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BLOOMFIELD-WATSON-KNOTT TYPE INEQUALITIES

FOR EIGENVALUES

T. Ando∗

Abstract. This paper is largely of expository nature. We generalize the de-

terminantal and tracial inequalities, originating from Bloomfield-Watson and

Knott, from the standpoint of majorization of eigenvalues, and observe the

results as estimates of singular values of modified off-diagonal blocks of a

block matrix representation in terms of the eigenvalues of the original matrix.

1. INTRODUCTION

In this paper of expository nature we treat, in principle, matrices. But let us start

with C∗-algebras (with unit), of which a simplest example is the space of matrices.
We shall use capital letters, A, B, . . . to denote general elements of a C∗-algebra,

and identify a scalar with the unit multiplied by this scalar.

For C∗-algebras there are natural notions of norm, positivity, and spectrum
etc. For the space of matrices the norm is spectral norm, positivity is positive

semidefiniteness, and spectrum is eigenvalue.

The following identities in a C∗-algbera are well-known:

‖A‖ = λmax(A) ≡ maximum spectrum of |A| def= (A∗A)1/2,

and for invertible A

‖A−1‖−1 = λmin(A) ≡ minimum spectrum of |A|.

A linear map Φ from a C∗-algbera to another is said to be positive if Φ(A) ≥ 0
whenever A ≥ 0. It is said to be unital if it is unit-preserving. (See [20] for
C∗-algebras.)
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The following are basic inequalities for a unital positive linear map Φ (see, e.g.,
[6])

Φ(A2) ≥ Φ(A)2 (Hermitian A), and Φ(A−1) ≥ Φ(A)−1 (A > 0).

Since the square-root formation, A 7−→ A1/2, on the cone of positive elements,

is order-preserving and the inverse formation, A 7−→ A−1, is order-inverting, the

above inequalities imply

Φ(A2)1/2 ≥ Φ(A) and Φ(A−1)−1 ≤ Φ(A) (A > 0).

In additive forms these inequalities for A > 0 become

Φ(A2) − Φ(A)2 ≥ 0 and Φ(A2)1/2 − Φ(A) ≥ 0,

and

Φ(A−1) − Φ(A)−1 ≥ 0 and Φ(A)− Φ(A−1)−1 ≥ 0.

Inequalities, complementary to the above ones, especially to the one for Φ(A−1)−1,

are usually called Kantorovich type inequalities. More precisely, with these words

we mean an upper estimate of Φ(A2) by a scalar multiple of Φ(A)2 and an upper
estimate of Φ(A) by a scalar multiple of Φ(A−1)−1. In additive forms, we require

upper estimates of Φ(A2) − Φ(A)2 and Φ(A) − Φ(A−1)−1 by scalars, and also

upper estimates of Φ(A2)1/2−Φ(A) and Φ(A−1)−Φ(A)−1 by scalars. Here those

scalars are required to be determined by λmax(A) and λmin(A).

In Section 2, we formulate the Kantorovich type inequalities as upper estimates

of the maximum spectra of Φ(A)−1Φ(A2)Φ(A)−1 and Φ(A−1)1/2Φ(A)Φ(A−1)1/2

as well as those of Φ(A2) − Φ(A)2 and Φ(A)− Φ(A−1)−1 and related ones.

In the case of a matrix A > 0 of order n, say, in addition to the maximum and

the minimum spectrum, we can speak of the eigenvalues of A. The eigenvalues of
A are arranged in nonincreasing order :

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

Here of course

λ1(A) = λmax(A) and λn(A) = λmin(A).

Then for a unital positive linear map Φ from Mn, the space of n × n matrices,
to Mm, we can consider the problem of estimating eigenvalues of Φ(A−1)1/2Φ(A)
Φ(A−1)1/2, for instance, in terms of the eigenvalues of A.
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It is known (e.g., [7]) that a unital positive linear map Φ from Mn to Mm at

A > 0 is written in the form

Φ(A) =
N∑

j=1

V ∗
j AVj,

where the Vj’s are n × m matrices such that

N∑

j=1

V ∗
j Vj = Im (identity matrix of order m).

(Under more restrictive requirements of complete positivity, Vj , j = 1, 2, . . . , N ,

are taken common for all matrices A.)

For a general unital positive linear map, it seems difficult to find compact

estimates of the eigenvalues of Φ(A−1)1/2Φ(A)Φ(A−1)1/2. Therefore we have to

concentrate on the special case of a single V , that is,

Φ(A) = V ∗AV, where V ∗V = Im.(1.1)

With the orthoprojection P ≡ V V ∗ and P⊥ ≡ In − P , according to the decom-
positon In = P + P⊥, represent each X ∈ Mn in a block matrix form

X =

[
X11 X12

X21 X22

]
.

To consider a unital linear map of the form (1.1) is equivalent, up to unitary simi-

larity, to treat the compression ΦP (X) defined by

ΦP (X) = X11.(1.2)

Now the problem is to find estimates of the eigenvalues of B ≡ ΦP (A−1)1/2

ΦP (A)ΦP (A−1)1/2, for instance. It seems difficult to find nontrivial direct estimates

of λj(B) (except j = 1) of the form

λj(B) ≤ µj (j = 1, 2, . . . , m),

where

µ1 ≥ µ2 . . . ≥ µm (≥ 0)

are some scalars, determined from λj(A), j = 1, 2, . . . , n.
Instead, we expect the so-called majorization estimates (of additive form)

k∑

j=1

λj(B) ≤
k∑

j=1

µj (k = 1, 2, . . . , m),(1.3)
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or those (of multiplicative form)

k∏

j=1

λj(B) ≤
k∏

j=1

µj (k = 1, 2, . . . , m).(1.4)

According to a basic result of majorization theory (e.g., [4, 16]), (1.3) implies

that for any increasing convex function f(t) on (0,∞),

k∑

j=1

f(λj(B)) ≤
k∑

j=1

f(µj) (k = 1, 2, . . . , m).(1.5)

Since (1.4) means

k∑

j=1

f
(
log(λj(B))

)
≤

k∑

j=1

f
(
log(µj)

)
(k = 1, 2, . . . , m),

it follows from the above comment that (1.4) implies that for any function g(s) on
(−∞,∞) such that g(log t) is increasing and convex,

k∑

j=1

g
(
λj(B)

)
≤

k∑

j=1

g(µj) (k = 1, 2, . . . , m).(1.6)

In particular, (1.3) follows from (1.4) with g(s) = es.

