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SOME PROPERTIES RELATED TO NESTED SEQUENCE OF

BALLS IN BANACH SPACES

Pradipta Bandyopadhyay and Bor-Luh Lin

Abstract. In this survey article, we explore various natural situations where

the results about strict convexity of X∗ like Vlasov’s Theorem or Taylor-

Foguel Theorem are actually seen to be locally consequences of properties of

rotund points.

1. INTRODUCTION

We work with real Banach spaces. Let X be a Banach space. We will denote

by B(x, r) (resp. B[x, r]) the open (resp. closed) ball of radius r > 0 around
x ∈ X . Our notations are otherwise standard.

A Banach space X is said to be strictly convex if every point of the unit sphere

S(X) is an extreme point of the unit ball B(X). Vlasov [18] (see also [14, Theorem
2]) showed that X∗ is strictly convex if and only if the union of any unbounded
nested sequence of balls in X is either the whole of X or an open affine half-space.

Definition 1.1. A sequence {Bn = B(xn, rn)} of open balls in X is nested if

for all n ≥ 1, Bn ⊆ Bn+1.

A nested sequence {Bn = B(xn, rn)} of balls in X is unbounded if rn ↑ ∞.

In [4], we observed that locally Vlasov’s theorem is actually a consequence of

the fact that if X∗ is strictly convex, then every point of S(X∗) is a rotund point
of B(X∗) – a notion strictly stronger than extreme points.

Definition 1.2 [8]. Let X be a Banach space. We say that x ∈ S(X) is a
rotund point of B(X) (or, X is rotund at x) if ‖y‖ = ‖(x + y)/2‖ = 1 implies
x = y.
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Remark 1.3. Clearly, every rotund point of B(X) is an extreme point, indeed
an exposed point of B(X). But the converse is not generally true. For example, no
extreme point of B(`∞) or B(`1) is a rotund point of B(`∞) or B(`1). However,
if X is strictly convex, then every point of S(X) is a rotund point of B(X).

Observe that x is not a rotund point of B(X) if and only if there exists z 6= 0
such that ‖x + λz‖ = 1 for all λ ∈ [0, 1]. We will then say that x is not rotund in
the direction of z. In case x is not rotund in both the directions of z and −z, that

is, if ‖x ± z‖ = 1 for some z 6= 0, then x fails to be an extreme point as well.

A classical result of Taylor [17] and Foguel [7] showed that X∗ is strictly
convex if and only if every subspace Y is a U -subspace of X .

Definition 1.4. A subspace Y of a Banach space X is said to be a U -subspace

of X if each y∗ ∈ Y ∗ has a unique Hahn-Banach (i.e., norm preserving) extension
in X∗.

X is Hahn-Banach Smooth if X is an U -subspace of X∗∗.

U -subspaces are studied in [14] and [15]. They refer to them as subspaces with
the Property U in X . Our terminology is borrowed from [6]. In particular, U -

subspaces have been characterized in [14] in terms of unbounded nested sequence

of balls.

In [3], we observed that locally the Taylor-Foguel Theorem is also a consequence

of properties of rotund points.

Rotund points were introduced in [8] and, in fact, a version of Theorem 2.1 is

proved there. The results are reproduced also in [9]. It is rather surprising that the

notion of rotund points have not received the attention it deserves.

In this survey article, we explore various natural situations where the results

about strict convexity of X∗ like Vlasov’s Theorem or Taylor-Foguel Theorem are

actually seen to be locally consequences of properties of rotund points.

2. LOCAL RESULTS

We begin with a direct proof of the local version of Vlasov’s Theorem in [4],

which brings out the essential features and simplicity of the argument.

Theorem 2.1. Let X be a Banach space. Then x∗ ∈ S(X∗) is a rotund point
of B(X∗) if and only if for every unbounded nested sequence {Bn} of balls such
that x∗ is bounded below on ∪Bn , ∪Bn is an affine half-space determined by x∗.

