PERTURBATIONS AND APPROXIMATE MINIMUM IN CONSTRAINED OPTIMIZATION

B. D. Craven

Abstract

An approximate minimum, for the minimization of a function f over a feasible set S, is a point ξ such that $f(x) \geq f(\xi)-\epsilon$ for all feasible x near the minimum point p of f on S. This concept is relevant when the problem data, or the computation, are approximate. Under regularity assumptions, an approximate minimum is a local minimum of a perturbation of the given problem. This depends on the property of a strict local minimum, that a small perturbation moves the minimum point only by a small amount.

1. Introduction and Definitions

Suppose that the constrained minimization problem:

$$
\begin{equation*}
\text { MIN } J(x) \text { subject to } g(x) \leq 0, \tag{1}
\end{equation*}
$$

reaches a local minimum at $x=\bar{x}$, where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are continuous functions. If the data for the problem, of the computation, are approximate, one may wish to consider approximate minima, namely, those points ξ in a neighbourhood of \bar{x} for which $f(\xi) \leq f(\bar{x})+\epsilon$. Since \bar{x} is a minimum, $f(\bar{x}) \leq f(\xi)$.

Note that an unconstrained approximate minimum point is not necessarily one where the gradient is small; there are counterexamples [1, 2].

These approximate minima may be related to exact minima of suitably perturbed problems. Consider the perturbed problem:

$$
\begin{equation*}
\operatorname{MIN}_{x} f(x, q) \text { subject to } g(x, q) \leq 0 \tag{2}
\end{equation*}
$$

Received February 29, 2000; revised July 31, 2000.
Communicated by P. Y. Wu.
2000 Mathematics Subject Classification: 90C30.
Key words and phrases: Perturbation, approximate minimum, strict local minimum.
in which q is a perturbation parameter, and $f(x, 0)=f(x), g(x, 0)=g(x)$, and in particular the linearly perturbed problem:

$$
\begin{equation*}
\operatorname{MIN}_{x} f(x)+b^{T}(x-\bar{x}) \text { subject to } g(x) \leq r, \tag{3}
\end{equation*}
$$

in which the vectors b and r comprise the perturbation parameter q, with $\|q\|$ assumed to be sufficiently small. In (3), the gradient of the objective and the level of the constraint are each perturbed by a small amount. If (3) is minimized at a point $\hat{x}(q)$, denote $\Phi(q):=f(\hat{x}(q), q)$. Under some regularity conditions (see, e.g., Craven [5]),

$$
\begin{equation*}
\Phi^{\prime}(0)=f_{q}(\bar{x}, 0)+\bar{\lambda} g_{q}(\bar{x}, 0), \tag{4}
\end{equation*}
$$

where $\bar{\lambda}$ is the Lagrange multiplier for the minimum of (1), and f_{q} and g_{q} denote partial derivatives with respect to q. However, the linear approximation:

$$
\epsilon \geq f(\xi)-f(\bar{x})=\Phi(q)-\Phi(0) \approx \Phi^{\prime}(0) q
$$

may not be sufficient; quadratic terms may be needed.
The results depend on the following definitions and theorem.
Definition 1. A local minimum of (1) is a strict local minimum if for all sufficiently small $\rho>0$, there exists positive ξ such that $f(x) \geq f(x)+\xi$ whenever x is feasible and $\|x-\bar{x}\|=\rho$.

Theorem 1. Perturbation of strict local minimum (Craven [6, Theorem 4.7.1]). For problem (2), assume that
(i) the unperturbed problem (with $q=0$) reaches a strict local minimum at $x=\bar{x}$,
(ii) for each $q, g(\bar{x}, q)=g(\bar{x})$,
(iii) the functions $f(.,$.$) and g(.,$.$) are uniformly continuous on bounded sets,$
(iv) when $q \neq 0, f(., q)$ reaches a minimum on each closed bounded set.

Then, whenever $\|q\|$ is sufficiently small, the perturbed problem (2) reaches a local minimum at a point $\bar{x}(q)$, where $\bar{x}(q) \rightarrow 0$ as $q \rightarrow 0$.