It is known (e.g., [4, 16]) that the majorizations (1.3) and (1.4) are equivalent

to the existence of ασ ≥ 0, indexed by permutations σ = (σ1, σ2, . . . , σm) of the
set {1, 2, . . . , m}, with

∑
σ ασ = 1 such that

λj(B) ≤
∑

σ

ασµσj (j = 1, 2, . . . , m)

and respectively

λj(B) ≤
∏

σ

µασ
σj

(j = 1, 2, . . . , m).

Notice that (1.3) and (1.4) for k = m take the forms of tracial and determinantal

inequalities:

tr(B) ≡
m∑

j=1

λj(B) ≤
m∑

j=1

µj(1.7)

and

det(B) ≡
m∏

j=1

λj(B) ≤
m∏

j=1

µj .(1.8)
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A discovery of meaningful estimates of det(B) was made by Bloomfield-Watson
[5] and Knott [10]. In this respect, we shall call related majorization estimates

Bloomfield-Waton-Knott type inequalities.

Estimates of determinants and traces in a similar line have been developped

subsequently by Khati-Rao [8, 9] and Rao [21]. Khatri-Rao [9] even mentions

majorization estimates.

In Section 3, we give a unified treatment of majorization estimates in multi-

plicative form of the eigenvalues of ΦP (A)−1ΦP (A)ΦP (A)−1 and ΦP (A−1)1/2

ΦP (A)ΦP (A−1)1/2.

In Section 4, we give a unified treatment of majorization estimates in additive

form of the eigenvalues of ΦP (A) − ΦP (A−1)−1 and ΦP (A2) − ΦP (A)2.

Before closing this introduction, let us describe the matrices, which appear in

connection with a compression, in terms of blocks of the block matrix respresention.

Then it will be clear that the observations in Section 2 to 4 present estimates of the

singular values of modified off-diagonal blocks in terms of the eigenvalues of the

original matrix. Here recall that the singular values of a (rectangular) matrix X are

the eigenvalues of its modulus |X | ≡ (X∗X)1/2.

Let A be a positive definite matrix. Then the following relation is easily

checked:

ΦP (A)−1ΦP (A2)ΦP (A)−1 = 1 + |A21A
−1
11 |

2.(1.9)

Further, sinceΦP (A−1)
1
2 ΦP (A)ΦP (A−1)

1
2 is unitarily similar to ΦP (A)1/2ΦP (A−1)

ΦP (A)1/2, there is a unitary matrix W such that

ΦP (A−1)
1
2 ΦP (A)ΦP (A−1)

1
2 = W ∗{1 − |A−1/2

22 A21A
−1/2
11 |2}−1W.(1.10)

Also, the following relations are easily checked:

ΦP (A2) − ΦP (A)2 = |A21|2.(1.11)

and

ΦP (A)− ΦP (A−1)−1 = |A−1/2
22 A21|2.(1.12)

2. ESTIMATES OF MAXIMUM SPECTRA

In this section, we observe the Kantorovich type inequalities as estimates of

maximum spectra. There are many approaches for Kantorovich type inequalities.

See, for instance, [3, 11, 12, 14, 15, 17, 18, 19].
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Our starting point for deriving those estimates is the following rather trivial

inequality (e.g., [11]) :

{λmax(A)− A}{A− λmin(A)} ≥ 0 (A > 0).(2.1)

Equivalent forms of this inequality are

{λmax(A) + λmin(A)}A− λmax(A) · λmin(A) ≥ A2 (A > 0)

and

{λmax(A) + λmin(A)} − {λmax(A) · λmin(A)}A−1 ≥ A (A > 0).

Then apply a unital positive linear map Φ to these inequalities to get our basic

inequalities:

{λmax(A) + λmin(A)}Φ(A)− λmax(A) · λmin(A) ≥ Φ(A2) (A > 0),(2.2)

and

{λmax(A) + λmin(A)} − {λmax(A) · λmin(A)}Φ(A−1) ≥ Φ(A) (A > 0).(2.3)

Though Φ(A) (resp., Φ(A−1) ) does not commute with Φ(A2) (resp., Φ(A)) in
general, on the left-hand side of (2.2) (resp., (2.3)) appear the single HermitianΦ(A)
(resp., Φ(A−1)) and a scalar. Therefore, to get upper estimates of the left-hand side,
we can compute as in the numerical case.

Let us consider, in general, two scalars α, β > 0 and a positive variable t. Then

the following identities are easily checked:

(α + β)t − αβ =
(α + β)2

4αβ
t2 −

{
α + β

2
√

αβ
t −

√
αβ

}2

= t2 +
(α − β)2

4
−

{
t − α + β

2

}2

=
{

(α − β)2

4(α + β)
+ t

}2

−
{

t − (α + β)2 + 4αβ

4(α + β)

}2

.

With α = λmax(A), β = λmin(A) and Φ(A) in place of the positive scalar t, these

identities yield

{λmax(A) + λmin(A)}2

4λmax(A) · λmin(A)
Φ(A)2≥ {λmax(A) + λmin(A)}Φ(A)

−λmax(A) · λmin(A),
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Φ(A)2 +
{λmax(A) − λmin(A)}2

4
≥ {λmax(A) + λmin(A)}Φ(A)

−λmax(A) · λmin(A),

and

{
{λmax(A)− λmin(A)}2

4{λmax(A) + λmin(A)} + Φ(A)
}2

≥ {λmax(A) + λmin(A)}Φ(A)

−λmax(A) · λmin(A).