Proof. Let {Bn = B(xn, rn)} be an unbounded nested sequence of balls in a
Banach space X , and let B = ∪Bn. Suppose B 6= X . Let

A = {x∗ ∈ S(X∗) : x∗ is bounded below on B}.
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Then

B =
⋂

x∗∈A

{x ∈ X : x∗(x) > inf x∗(B)},

and it is easy to show that the set A is a convex subset of S(X∗).
Now, if x∗ is a rotund point of B(X∗), then the only convex subset of S(X∗)

that contains x∗ is the singleton {x∗}. Thus, if x∗ ∈ A, then A = {x∗} and B is

an affine half-space.

Conversely, suppose there exists y∗ ∈ S(X∗)\{x∗} such that z∗ = (x∗+y∗)/2 ∈
S(X∗).

Let {xn} ⊆ B(X) be such that (x∗ + y∗)(xn) → 2. Then, in fact, x∗(xn) → 1
and y∗(xn) → 1.

Choose a sequence {δn} such that δn > 0 for all n and
∑∞

n=1 δn < 1. Passing
to a subsequence if necessary, we may assume x∗(xn) > 1−δn and y∗(xn) > 1−δn.

Let Bn = B(
n∑

i=1
xi, n). Clearly {Bn} is an unbounded nested sequence of balls.

And, for any n ≥ 1,

inf x∗(Bn) = x∗

(
n∑

i=1

xi

)
− n = −

n∑

i=1

[1 − x∗(xi)] > −
n∑

i=1

δi > −1

And similarly, inf y∗(Bn) > −1. Hence, x∗ ∈ A, but A 6= {x∗}.

Remark 2.2. Observe that our proof does not use smoothness of two-dimensional

quotients as in [8] or [18]. Nor does it use the Taylor-Foguel Theorem as in [14].

Definition 2.3. Let X be a Banach space.

(a) We say that x ∈ S(X) is

(i) an LUR (resp. wLUR) point of B(X) if for any {xn} ⊆ B(X), the
condition

lim
n

∥∥∥∥
xn + x

2

∥∥∥∥ = 1

implies limxn = x (respectively, w-limxn = x).

(ii) an almost LUR (ALUR) (resp. weakly almost LUR (wALUR)) point of

B(X) if for any {xn} ⊆ B(X) and {x∗
m} ⊆ B(X∗), the condition

lim
m

lim
n

x∗
m

(
xn + x

2

)
= 1

implies limxn = x (respectively, w-limxn = x).

We say that a Banach space X has one of the above properties if every point

of S(X) has the same property.
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(b) We say that x∗ ∈ S(X∗) is a w*-ALUR point (respectively, w*-wALUR point,
w*-nALUR point) of B(X∗) if for any {x∗

n} ⊆ B(X∗) and {xm} ⊆ B(X),
the condition

lim
m

lim
n

(
x∗

n + x∗

2

)
(xm) = 1

implies w*-limx∗
n = x∗ (respectively, w-limx∗

n = x∗, (norm-)limx∗
n = x∗).

We actually have proved in [4]

Theorem 2.4. Let X be a Banach space. For x∗ ∈ S(X∗), the following are
equivalent:

(a) x∗ is a rotund point of B(X∗);

(b) x∗ is a w*-ALUR point of B(X∗);

(c) for every unbounded nested sequence {Bn} of balls such that x∗ is bounded
below on ∪Bn, if for any {y∗n} ⊆ S(X∗), the sequence {inf y∗n(Bn)} is
bounded below, then w∗ lim y∗n = x∗;

(d) for every unbounded nested sequence {Bn} of balls such that x∗ is bounded

below on B = ∪Bn, if y∗ ∈ S(X∗) is also bounded below on B, then
y∗ = x∗;

(e) for every unbounded nested sequence {Bn} of balls, if x∗ is bounded below
on B = ∪Bn, then B is an affine half-space determined by x∗.

And here is a direct proof of the local version of Taylor-Foguel Theorem as in

[3].

Theorem 2.5. Let X be a Banach space. Then x∗ ∈ S(X∗) is a rotund point
of B(X∗) if and only if for all subspace Y ⊆ X such that ‖x∗|Y ‖ = 1, x∗ is the
unique Hahn-Banach extension of x∗|Y to X .