Remarks. If \bar{x} is a strict minimum, then there is no feasible curve $x=$ $\omega(\alpha)(\alpha \geq 0)$ starting at \bar{x}, with f constant along the curve. In the proof of Theorem 1 , the strong feasibility assumption (ii) is used only to ensure that $g(\bar{x}, q) \leq 0$, so the latter may be assumed instead. Assumption (iii) follows from continuity in finite dimensions. A strict minimum is not enough to ensure that the Lagrange multiplier $\hat{\lambda}$ corresponding to \hat{x} converges to the multiplier $\bar{\lambda}$ corresponding to \hat{x}.

Definition 2. Problem (2) (or (3)) is called locally unique if for all sufficiently small $\|q\|$ (or $\|(b, r)\|)$, at most one point ξ in a neighbourhood of \bar{x} satisfies (for some multiplier λ) the condition:

$$
\begin{equation*}
f_{x}(\xi, q)+\lambda^{T} g_{x}(\xi, q)=0, \lambda^{T} g(\xi, q)=0 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\left(\text { or } f^{\prime}(\xi)+b^{T}+\lambda^{T} g^{\prime}(\xi)=0, \lambda^{T}(g(\xi)-r)=0\right) \tag{6}
\end{equation*}
$$

Remarks. Such points will be called $K K T$ points. Note that (4), together with $\lambda \geq 0$, is the necessary Karush-Kuhn-Tucker condition for a minimum of (2) at ξ. Condition (4), with $\lambda \geq 0$, is also necessary and sufficient for a quasimin of (2) at ξ (see [4]), namely,

$$
\begin{equation*}
f(x)-f(\xi)+\mathbf{o}(\|x-\xi\|) \geq 0 \text { for feasible } x \rightarrow \xi \tag{7}
\end{equation*}
$$

If $f(., q)$ and $g(., q)$ are C^{2}, and all constraints are assumed active (thus $g(\bar{x})=$ $0, g(\xi, q)=0)$, then locally unique holds if the matrix

$$
\left[\begin{array}{cc}
f_{x x}(\bar{x}, 0) & g_{x}(\bar{x}, 0)^{T} \tag{8}\\
g_{x}(\bar{x}, 0) & 0
\end{array}\right]
$$

is nonsingular, for then $f_{x}(\xi, q)+\lambda^{T} g_{x}(\xi, q)=0, g(\xi, q)=0$ can be solved locally for ξ and λ. (It suffices if $f_{x x}(\bar{x}, 0)$ is nonsingular and $g_{x}(\bar{x}, 0)$ has full rank.) Less restrictively, it suffices, using Clarke's implicit function theorem [3], if $f_{x}(., q)$ and $g_{x}(., q)$ are Lipschitz functions, and the matrix,

$$
\left[\begin{array}{cc}
A & K^{T} \tag{9}\\
K & 0
\end{array}\right]
$$

is nonsingular for each A in the generalized Jacobian $\partial f_{x}(\bar{x}, 0)$ and $K \in g_{x}(\bar{x}, 0)$. The matrix is nonsingular if each A is nonsingular and each K has full rank (using, the partitioned inverse matrix theorem).

Example 0. Let $f(x)=|x|, x \in \mathbb{R}$. Then f reaches an unconstrained strict minimum at 0 . A linear perturbation to $|x|+q x$ with $|q|<1$ does not move the minimum away from 0 . A perturbation (with $q>0$) to

$$
\begin{equation*}
f(x, q)=-x(x \leq q), x-2 q(x>q) \tag{10}
\end{equation*}
$$

moves the minimum to q. Note that, for $0<x<q, f(x, q)-f(x, 0)=-2 x$, but the coefficient -2 is not sufficiently small.

Example 1. Let $f(x):=(1 / 2) x^{T} A x\left(x \in \mathbb{R}^{n}\right)$, where A is a positive definite matrix; then $\bar{x}=0$, and ξ is an (unconstrained) approximate minimum when

$$
\begin{equation*}
\frac{1}{2} x^{T} A x \geq \frac{1}{2} \xi^{T} A \xi-\epsilon, \forall x \tag{11}
\end{equation*}
$$

thus when $(1 / 2) \xi^{T} A \xi \leq \epsilon$. Let $f(x, q):=(1 / 2) x^{T} A x+q^{T} x$; then $f(., q)$ is minimized at $x=\hat{x}:-A^{-1} b$, and $f(\hat{x}, q)=-(1 / 2) q^{T} A^{-1} q$. Now \hat{x} is an approximate minimum of $f($.$) exactly when q$ lies in the ellipsoid $(1 / 2) q^{T} A^{-1} q \leq \epsilon$.