Then in view of the basic inequality (2.2), the above inequalities lead to the

following

{λmax(A) + λmin(A)}2

4λmax(A) · λmin(A)
Φ(A)2 ≥ Φ(A2),

{λmax(A) − λmin(A)}2

4
≥ Φ(A2) − Φ(A)2,

and {
{λmax(A) − λmin(A)}2

4{λmax(A) + λmin(A)} + Φ(A)
}2

≥ Φ(A2).

Via the order-preserving property of the square-root formation, the last inequality

implies further

{λmax(A) − λmin(A)}2

4{λmax(A) + λmin(A)} ≥ Φ(A2)1/2 − Φ(A).

We can formulate these inequalities in the following form.

Theorem 2.1. For a unital positive linear map Φ and A > 0, the following
estimates hold for the maximum spectra :

(a)

λmax

(
Φ(A)−1Φ(A2)Φ(A)−1

)
≤ {λmax(A) + λmin(A)}2

4λmax(A) · λmin(A)
,

(b)

λmax

(
Φ(A2) − Φ(A)2

)
≤ {λmax(A) − λmin(A)}2

4
,

(c)

λmax

(
Φ(A2)1/2 − Φ(A)

)
≤ {λmax(A)− λmin(A)}2

4{λmax(A) + λmin(A)} .
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Notice that for A to be Herimitian is enough to derive (b) because for a scalar γ > 0
with A + γ > 0,

Φ(A2) − Φ(A)2 = Φ
(
(A + γ)2)

)
− Φ(A + γ)2

and

λmax(A)− λmin(A) = λmax(A + γ)− λmin(A + γ).

Let us pause to see how these inequalities look like for the simplest case of a

unital positive linear map fromM2 to the scalars, more precisely, when Φ is defined
as

Φ :

[
x11 x12

x21 x22

]
7−→ x11.

Let λ ≥ µ be the eigenvalues of a 2 × 2 positive definite matrix

A =

[
a11 a12

a21 a22

]
> 0.

Then inequalities (a), (b) and (c) become

1 +
{
|a21|
a11

}2

≤ (λ + µ)2

4λµ
, so

|a21|
a11

≤ λ − µ

2
√

λµ
,(2.4)

|a21|2 ≤ (λ− µ)2

4
, so |a21| ≤

λ − µ

2
,(2.5)

and

√
a2

11 + |a21|2 − a11 ≤ (λ − µ)2

4(λ + µ)
.(2.6)

Next let us turn to the observation of Φ(A−1). The following scalar identities
are easily checked:

(α + β) − αβt=
(α + β)2

4αβ
t−1 −

{
α + β

2
√

αβ
t−1/2 −

√
αβt1/2

}2

= t−1 + (
√

α −
√

β)2 − {t−1/2 −
√

αβt1/2}2.

With α = λmax(A), β = λmin(A) and Φ(A−1) in place of the positive scalar
t, these identities yield

{λmax(A) + λmin(A)}2

4λmax(A) · λmin(A)
Φ(A−1)−1≥ {λmax(A) + λmin(A)}

−λmax(A) · λmin(A)Φ(A−1),
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and

{√
λmax(A)−

√
λmin(A)

}2
+ Φ(A−1)−1≥ {λmax(A) + λmin(A)}

−λmax(A) · λmin(A).Φ(A−1).

Then in view of the basic inequality (2.3), these inequalities lead to the following

{λmax(A) + λmin(A)}2

4λmax(A) · λmin(A)
Φ(A−1)−1 ≥ Φ(A),

and {√
λmax(A)−

√
λmin(A)

}2
≥ Φ(A)− Φ(A−1)−1.

We can formulate these inequalities in the following form.

Theorem 2.2. For a unital positive linear map Φ and A > 0, the following
estimates hold for the maximum spectra :

(a)

λmax

(
Φ(A−1)1/2Φ(A)Φ(A−1)1/2

)
≤ {λmax(A) + λmin(A)}2

4λmax(A) · λmin(A)
,

(b)

λmax

(
Φ(A)− Φ(A−1)−1

)
≤

{√
λmax(A)−

√
λmin(A)

}2
.

To estimate Φ(A−1) − Φ(A)−1 ≥ 0 from above, we can use the following

modified form of the basic inequality (2.3),

1
λmax(A) · λmin(A)

{{λmax(A) + λmin(A)} − Φ(A)} ≥ Φ(A−1).

Further, to estimate the left-hand side of the above, we use an easily checked identity

(α + β) − t

αβ
=

(
√

α −
√

β)2

αβ
+ t−1 − (t

1
2 −

√
αβt−

1
2 )2

αβ
.

With α = λmax(A), β = λmin(A) and Φ(A) in place of the positive scalar t,

this inequality implies

{√
λmax(A) −

√
λmin(A)

}2

λmax(A) · λmin(A)
+ Φ(A)−1

≥ 1
λmax(A) · λmin(A)

{(λmax(A) + λmin(A))− Φ(A)}



452 T. Ando

so that {√
λmax(A) −

√
λmin(A)

}2

λmax(A) · λmin(A)
+ Φ(A)−1 ≥ Φ(A−1).

We can formulate this inequality in the following form.

Theorem 2.3. For a unital positive linear map Φ and A > 0, the following
estimate holds for the maximum spectrum :

λmax

(
Φ(A−1) − Φ(A)−1

)
≤

{√
λmax(A) −

√
λmin(A)

}2

λmax(A) · λmin(A)
.

Before closing this section, let us see again how the inequalities in Theorems

2.2 and 2.3 look like for the simplest case mentioned before.

Let λ ≥ µ be again the eigenvalues of a 2 × 2 positive definite matrix

A =

[
a11 a12

a21 a22

]
> 0.