Proof. Let Y ⊆ X be such that ‖x∗|Y ‖ = 1. If x∗|Y has another norm

preserving extension y∗ to X , then clearly, ‖y∗‖ = ‖(x∗ + y∗)/2‖ = 1.

For the converse, we follow the arguments of [7]. Suppose there exists y∗ ∈
S(X∗)\{x∗} such that (x∗ +y∗)/2 ∈ S(X∗). Let Y = {x ∈ X : x∗(x) = y∗(x)}.
It clearly suffices to show that ‖x∗|Y ‖ = 1.

Let {xn} ⊆ S(X) be such that (x∗ + y∗)(xn) → 2. Then, in fact, x∗(xn) → 1
and y∗(xn) → 1. Let x0 ∈ X be such that (x∗ − y∗)(x0) = 1. Then for each
n ≥ 1, xn = yn + αnx0, where yn ∈ Y and αn = (x∗ − y∗)(xn) → 0. It follows
that ‖yn‖ → 1 and x∗(yn) → 1. This completes the proof.
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We actually have proved in [3]

Theorem 2.6. Let X be a Banach space. For x∗ ∈ S(X∗), the following are
equivalent:

(a) x∗ is a rotund point of B(X∗);

(b) for all subspace Y ⊆ X such that ‖x∗|Y ‖ = 1, any, and hence all, of the
following conditions holds:

(i) x∗ is the unique Hahn-Banach extension of x∗|Y to X ;

(ii) if x0 /∈ Y, then

sup{x∗(y)− ‖x0 − y‖ : y ∈ Y } = inf{x∗(y) + ‖x0 − y‖ : y ∈ Y };

(iii) if x0 /∈ Y and x∗(x0) > α (respectively, x∗(x0) < α) for some α ∈ R,

then there exists a closed ballB inX with centre in Y such that x0 ∈ B
and inf x∗(B) > α (respectively, inf x∗(B) < α);

(iv) if {x∗
α} ⊆ S(X∗) is a net such that limα x∗

α(y) = x∗(y) for all y ∈ Y,
then w* − limx∗

α = x∗;

(v) if {x∗
n} ⊆ S(X∗) is a sequence such that limn x∗

n(y) = x∗(y) for all
y ∈ Y, then w∗ limx∗

n = x∗.

Proposition 2.7. Let X be a Banach space. For x∗ ∈ S(X∗), the following
are equivalent:

(a) x∗ is a rotund point of B(X∗);

(b) for all subspace Y ⊆ X such that ‖x∗|Y ‖ = 1, x∗|Y is a rotund point of

B(Y ∗);

(c) for all separable subspace Y ⊆ X such that ‖x∗|Y ‖ = 1, x∗|Y is a rotund
point of B(Y ∗).

Corollary 2.8. Having a strictly convex dual is a separably determined prop-

erty. That is, for a Banach space X, X∗ is strictly convex if and only if for all

separable subspaces Y ⊆ X, Y ∗ is strictly convex.

This observation appears to be new.

A recent result of [10] shows that a Banach space X is σ-fragmentable if every

x ∈ S(X) is, in our terminology, a rotund point of B(X∗∗). And they asked to
characterize this property. As a consequence of Theorem 2.4, we also observe in

[4, Corollary 8] the following

Theorem 2.9. Let X be a Banach space. For x ∈ S(X), the following are
equivalent:
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(a) x is a rotund point of B(X∗∗);

(b) x is a w*-ALUR point of B(X∗∗);

(b′) x is a wALUR point of B(X);

(c) for every unbounded nested sequence {B∗
n} of balls in X∗ such that x is

bounded below on ∪B∗
n, if for any {y∗∗n } ⊆ S(X∗∗), the sequence {inf y∗∗n (B∗

n)}
is bounded below, then w∗ limy∗∗n = x;

(c′) for every unbounded nested sequence {B∗
n} of balls in X∗ such that x is

bounded below on ∪B∗
n, if for any {yn} ⊆ S(X), the sequence {inf yn(B∗

n)}
is bounded below, then w-limyn = x;

(d) for every unbounded nested sequence {B∗
n} of balls in X∗ such that x is

bounded below on B∗ = ∪B∗
n, if any x∗∗ ∈ S(X∗∗) is also bounded below

on B∗, then x = x∗∗;

(e) for every unbounded nested sequence {B∗
n} of balls in X∗, if x is bounded

below on B∗ = ∪B∗
n, then B∗ is an affine half-space determined by x.