2. Approximate Unconstrained Minimum

Proposition 1. Let the C^{1} function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ reach a strict local minimum at \bar{x}. Let the linearly perturbed problem,

$$
\begin{equation*}
\operatorname{MIN}_{x} \bar{f}(x):=f(x)+q^{T}(x-\bar{x}) \tag{12}
\end{equation*}
$$

be locally unique. Then, for sufficiently small $\epsilon>0, \xi$ is an approximate minimum of $f($.$) exactly when \xi$ is a local minimum of \hat{f} for some constant vector q.

Proof. Choose an approximate minimum ξ satisfying $f(\xi)=f(\bar{x})+\epsilon$ for some $\epsilon>0$; then $\|\xi-\bar{x}\|$ is small if ϵ is small. Now ξ is a stationary point of $\hat{f}($.$) if q$ is chosen as $-f^{\prime}(\xi)^{T}$. Since f is $C^{1}, q \rightarrow 0$ as $\epsilon \rightarrow 0$. From Theorem 1 , if $\|q\|$ is sufficiently small, $\bar{f}($.$) reaches a local minimum at a point \hat{x}$, where $\hat{x} \rightarrow 0$ as $q \rightarrow 0$, and thus $f^{\prime}(\hat{x})=-q^{T}$. By the locally unique assumption, $\hat{x}=\xi$; thus ξ is a local minimum of $\bar{f}($.$) .$

Remarks. If, in particular, f is C^{2}, and $f^{\prime \prime}(\bar{x})$ is nonsingular, and b is given, then $f^{\prime}(\bar{x})=0$ and $f^{\prime}(\xi)=-q^{T}$ give, for each component i, that $-q_{i}=$ $\left(f^{\prime}\right)_{i}^{\prime}\left(\hat{\zeta}_{i}\right)(\xi-\bar{x})$ for intermediate points ζ_{i}. Construct a matrix M with rows $\left(f^{\prime}\right)_{i}^{\prime}\left(\zeta_{i}\right)$; then M is nonsingular since $f^{\prime \prime}(\bar{x})$ is, for $\|q\|$ small, so ξ is determined uniquely. Less stringently, suppose that $f^{\prime}($.$) is Lipschitz, and every element of the Clarke$ generalized Jacobian $\partial f^{\prime}(\bar{x})$ is nonsingular; then ξ is determined uniquely.

The conclusion of Proposition 1 does not hold if f is not differentiable (see Example 0).

3. Approximate Constrained Minimum

This linear-quadratic example serves to approximate smooth problems.

Example 2.

$$
\begin{equation*}
\operatorname{MIN} f(x):=\frac{1}{2} x^{T} A x+a^{T} x \text { subject to } K_{x} \leq k \tag{13}
\end{equation*}
$$

where now the matrix A need not be positive definite. The Karush-Kuhn-Tucker conditions require that $A \bar{x}+a+K^{T} \bar{\lambda}=0, \bar{\lambda} \geq 0$. If the origin is shifted to make the solution $\bar{x}=0, f(\bar{x})=0$, then the approximate minimum points ξ must satisfy $f(\xi) \leq \epsilon+f(x)$ whenever $K x \leq k$, and hence $f(\xi) \leq \epsilon$.

Consider a perturbed problem:

$$
\begin{equation*}
\operatorname{MIN} \frac{1}{2} x^{T} A x+a^{T} x+b^{T} x \text { subject to } K_{x} \leq k+r \tag{14}
\end{equation*}
$$

where b and r are small (vector) parameters. If inactive constraints are omitted for the unconstrained problem, and if the perturbation does not change the list of active constraints, and (14) reaches a minimum at \hat{x}, then KKT requires, for some multiplier $\bar{\lambda}$, that

$$
\left[\begin{array}{cc}
A & K^{T} \tag{15}\\
K & 0
\end{array}\right]\left[\begin{array}{l}
\hat{x}-\bar{x} \\
\hat{\lambda}-\bar{\lambda}
\end{array}\right]=\left[\begin{array}{c}
-b \\
r
\end{array}\right]
$$

So the optimum \hat{x} is a linear function of b and r, and is unique under conditions stated above for (9).