Then by Theorems 2.2 and 2.3 we have the following:

1

1 −
{

|a21|√
a11a22

}2 ≤ (λ + µ)2

4λµ
, so

|a21|√
a11a22

≤ λ − µ

λ + µ
,(2.7)

{
|a21|√

a22

}2

≤ {
√

λ− √
µ}2, so

|a21|√
a22

≤
√

λ− √
µ,(2.8)

and

1

a11 −
{

|a21|√
a22

}2 − 1
a11

≤
(
√

λ− √
µ)2

λµ
, so

|a21|√
a11

≤
√

λ −√
µ.(2.9)

3. ESTIMATES IN MULTIPLICATIVE FORM

Our next interest is in finding estimates of the eigenvalues of

Φ(A−1)1/2Φ(A)Φ(A−1)1/2 and Φ(A)−1Φ(A)Φ(A)−1
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in multiplicativemajorization form for a unital positive linear map Φ on the space of
n×n matrices and positive definiteA ∈ Mn. But we have to restrict the observation

to the case of a compression.

Recall that the compression ΦP with respect to an orthoprojection P of rank m

is the map from Mn to Mm, defined as

ΦP (X) def= X11 ≡ PXP,(3.1)

where

X =

[
X11 X12

X21 X22

]

is the block representation of X ∈ Mn according to the the decomposition I =
P + P⊥.

As mentioned in Section 1,

ΦP (A−1)1/2ΦP (A)ΦP (A−1)1/2 and ΦP (A)−1ΦP (A)ΦP (A)−1

are described in terms of the blocks of Aij and since, for a (rectangular) matrix X ,
the eigenvalues of X∗X are the same as those of XX∗, moduls 0, considering ΦP⊥

if necessary, we may and do assume, in the rest of the paper, that

m ≤ n − m.(3.2)

Recall that for a positive semidefinite matrix X (of order m), its eigenvalues
are arranged in nondecreasing order

λ1(X) ≥ λ2(X) ≥ · · · ≥ λm(X).

There will be no confusion if we denote by X−1 the (Moore-Penrose) generalized

inverse of X , and by det(X) the product of the positive eigenvalues of X .

Lemma. For a compression ΦP with respect to an orthoprojection P of rank

m and 0 < A ∈ Mn,

(a)

k∏

j=1

λj

(
ΦP (A−1)1/2ΦP (A)ΦP (A−1)1/2

)
≤ det

(
ΦQ1(A

−1)1/2ΦQ1(A)ΦQ1(A
−1)1/2

)
,

where Q1 is the orthoprojection to the subspace spanned by the eigenvectors of

B1 ≡ ΦP (A−1)1/2ΦP (A)ΦP (A−1)1/2,
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corresponding to its largest k eigenvalues;

(b)

k∏

j=1

λj

(
ΦP (A)−1ΦP (A2)ΦP (A)−1

)
≤ det

(
ΦQ2(A)−1ΦQ2(A

2)ΦQ2(A)−1
)
,

where Q2 is the orthoprojection to the subspace spanned by the eigenvectors of

B2 ≡ ΦP (A)−1ΦP (A2)ΦP (A)−1,

corresponding to its largest k eigenvalues.

Proof. Notice first that by definition

k∏

j=1

λj

(
ΦP (A−1)

1
2 ΦP (A)ΦP (A−1)

1
2

)
= det(Q1B1Q1).(3.3)

Since Q1 commutes with B1,

Q1B1Q1 ≤ B1 = (PA−1P )1/2 · (PAP ) · (PA−1P )1/2,

which implies

(PA−1P )−1/2 · (Q1B1Q1) · (PA−1P )−1/2 ≤ PAP.

Since Q1 ≤ P , we have then

Q1(PA−1P )−1/2Q1 · (Q1B1Q1) · Q1(PA−1P )−1/2Q1 ≤ Q1AQ1,

and hence

Q1B1Q1 ≤ {Q1(PA−1P )−1/2Q1}−1 · (Q1A1Q1) · {Q1(PA−1P )−1/2Q1}−1.

This implies

det(Q1B1Q1) ≤ det
(
{Q1(PA−1P )−1/2Q1}−2

)
· det(Q1AQ1).(3.4)

Since it is known (e.g., [2]) that

[
(PA−1P )−1 0

0 0

]
= max {X ; 0 ≤ X ≤ A, and ran(X) ⊂ ran(P )} ,
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where ran(X) denotes the range subspace of X , and similarly

[
(Q1A

−1Q1)−1 0

0 0

]
= max {X ; 0 ≤ X ≤ A, and ran(X) ⊂ ran(Q1)} ,

we can see, by ran(Q1) ⊂ ran(P ), that

(Q1A
−1Q1)−1 ≤ (PA−1P )−1.

Then since the square-root formation preserves order relation, we have

(Q1A
−1Q1)−1/2 ≤ Q1(PA−1P )−1/2Q1,

which implies

det
(
{Q1(PA−1P )−1/2Q1}−2

)
≤ det(Q1A

−1Q1).

Therefore we can conclude by (3.4) that

det(Q1B1Q1)≤ det(Q1A
−1Q1) · det(Q1AQ1)

= det
(
ΦQ1(A

−1)1/2ΦQ1(A)ΦQ1(A
−1)1/2

)
,

which proves (a) by (3.3).

The proof of (b) is quite similar to the above proof. In fact,

k∏

j=1

λj(B2) = det(Q2B2Q2)

and

Q2B2Q2 ≤ B2 = (PAP )−1 · PA2P · (PAP )−1,

which implies

(PAP )(Q2B2Q2)(PAP ) ≤ PA2P.

Then since Q2 ≤ P , we have

(Q2AQ2)(Q2B2Q2)(Q2AQ2) ≤ Q2A
2Q2,

which implies

Q2B2Q2≤ (Q2AQ2)−1 · (Q2A
2Q2) · (Q2AQ2)−1

≡ ΦQ2(A)−1ΦQ2(A)ΦQ2(A)−1,
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which leads to (b).

The following is a majorization version of the result of Bloomfield–Watson [5]

and Knott [10].