3. MORE ON ROTUND POINTS

We start with an elementary characterization of rotund points.

Definition 3.1. The duality mapping D for a Banach space X is the set-valued

map from S(X) to P(S(X∗)) defined by

D(x) = {x∗ ∈ S(X∗) : x∗(x) = 1}, x ∈ S(X).

Lemma 3.2. Let X be a Banach space. x ∈ S(X) is a rotund point of B(X)
if and only if x is exposed by every x∗ ∈ D(x).

Corollary 3.3. Let x ∈ S(X) be an exposed point as well as a smooth point
of B(X). Then x is a rotund point of B(X).

Another way to emphasize the difference of rotund points and extreme points is

via the duality.

Proposition 3.4. Let x ∈ S(X), x∗ ∈ D(x). Consider the following state-
ments:

(a) x∗ is a rotund point of B(X∗),

(b) x is a smooth point of B(X),
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(c) x∗ is an extreme point of B(X∗).

Then (a) ⇒ (b) ⇒ (c) and none of the converse is true in general.

Proposition 3.5. Let X be a Banach space. For x ∈ S(X), the following are
equivalent :

(a) x is a wALUR point of B(X);

(b) x is w*-exposed in B(X∗∗) by every x∗ ∈ D(x);

(c) for every x∗ ∈ D(x), w*-slices of B(X∗∗) determined by x∗ form a local

base for (B(X∗∗), w∗) at x;

(d) for every x∗ ∈ D(x), slices of B(X) determined by x∗ form a local base for

(B(X), weak) at x;

(e) for every x∗ ∈ D(x) and for any {xn} ⊆ S(X), if x∗(xn) → 1, then
w-lim xn = x.

Definition 3.6. Let K ⊆ X be a closed bounded convex set. A point x ∈ K

is said to be a point of continuity (PC) of K if x is a point of continuity of the
identity map from (K, w) to (K, ‖ · ‖).

Corollary 3.7. Let X be a Banach space. For x ∈ S(X), the following are
equivalent :

(a) x is an ALUR point of B(X);

(b) x is a wALUR point as well as a PC of B(X);

(c) For every x∗ ∈ D(x), for any {xn} ⊆ S(X), if x∗(xn) → 1, then limxn =
x;

(d) x is strongly exposed in B(X) by every x∗ ∈ D(x);

(e) for every unbounded nested sequence {B∗
n} of balls in X∗ such that x is

bounded below on ∪B∗
n, if for any {yn} ⊆ S(X), the sequence {inf yn(B∗

n)}
is bounded below, then lim yn = x.

Remork 3.8. Clearly, if x is an ALUR point of B(X), then x is a rotund point
as well as a PC of B(X). Is the converse true? Notice that it would suffice to
show that if x is a rotund point as well as a PC of B(X), then x is a rotund point
of B(X∗∗). Recall that if x is an extreme point as well as a PC of B(X), then x
is an extreme point of B(X∗∗) [13]. On the other hand, if x is an exposed point as

well as a PC of B(X), then x is not necessarily an exposed point of B(X∗∗) [1].
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Clearly, an ALUR Banach space is strictly convex as well as Kadec and therefore

has a LUR renorming. Is the same true of wALUR spaces?

Talking of renormings, it is easy to see that `1 or `∞ sums of nonzero Banach

spaces cannot have any rotund points. It follows that every Banach space of dimen-

sion ≥ 2 has a renorming that lacks rotund points. Contrast this with the fact that a
Banach space has the RNP if and only if the unit ball of every renorming contains

a strongly exposed point. It also follows that having rotund points is not a three

space property.