To each $(\hat{x}, \hat{\lambda})$ in a neighbourhood of $(\bar{x}, \bar{\lambda})$ there correspond perturbation parameters (b, r). Conversely, assume that A is nonsingular and K has full rank; then the matrix in (15) is nonsingular, and (15) determines $(\hat{x}, \hat{\lambda})$ uniquely as a continuous function of (b, r); thus locally unique holds.

Proposition 2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be C^{1} functions; let $f(x)$ reach a strict local minimum, subject to $g(x) \leq 0$, at $x=\bar{x}$; and let a constraint qualification hold. Assume that the perturbed problem (3) is locally unique, and that the list of active constraints does not change with a small perturbation. Assume that the constraint $g(\bar{x})=r$ is feasible, for sufficiently small $\|r\|$, and $f(x)+b^{T} x$ reaches a minimum on each closed bounded set. Then, when $\epsilon>0$ is sufficiently small, ξ is an approximate minimum of the given problem exactly when ξ is a local minimum of the perturbed problem, for some suitable b and r of sufficiently small norm.

Proof. Inactive constraints have no effect; therefore omit them, thus assuming $g(\bar{x})=0$. Choose an approximate minimum ξ of the given problem, satisfying, for some $\epsilon>0, f(\xi)=f(\bar{x})+r$. Choose $r=g(\xi)$. Now ξ will satisfy the Karush-Kuhn-Tucker conditions for (3) if b is chosen as $-\left[f^{\prime}(\xi)+\lambda^{T} g^{\prime}(\xi)\right]^{T}$. Here λ is chosen with $\|\lambda-\bar{\lambda}\|$ sufficiently small, so that $\|b\|$ and $\|r\|$ are sufficiently small that Theorem 1 applies.

Given this b and r, Theorem 1, applied to the strict minimum, shows that the perturbed problem has a local minimum at $x=\hat{x}$, where $\hat{x} \rightarrow \bar{x}$ as $\|b\| \rightarrow 0$,
$\|r\| \rightarrow 0$. Denote by $\hat{\lambda}$ the Lagrange multiplier corresponding to \hat{x}. Thus KKT conditions (6) hold, with the same (b, r), both for (ξ, λ) and for $(\hat{x}, \hat{\lambda})$. From the locally unique hypothesis, $\hat{x}=\xi$, hence also $\hat{\lambda}=\lambda$.

4. Discussion and Applications

If the data for the given optimization problem (1) are somewhat fuzzy, then a more descriptive formulation might replace (1) by a family of perturbed problems (2) or (3), with the perturbation parameters required to be small, in some sense. There is then the possibility of a second optimization, over the perturbation parameters in a specified region. The objective for the second optimization could be the original objective, or a different secondary objetive. Many optimization problems are by nature multi-objective, and a choice of a single objective is then rather arbitrary.

Consider, in particular, the auxiliary objective $c^{T} q$, with $c=\phi^{\prime}(0)$ from 4), and a constraint $q^{T} Q q \leq \delta$, specifying a small region for q. Then $c^{T} q$ is bounded by $\pm\left(\delta c^{T} Q^{-1} c\right)^{1 / 2}$, giving a tolerance for the objective value for the given problem (1).

Acknowledgement

Thanks are given to a referee for correcting various misprints.

References

1. A. Auslender and J. P. Crouzeix, Well behaved asymptotical convex functions, Analyse Non-Linéaire (1989), 101-122.
2. S. Bolintineanu, Vector variational principles towards asymptotically well behaved vector convex functions, University of Pau, France, Preprint, 1999.
3. F. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
4. B. D. Craven, Lagrangean conditions and quasiduality, Bull. Austral. Math. Soc. 16 (1977), 325-339.
5. B. D. Craven, Lagrangian conditions for a minimax, Proc. Centre Math. Appl. Austral. Nat. Univ. (1998), 24-33.
6. B. D. Craven, Control and Optimization, Chapman \& Hall, London, 1995.

Department of Mathematics \& Statistics, University of Melbourne, Victoria 3010, Australia