Theorem 3.1. For a compression ΦP with respect to an orthoprojection P
of rank m ≤ n − m and 0 < A ∈ Mn, the following majorization estimates in

multipicative form hold :

(a)

k∏

j=1

λj

(
ΦP (A−1)1/2ΦP (A)ΦP (A−1)1/2

)
≤

k∏

j=1

{λj(A) + λn−j+1(A)}2

4λj(A) · λn−j+1(A)

(k = 1, 2, . . . , m),

and

(b)

k∏

j=1

λj

(
ΦP (A)−1ΦP (A2)ΦP (A)−1

)
≤

k∏

j=1

{λj(A) + λn−j+1(A)}2

4λj(A) · λn−j+1(A)

(k = 1, 2, . . . , m).

First of all, notice that since 1 ≤ λj(A)/λn−j+1(A), j = 1, 2, . . . , m, is a

nonincresing sequence, so is the sequence

{λj(A) + λn−j+1(A)}2

4λj(A) · λn−j+1(A)
=

1
4

{√
λj(A)

λn−j+1(A)
+

√
λn−j+1(A)

λj(A)

}2

because the function t1/2 + t−1/2 is increasing on [1, ∞).

Proof of Theorem 3.1. In view of Lemma, writing Q1 or Q2 as P anew, it

suffices to show the following two inequalities for any orthoprojection P of rank

m ≤ n − m:

det
(
ΦP (A−1)1/2ΦP (A)ΦP (A−1)1/2

)
≤

m∏

j=1

{λj(A) + λn−j+1(A)}2

4λj(A) · λn−j+1(A)
,(3.5)

and

det
(
ΦP (A)−1ΦP (A2)ΦP (A)−1

)
≤

m∏

j=1

{λj(A) + λn−j+1(A)}2

4λj(A) · λn−j+1(A)
.(3.6)
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To prove (3.5), we may assume that P is an orthoprojection of rank m, at which

the left-hand side of (3.5), which is

det(PAP ) · det(PA−1P ) ≡ det
(
ΦP (A−1)1/2ΦP (A)ΦP (A−1)1/2

)
,

takes the maximum over the set of orthoprojections of rank m.

Bloomfield–Watson [5], and Knott [10] solved the equivalent extremal prob-

lems by a Lagrange multiplier method. Let us take the method of variation of

orthoprojections, as used in Alpargu [1].

Fix an orthoprojection P of rankm, which satisfies the above extremal condition.

For each HermitianH ∈ Mm, consider the one-parameter group of unitary matrices
defined by

PH (t) ≡ exp(−itH) · P · exp(itH) (−∞ < t < ∞).(3.7)

Then by the assumption on P , the function

f
H

(t) ≡ det (P
H

(t)APH(t)) · det
(
P

H
(t)A−1P

H
(t)

)

takes its maximum at t = 0. Therefore we have

d

dt
f

H
(t)|t=0 = 0 (for all Hermitian H).(3.8)

It is easy to see that

PH (t)APH (t) = exp(−itH){P (A + it[H, A])P} exp(itH) + o(t)

and

PH (t)A−1PH (t) = exp(−itH)
{
P (A−1 + it[H, A−1])P

}
exp(itH) + o(t),

and that for any matrix X ,

det(I + tX) = 1 + ttr(X) + o(t),

where [X, Y ] is the commutator of X and Y , that is,

[X, Y ] def= XY − Y X,

and o(t) is a matrix or scalar fucntion for small t such that ‖o(t)‖/t → 0 as t → 0.
Then we can see

d

dt
det (PH (t)APH (t)) |t=0 = i det(PAP ) · tr

(
(PAP )−1[H, A]

)
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and

d

dt
det

(
PH(t)A−1PH(t)

)
|t=0 = i det(PA−1P ) · tr

(
(PA−1P )−1[H, A−1]

)
.

Therefore we have

d

dt
fH (t)|t=0 = itr

(
(PAP )−1[H, A] + (PA−1P )−1[H, A−1]

)
· det(PAP ) · det(PA−1P )

= itr
(
H[A, (PAP )−1] + H[A−1, (PA−1P )−1]

)
· det(PAP ) · det(PA−1P ).

Then (3.8) (for all Hermitian H) is possible only when

A(PAP )−1 − (PAP )−1A + A−1(PA−1P )−1 − (PA−1P )−1A−1 = 0.

Since

A−1 =

[
(A11 − A12A

−1
22 A21)−1 −(A11 − A12A

−1
22 A21)−1A12A

−1
22

−A−1
22 A21(A11 − A12A

−1
22 A21)−1 (A22 − A21A

−1
11 A12)−1

]
,

the above identity means

−A−1
11 A12 + A12A

−1
22 = 0 or, equivalently, A11A12 = A12A22,

which implies

A11 · A12A21 = A12A22A21 and A21A11A12 = A21A12 · A22.(3.9)

Since A11, A12A21 and the right-hand side of the first identity of (3.9) are Her-

mitian, we can conclude that A11 commutes with A12A21, and hence with |A21| ≡
(A12A21)1/2. Similarly we can see from the second identity of (3.9) that A22

commutes with |A12| ≡ (A21A12)1/2.

Since m ≤ n − m by assumption, there is an (n −m)× m isometric matrix U
such that A21 = U · |A21|. Then since A22 commutes with |A12| = U · |A21| ·U∗,
the matrix |A21| commutes with U∗A22U .

Define four m × m positive semidefinite matrices Ãij (i, j = 1, 2) by

Ã
def= A11, Ã21 = Ã12

def= |A21|, and Ã22
def= U∗A22U,

and a (2m)× (2m) matrix Ã by

Ã
def=

[
Ã11 Ã12

Ã21 Ã22

]
=

[
Im 0

0 U∗

]
·

[
A11 A12

A21 A22

]
·

[
Im 0

0 U

]
.(3.10)
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Since [
Im 0

0 U

]∗ [
Im 0

0 U

]
=

[
Im 0

0 Im

]
,

according to the min-max theorem for eigenvalues of Hermitian matrices we can

see from (3.10) that

λj(Ã) ≤ λj(A) and λ2m−j+1(Ã) ≥ λn−j+1(A) (j = 1, 2, · · · , m),

so that
λj(Ã)

λ2m−j+1(Ã)
≤ λj(A)

λn−j+1(A)
(j = 1, 2, . . . , m).