4. STRAIGHT NESTED SEQUENCE OF BALLS

Definition 4.1. An unbounded nested sequence of balls {B(xn, rn)} in X is

called straight if there exist x ∈ S(X) and λn > 0 such that xn = λnx, n ∈ N.
Such x is called the direction of this sequence.

Definition 4.2. x ∈ S(X) is called a smooth (resp., very smooth, Fréchet
smooth) point of B(X) if for every x∗ ∈ D(x) and {x∗

n} ⊆ B(X∗), the condition
limn x∗

n(x) = 1 implies w*-limnx∗
n = x∗ (resp. w-limnx∗

n = x∗, limn x∗
n = x∗).

X is said to be smooth (resp. very smooth, Fréchet smooth) if every point of S(X)
is a smooth (resp. very smooth, Fréchet smooth) point of B(X).

Smooth, very smooth, Fréchet smooth points of B(X) can be characterized in
terms of straight unbounded nested sequence of balls similar to Theorem 2.4. This

was obtained in [3].

Theorem 4.3. Let X be a Banach space. For x ∈ S(X), the following are
equivalent :

I. (a) x is a smooth point of B(X);

(b) for every straight unbounded nested sequence {Bn} of balls in the
direction of x, if for any x∗, y∗n ∈ S(X∗), x∗ is bounded below on ∪Bn

and the sequence {inf y∗n(Bn)} is bounded below, then w∗ limy∗n = x∗;

(c) for every straight unbounded nested sequence {Bn} of balls in the
direction of x, if for any x∗, y∗ ∈ S(X∗), both x∗ and y∗ are bounded
below on ∪Bn, then x∗ = y∗;

(d) for every straight unbounded nested sequence {Bn} of balls in the
direction of x, B = ∪Bn is either the whole of X or an affine half-

space in X .

II. (a) x is a very smooth point of B(X);
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(b) for every straight unbounded nested sequence {Bn} of balls in the
direction of x, if for any x∗, y∗n ∈ S(X∗), x∗ is bounded below on ∪Bn

and the sequence {inf y∗n(Bn)} is bounded below, then w-limy∗n = x∗;

(c) for every straight unbounded nested sequence {B∗∗
n } of balls in X∗∗

in the direction of x, ∪B∗∗
n is either the whole of X∗∗ or an affine

half-space in X∗∗.

III. (a) x is a Fréchet smooth point of B(X);

(b) for every straight unbounded nested sequence {Bn} of balls in the di-
rection of x, if for any x∗, y∗n ∈ S(X∗), x∗ is bounded below on ∪Bn

and the sequence {inf y∗n(Bn)} is bounded below, then lim y∗n = x∗.

Proposition 4.4. Let X be a Banach space. For x ∈ S(X), the following are
equivalent :

I. (a) x is a wALUR point of B(X);

(b) for every straight unbounded nested sequence {B∗
n} of balls in X∗ such

that x is bounded below on ∪B∗
n, if for any {yn} ⊆ S(X), the sequence

{inf yn(B∗
n)} is bounded below, then w-limyn = x.

II. (a) x is an ALUR point of B(X);

(b) for every straight unbounded nested sequence {B∗
n} of balls in X∗ such

that x is bounded below on ∪B∗
n , if for any {yn} ⊆ S(X), the sequence

{inf yn(B∗
n)} is bounded below, then lim yn = x.

Definition 4.5. A subset B ⊆ S(X∗) is a boundary for X if for every x ∈
S(X), B ∩ D(x) 6= ∅.

Corollary 4.6. Let X be a Banach space.

I. (a) X is wALUR if and only if every x∗ ∈ D(S(X)) is a smooth point of
B(X∗). In particular, if X∗ is smooth, then X is wALUR.

(b) X is ALUR if and only if every x∗ ∈ D(S(X)) is a Fréchet smooth
point of B(X∗). In particular, if X∗ is Fréchet smooth, then X is

ALUR.

