ζi);
then M is nonsingular since f”(x̄) is, for ||q|| small, so ξ is determined uniquely.
Less stringently, suppose that f ′(.) is Lipschitz, and every element of the Clarke
generalized Jacobian ∂f ′(x̄) is nonsingular; then ξ is determined uniquely.

The conclusion of Proposition 1 does not hold if f is not differentiable (see

Example 0).

3. APPROXIMATE CONSTRAINED MINIMUM

This linear-quadratic example serves to approximate smooth problems.

Example 2.

MIN f(x) :=
1
2
xT Ax + aT x subject to Kx ≤ k,(13)
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where now the matrix A need not be positive definite. The Karush-Kuhn-Tucker

conditions require that Ax̄ + a + KT λ̄ = 0, λ̄ ≥ 0. If the origin is shifted to make
the solution x̄ = 0, f(x̄) = 0, then the approximate minimum points ξ must satisfy

f(ξ) ≤ ε + f(x) whenever Kx ≤ k, and hence f(ξ) ≤ ε.
Consider a perturbed problem:

MIN
1
2
xTAx + aTx + bTx subject to Kx ≤ k + r,(14)

where b and r are small (vector) parameters. If inactive constraints are omitted
for the unconstrained problem, and if the perturbation does not change the list of

active constraints, and (14) reaches a minimum at x̂, then KKT requires, for some
multiplier λ̄, that

[
A KT

K 0

][
x̂ − x̄

λ̂ − λ̄

]
=

[
−b
r

]
.(15)

So the optimum x̂ is a linear function of b and r, and is unique under conditions
stated above for (9).

To each (x̂, λ̂) in a neighbourhood of (x̄, λ̄) there correspond perturbation pa-
rameters (b, r). Conversely, assume that A is nonsingular and K has full rank;

then the matrix in (15) is nonsingular, and (15) determines (x̂, λ̂) uniquely as a
continuous function of (b, r); thus locally unique holds.

Proposition 2. Let f : Rn → R and g : Rn → Rm be C1 functions; let f(x)
reach a strict local minimum, subject to g(x) ≤ 0, at x = x̄; and let a constraint
qualification hold. Assume that the perturbed problem (3) is locally unique, and

that the list of active constraints does not change with a small perturbation. Assume

that the constraint g(x̄) = r is feasible, for sufficiently small ‖r‖, and f(x) + bTx
reaches a minimum on each closed bounded set. Then, when ε > 0 is sufficiently
small, ξ is an approximate minimum of the given problem exactly when ξ is a local
minimum of the perturbed problem, for some suitable b and r of sufficiently small

norm.

Proof. Inactive constraints have no effect; therefore omit them, thus assuming

g(x̄) = 0. Choose an approximate minimum ξ of the given problem, satisfying,

for some ε > 0, f(ξ) = f(x̄) + r. Choose r = g(ξ). Now ξ will satisfy the
Karush-Kuhn-Tucker conditions for (3) if b is chosen as −[f ′(ξ)+λTg′(ξ)]T . Here
λ is chosen with ‖λ − λ̄‖ sufficiently small, so that ‖b‖ and ‖r‖ are sufficiently
small that Theorem 1 applies.

Given this b and r, Theorem 1, applied to the strict minimum, shows that the

perturbed problem has a local minimum at x = x̂, where x̂ → x̄ as ‖b‖ → 0,
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‖r‖ → 0. Denote by λ̂ the Lagrange multiplier corresponding to x̂. Thus KKT

conditions (6) hold, with the same (b, r), both for (ξ, λ) and for (x̂, λ̂). From the
locally unique hypothesis, x̂ = ξ, hence also λ̂ = λ.

4. DISCUSSION AND APPLICATIONS

If the data for the given optimization problem (1) are somewhat fuzzy, then a

more descriptive formulation might replace (1) by a family of perturbed problems (2)

or (3), with the perturbation parameters required to be small, in some sense. There

is then the possibility of a second optimization, over the perturbation parameters in

a specified region. The objective for the second optimization could be the original

objective, or a different secondary objetive. Many optimization problems are by

nature multi-objective, and a choice of a single objective is then rather arbitrary.

Consider, in particular, the auxiliary objective cT q, with c = φ′(0) from 4), and
a constraint qT Qq ≤ δ, specifying a small region for q. Then cT q is bounded by

±(δcTQ−1c)1/2, giving a tolerance for the objective value for the given problem

(1).
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