Since the function (t1/2 + t−1/2)2 is increasing for t ≥ 1, this implies

m∏

j=1

{
λj(Ã) + λ2m−j+1(Ã)

}2

4λj(Ã) · λ2m−j+1(Ã)
≤

m∏

j=1

{λj(A) + λn−j+1(A)}2

4λj(A) · λn−j+1(A)
.(3.11)

Since Ã12 = Ã21 commutes with Ã11 and Ã22, and again by (3.9),

Ã11Ã12 = Ã12Ã22,

there are m × m diagonal positive semidefinite matrices D1, D2 and D3, and a

unitary matrix V such that

[
V 0

0 V

]
·
[

Ã11 Ã12

Ã21 Ã22

]
·
[

V ∗ 0

0 V ∗

]
=

[
D1 D3

D3 D2

]

with

D1 = diag(α1, · · · , αm), D2 = diag(β1, · · · , βm), andD3 = diag(γ1, · · · , γm),

where αj , βj > 0 (j = 1, 2, . . . , m) and γj ≥ 0 (j = 1, 2, . . . , m). Then we can
write

det(PAP ) · det(PA−1P ) = det
(
A

1/2
11 (A11 − A12A

−1
22 A21)−1A

1/2
11

)

= det
(
I − |A−1/2

22 A21A
−1/2
11 |2

)−1

= det
(
I − |Ã−1/2

22 Ã21Ã
−1/2
11 |2

)−1

= det
(
I − |D−1/2

2 D3D
−1/2
1 |2

)−1

=
m∏

j=1

αjβj

αjβj − γ2
j

,
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that is

det(PAP ) · det(PA−1P ) =
m∏

j=1

αjβj

αjβj − γ2
j

.(3.12)

Denote by λ
(j)
1 ≥ λ

(j)
2 the eigenvalues of the 2 × 2 matrix

[
αj γj

γj βj

]
. Since

by definition of the Dj’s,

[
Ã11 Ã12

Ã21 Ã22

]
is unitarily similar to ⊕

m∑

j=1

[
αj γj

γj βj

]
,

we have the identity

{λ(j)
1 , λ

(j)
2 ; j = 1, 2, . . . , m} = {λj(Ã) ; j = 1, 2, · · · , 2m},

so that for any choice of 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk (k ≤ m),

k∏

i=1

λ
(ji)
1

λ
(ji)
2

=
∏k

i=1 λ
(ji)
1∏k

i=1 λ
(ji)
2

≤
∏k

i=1 λi(Ã)
∏k

i=1 λ2m−i+1(Ã)
=

k∏

i=1

λi(Ã)
λ2m−i+1(Ã)

.

Then since the function

log
(

exp( t
2) + exp(− t

2)
2

)2

(t > 0)

is increasing and convex, according to a basic theorem on majorization (1.6), we

can conclude

m∏

j=1

{λ(j)
1 + λ

(j)
2 }2

4λ
(j)
1 · λ(j)

2

≤
m∏

j=1

{
λj(Ã) + λ2m−j+1(Ã)

}2

4λj(Ã) · λ2m−j+1(Ã)
.(3.13)

Finally, since the Kantorovich type inequality (2.7), applied to the 2× 2 matrix[
αj γj

γj βj

]
, yields

αjβj

αjβj − γ2
j

≤ {λ(j)
1 + λ

(j)
2 }2

4λ
(j)
1 · λ(j)

2

(j = 1, 2, . . . , m)

and hence

m∏

j=1

αjβj

αjβj − γ2
j

≤
m∏

j=1

{λ(j)
1 + λ

(j)
2 }2

4λ
(j)
1 · λ(j)

2

,(3.14)
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combining (3.11), (3.12), (3.13) and (3.14), we arrive at the expected inequality

(3.5). This completes the proof of (a).

A proof of (b) is parallel to the above. Suppose that at P the left-hand side of

(3.6), which is

det(PA2P )
det(PAP )2

≡ det
(
ΦP (A)−1ΦP (A2)ΦP (A)−1

)
,

attains its maximum over the set of all orthoprojections of rank m.

Khatri-Rao [9] solved an equivalent extremal problem by a Lagrange multiplier

method. Let us again take the method of variation of orthoprojections.

For each Hermitian H , consider again the projections P
H

(t), defined by (3.7),
and a function

g
H

(t) def=
det(P

H
(t)A2P

H
(t))

det(P
H
(t)AP

H
(t))2

.

Then gH (t) takes its maximum at t = 0, so that

d

dt
gH (t)|t=0 = 0 (for all Hermitian H).(3.15)

Since

d

dt
det

(
PH (t)A2PH (t)

)
|t=0 = i det(PA2P ) · tr

(
(PA2P )−1[H, A2]

)
,

and

d

dt
det (PH (t)APH (t))2 |t=0 = 2i det(PAP )2 · tr

(
(PAP )−1[H, A]

)
,

we have

d

dt
g

H
(t)|t=0 = i

det(PA2P )
det(PAP )2

· tr
(
(PA2P )−1[H, A2] − 2(PAP )−1[H, A]

)

= i
det(PA2P )
det(PAP )2

· tr
(
{[A2, (PA2P )−1] − 2[A, (PAP )−1]}H

)
.

Now (3.15) (for all Hermitian H) is possible only when

[A2, (PA2P )−1] − 2[A, (PAP )−1] = 0.

This is equivalent to the relation

(A21A11 + A22A21)(A2
11 + A12A21)−1 − 2A21A

−1
11 = 0,
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which implies

A22A21 = A21A11 + 2A21A
−1
11 A12 · A21.