II. (a) If rotund points of B(X∗) form a boundary for X (in particular, if X∗

is rotund), then X is smooth.

(b) If wALUR points of B(X∗) form a boundary for X (in particular, if
X∗ is wALUR), then X is very smooth.
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(c) If ALUR points of B(X∗) form a boundary for X (in particular, if X∗

is ALUR), then X is Fréchet smooth.

Remark 4.7. If every x∗ ∈ D(S(X)) is a very smooth point of B(X∗), then
what is the exact rotundity condition that we get in X? We will answer this at

the end of the next section. Clearly that would be a notion between wALUR and

ALUR. Observe that the conditionX∗ is very smooth already implies the reflexivity

of X and therefore, we haveX∗ is very smooth if and only ifX is rotund (wALUR)

and reflexive.

5. EXTENDING VLASOV’S THEOREM

Starting from Vlasov’s result, Sullivan [16] introduced a stronger property, called

Property (V ) (called Vlasov Property in [5]). The following reformulation of the
definition comes from [5, Proposition 3.1].

Definition 5.1. A Banach space X is said to have the Vlasov Property, if

for every unbounded nested sequence {Bn} of balls and x∗, y∗n ∈ S(X∗), if x∗

is bounded below on ∪Bn, and the sequence {inf y∗n(Bn)} is bounded below, or,
specifically, if there exists c ∈ R such that

(1) x∗(b) ≥ c for all b ∈ ∪Bn,

(2) y∗k(b) ≥ c for all b ∈ Bn, n ≤ k,

then w-limy∗n = x∗.

Let us observe that if {y∗k} satisfies (2) and x∗ is a cluster point of {y∗k} in any
compatible vector topology on X∗, then x∗ satisfies (1).

In [16], it is shown that X has the Vlasov Property if and only if X is Hahn-

Banach Smooth and X∗ is strictly convex. In [2], this characterization was used to

show that the Vlasov Property is equivalent to w*-ANP-II′.

Definition 5.2. (a) A subset Φ of B(X∗) is called a norming set for X if

‖x‖ = sup
x∗∈Φ

x∗(x) for all x ∈ X .

(b) A sequence {xn} in B(X) is said to be asymptotically normed by Φ if for

any ε > 0, there exists a x∗ ∈ Φ and N ∈ N such that x∗(xn) > 1 − ε for

all n ≥ N .

(c) For κ = I, II, II′ or III, a sequence {xn} in X is said to have the property κ

if
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I. {xn} is convergent,
II. {xn} has a convergent subsequence,
II′. {xn} is weakly convergent,
III. {xn} has a weakly convergent subsequence.

(d) For κ = I, II, II′ or III, X is said to have the asymptotic norming property κ
with respect toΦ (Φ-ANP-κ), if every sequence inB(X) that is asymptotically
normed by Φ has property κ.

(e) A sequence {x∗
n} in X∗ is said to have the property IV if {x∗

n} is w*-
convergent.

(f) For κ = I, II, II′, III or IV, X is said to have the w*-ANP-κ, if every sequence
in B(X∗) that is asymptotically normed by B(X) has property κ.

Remark 5.3. The original definition of Φ-ANP-III was different. The equiva-
lence with the one above was established in [11, Theorem 2.3].

For various geometric notions related to w*-ANPs, refer to [11, 12]. The Φ-
ANP-II′ and w*-ANP-II′ were introduced and studied in [2]. The w*-ANP-IV is

new. In particular, we recall the following result from [11, Theorem 3.1] and [2,

Theorem 3.1]

Theorem 5.4. A Banach space X

(a) has w*-ANP-I if and only if X∗ is strictly convex and (S(X∗), w∗) =
(S(X∗), ‖ · ‖).

(b) has w*-ANP-II if and only if (S(X∗), w∗) = (S(X∗), ‖ · ‖).

(c) has w*-ANP-II′ if and only if X∗ is strictly convex and (S(X∗), w∗) =
(S(X∗), w).