From this we can derive the following two identities

A12A22A21 = A12A21 · A11 + 2A12 · A21A
−1
11 A12 · A21(3.16)

and

A22 · (A21A
−1
11 A12) = A21A12 + 2(A21A

−1
11 A12)2.(3.17)

Then (3.16) implies the commutativity of A11 and |A21| while (3.17) does that of
|A12| andA22. Now just as in the proof of (a), there are positive numbers αj , βj > 0
and nonnegative numbers γj, j = 1, 2, . . . , m, such that

det(PA2P )
det(PAP )2

=
m∏

j=1

α2
j + γ2

j

α2
j

,(3.18)

and with the help of the Kantorovich type inequality (2.4), applied to the 2 × 2
matrix,

m∏

j=1

α2
j + γ2

α2
j

≤
m∏

j=1

{λj(A) + λn−j+1(A)}2

4λj(A) · λn−j+1(A)
.(3.19)

Now combining (3.18) and (3.19), we arrive at the inequality (3.6). This com-

pletes the proof of Theorem.

As mentioned in the introduction, it will be useful to express the results of

Theorem 3.1 as estimates of the eigenvalues of the matrices appearing in the block

matrix representation.

Theorem 3.2. Let an n×n positive definite matrix A be represented in a block

matrix form

A =

[
A11 A12

A21 A22

]
,

where A11, for instacnce, is an m×m matrix with m ≤ n−m. Then the following
estimates hold :

(a)

k∏

j=1

1

1 − λj

(
|A−1/2

22 A21A
−1/2
11 |

)2 ≤
k∏

j=1

{λj(A) + λn−j+1(A)}2

4λj(A) · λn−j+1(A)
(k = 1, 2, . . . , m),



Bloomfield-Watson-Knott Type Inequalities 463

and consequently

k∑

j=1

λj

(
|A−1/2

22 A21A
−1/2
11 |

)2
≤

k∑

j=1

{λj(A) − λn−j+1(A)}2

4λj(A) · λn−j+1(A)
(k = 1, 2, . . . , m).

(b)

k∏

j=1

{1 + λj

(
|A21A

−1
11 |

)2} ≤
k∏

j=1

{λj(A) + λn−j+1(A)}2

4λj(A) · λn−j+1(A)
(k = 1, 2, . . . , m),

and consequently

k∑

j=1

λj

(
|A21A

−1
11 |

)2 ≤
k∑

j=1

{λj(A)− λn−j+1(A)}2

4λj(A) · λn−j+1(A)
(k = 1, 2, . . . , m).

In fact, the first assertion of each of (a) and (b) is the restatement of the cor-

responding part in Theorem 3.1. To see the second assertion of (a), notice that by

the basic theorem on majorization (1.6) the first part implies

k∑

j=1

1

1− λj

(
|A−1.2

22 A21A
−1/2
11 |

)2
≤

k∑

j=1

{λj(A) + λn−j+1(A)}2

4λj(A) · λn−j+1(A)
(k = 1, 2, . . . , m).

Now the required assertion follows from the inequality

1 + t ≤ 1
1 − t

(0 ≤ t < 1),

and the identity

{λj(A) + λn−j+1(A)}2

4λj(A) · λn−j+1(A)
− 1 =

{λj(A) − λn−j+1(A)}2

4λj(A) · λn−j+1(A)
(k = 1, 2, . . . , m).

In a similar way, the second assertion of (b) follows from the inequality

k∑

j=1

{1 + λj

(
|A21A

−1
11 |

)2} ≤
k∑

j=1

{λj(A) + λn−j+1(A)}2

4λj(A) · λn−j+1(A)
(k = 1, 2, . . . , m),

which, in turn, follows from the first part by the basic theorem on majorization

(1.7).
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4. ESTIMATES IN ADDITIVE FORM

Our next interest is in finding estimates of

Φ(A)− Φ(A−1)−1 and Φ(A2)− Φ(A)2

in additive majorization form for a unital positive linear map Φ on the space of

n×n matrices and positive definite A ∈ Mn. But here also we have to restrict our

observation to the case of a compression.

Lemma. For a compression ΦP with respect to an orthoprojection P of rank

m and 0 < A ∈ Mn, the following inequalities hold for each 1 ≤ k ≤ m :

k∑

j=1

λj

(
ΦP (A) − ΦP (A−1)−1

)
≤ tr

(
ΦQ(A) − ΦQ(A−1)−1

)
,

where Q is the orthoprojection to the subspace spanned by the eigenvectors of

B ≡ ΦP (A)− ΦP (A−1)−1,

corresponding to its largest k eigenvalues.

In fact, the assertion follows from the following two facts:

k∑

j=1

λj

(
ΦP (A)− ΦP (A−1)−1

)
= tr(QBQ),

and

QBQ ≤ ΦQ(A) − ΦQ(A−1)−1

because, as in the proof of Lemma 3.1, Q ≤ P implies

QΦP (A)Q = QAQ and QΦP (A−1)−1Q ≥ (QA−1Q)−1 = ΦQ(A−1)−1.

The following is a majorization version of the result of Khatri–Rao [9].

Theorem 4.1. For 0 < A ∈ Mn and an orthoprojection P of rank m ≤ n−m
the following majorization estimates in addtive form hold :

k∑

j=1

λj

(
ΦP (A) − ΦP (A−1)−1

)
≤

k∑

j=1

{√
λj(A) −

√
λn−j+1(A)

}2

(k = 1, 2, . . . , m),

or, equivalently,

k∑

j=1

λj

(
|A−1/2

22 A21|
)2

≤
k∑

j=1

{√
λj(A) −

√
λn−j+1(A)

}2

(k = 1, 2, . . . , m).
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Proof. In view of Lemma, it suffices, as in the proof of Theorem 3.1, to prove

that for an orthoprojection P of rank m ≤ n − m,

tr
(
ΦP (A) − ΦP (A−1)−1

)
≤

m∑

j=1

{√
λj(A) −

√
λn−j+1(A)

}2

.(4.1)

Khatri-Rao [9] solved an equivalent extremal problem by a Lagrange multiplier

method. Here let us take again the method of variation of orthoprojections as in the

proof of Theorem 3.1.

To prove (4.1), we may and do assume that the maximum of the left-hand side

of (4.1) over the class of orthoprojections of rank m is attained at this P .

For each Hermitian matrix H , consider again the one-parameter family of or-
thoprojections PH (t) defined in (3.7). Then by the assumption on P , the function

hH (t) defined by

hH (t) ≡ tr
(
ΦP

H
(t)(A) − ΦP

H
(t)(A

−1)−1
)

attains its maximum at t = 0, so

d

dt
hH (t)|t=0 = 0 (for all Hermitian H).(4.2)

We can compute as follows.

d

dt
hH (t)|t=0 = itr(XH),

where

X = [A, (P⊥AP⊥)−1(P⊥AP )+(PAP⊥)(P⊥AP⊥)−1

−(P⊥AP⊥)−1(P⊥AP )(PAP⊥)(P⊥AP⊥)−1].

Then (4.2) (for all Hermitian H) is possible only when X = 0, that is,

A11A12A
−1
22 − A12 − A12A

−1
22 A21A12A

−1
22 = 0,

or,

(A11 − A12A
−1
22 A21)A12A

−1
22 = A12,

which implies

(A11 − A12A
−1
22 A21)A12A

−1
22 A21 = A12A21.(4.3)
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Since all factors of (4.3) are Hermitian, A11 must commute with A12A
−1
22 A21

and |A21|. Then as in the proof of Theorem 3.2, there are αj , βj > 0 and γj ≥ 0,

j = 1, 2, . . . , m, such that each 2 × 2 matrix
[

αj γj

γj βj

]
is positive definite and

tr
(
ΦP (A) − ΦP (A−1)−1

)
=

m∑

j=1

γ2
j

βj
,(4.4)

and, with its eigenvalues λ
(j)
1 ≥ λ

(j)
2 ,

m∑

j=1

{√
λ

(j)
1 −

√
λ

(j)
2

}2

≤
m∑

j=1

{√
λj(A)−

√
λn−j+1(A)

}2

.(4.5)

On the other hand, the Kantorovich type inequality (2.8), applied to the 2×2 matrix,
yields

γ2
j

βj
≤

{√
λ

(j)
1 −

√
λ

(j)
2

}2

(j = 1, 2, . . . , m).(4.6)

Finally combining (4.4), (4.5) and (4.6), we arrive at the inequality (4.1). This

completes the proof.

We can apply the same variational method to ΦP (A2) − ΦP (A)2 to get

k∑

j=1

λj

(
ΦP (A2) − ΦP (A)2

)
≤

k∑

j=1

{λj(A) − λn−j+1(A)}2

4
(k = 1, 2, . . . , m)(4.7)

or, equivalently,

k∑

j=1

λj(|A21|)2 ≤
k∑

j=1

{λj(A) − λn−j+1(A)}2

4
(k = 1, 2, . . . , m).

But a more careful consideration, similar to that in the proof of Theorem 3.1, due

to Li and Mathias [13], can yield much sharper estimates.

Theorem 4.2. For n × n Hermitian A and an orthoprojection P of rank

m ≤ n − m, the following majorization estimates in addtive form hold :

k∑

j=1

√
λj (ΦP (A2)− ΦP (A)2) ≤

k∑

j=1

λj(A)− λn−j+1(A)
2

(k = 1, 2, . . . , m)
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or, equivalently,

k∑

j=1

λj(|A21|) ≤
k∑

j=1

λj(A) − λn−j+1(A)
2

(k = 1, 2, . . . , m).

Proof. Denote for simplicity

λj ≡ λj(|A21|) (j = 1, 2, . . . , m).

Then there exist an (n − m) × m matrix U with U∗U = Im and a unitary matrix

V of order m such that

U∗A21V = diag(λ1, λ2, · · · , λm).

Let

Ã11 = V ∗A11V, Ã12 = V ∗A12U, Ã21 = U∗A21V, Ã22 = U∗A22U,

and consider the (2m)× (2m) Hermitian matrix

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
≡ [ãi,j]2m

i,j=1.

Then, by assumption,

Ã21 = Ã12 = diag(λ1, λ2, . . . , λm).

As in the proof of Theorem 3.1, we can see

λj(A) ≥ λj(Ã) and λn−j+1(A) ≤ λ2m−j+1(Ã),

so that

λj(A) − λn−j+1(A) ≥ λj(Ã) − λ2m−j+1(Ã) (j = 1, 2, . . . , m).

For each j = 1, 2, . . . , m, consider the 2 × 2 matrix
[

ãjj ãj,m+j

ãm+j,j ãm+j,m+j

]

and its eigenvalues λ
(j)
1 ≥ λ

(j)
2 . Then the Kantorovich type inequality (2.5), applied

to the 2 × 2 matrix, yields

λj ≤
λ

(j)
1 − λ

(j)
2

2
.
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Though the direct sum

⊕
m∑

j=1

[
ãjj ãj,m+j

ãm+j,j ãm+j,m+j

]

is not unitarily similar to Ã, there are orthoprojections Pj , j = 1, 2, . . . , m, such that∑m
j=1 Pj = I and

∑m
j=1 PjÃPj is unitarily similar to the direct sum in question.

Then according to the so-called pinching theorem (e.g., [4, p. 50]), we can see

k∑

j=1

λ
(j)
1 ≤

k∑

j=1

λj(Ã) (k = 1, 2, . . . , m)

and
k∑

j=1

λ
(j)
2 ≥

k∑

j=1

λ2m−j+1(Ã) (k = 1, 2, . . . , m).

Therefore we can conclude

k∑

j=1

λj ≤
k∑

j=1

λ
(j)
1 − λ

(j)
2

2

≤
k∑

j=1

λj(Ã) − λ2m−j+1(Ã)
2

≤
k∑

j=1

λj(A)− λn−j+1(A)
2

.

This completes the proof.

Finally, notice that since t2 is increasing and convex on [0,∞), inequality (4.7)
follows from Theorem 4.2 by the basic theorem on majorization (1.5).
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