(d) has w*-ANP-III if and only if (S(X∗), w∗) = (S(X∗), w) if and only if X is

Hahn-Banach smooth.

Observe that in the definition of the Vlasov Property, if we replace “w-limy∗n =
x∗” by “w*-limy∗n = x∗” then by Theorem 2.4, we simply get X∗ is strictly convex.
It was observed in [5] that if we replace it by “limy∗n = x∗” then we get w*-ANP-I.

Indeed, as observed in [5], if we replace it by {y∗n} has property κ, then for κ =
I, II′ or IV, we get the corresponding w*-ANPs. But for κ = II or III, we do

not get anything new. Indeed, strict convexity of X∗ remains. So we need some
modification, as was considered in [5].

Definition 5.5 [5]. A Banach space X has property V-κ (κ = I, II, II′, III or

IV), if for every unbounded nested sequence {Bn} of balls, and {y∗n} ⊆ S(X∗) if
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the sequence {inf y∗n(Bn)} is bounded below, i.e., Condition (2) in Definition 5.1
is satisfied, then {y∗n} has property κ (κ = I, II, II′, III or IV).

In [5], the authors show that the above “Vlasov-like” Properties are equivalent

to the w*-ANPs by observing that if for some unbounded nested sequence {Bn} of
balls, and {y∗n} ⊆ S(X∗), the sequence {inf y∗n(Bn)} is bounded below, then {y∗n}
is asymptotically normed by B(X). In particular, they show

Theorem 5.6 [5, Theorem 3.9]. A Banach space X has w*-ANP-κ if and only
if X has V-κ (κ = I, II, II′ or III).

We observe in [3] that V-IV and w*-ANP-IV are also equivalent and, as ex-
pected, equivalent to the strict convexity of X∗. That is,

Proposition 5.7. For a Banach space X, the following are equivalent:

(a) X has w*-ANP-IV;

(b) X has V-IV;
(c) X∗ is strictly convex.

In attempting to localize these properties, we observe that the formulation of the

Vlasov Property is readily localized as : x∗ ∈ S(X∗) is a V-κ (κ = I, II′ or IV)

point of B(X∗), if for every unbounded nested sequence {Bn} of balls such that x∗

satisfies (1), if for any {y∗n} ⊆ S(X∗), (2) is satisfied, then y∗n → x∗ in w*, weak

or norm topology, respectively. From Theorem 2.4 again, a V-IV point is simply
a rotund point of B(X∗). Later we will identify V-I and II′ points as respectively
w*-nALUR and w*-wALUR points of B(X∗). But again similar localization for II
or III does not work. We can get an alternative localization for III via w*-w PCs.

But localization for II appears to be much more difficult.

We now give a reformulation of rotund points which makes the role of strict

convexity of X∗ in the discussion on w*-ANP more transparent.

Theorem 5.8. Let X be a Banach space. For x∗ ∈ S(X∗), the following are
equivalent:

(a) x∗ is a rotund point of B(X∗);

(b) for any {x∗
n} ⊆ B(X∗), if {(x∗

n+x∗)/2)} is asymptotically normed by B(X),
then w*-limx∗

n = x∗.

It follows the following

Proposition 5.9. Let X be a Banach space. For x ∈ S(X), the following are
equivalent:
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I. (a) x is a wALUR point of B(X);

(b) for any {xn} ⊆ B(X), if {(xn + x)/2)} is asymptotically normed by
B(X∗), then w-limxn = x.

II. (a) x is an ALUR point of B(X);

(b) for any {xn} ⊆ B(X), if {(xn + x)/2)} is asymptotically normed by
B(X∗), then limxn = x.

Definition 5.10. Let K ⊆ X∗ be a closed bounded convex set.

(a) A point x∗ ∈ K is said to be a weak* point of continuity (w* PC) (respectively,

weak*-weak point of continuity (w*-w PC)) ofK if x∗ is a point of continuity

of the identity map from (K, w∗) to (K, ‖ · ‖) (respectively, (K, w)).

(b) A point x∗ ∈ K is said to be a weak* point of sequential continuity (w* seq

PC) (respectively, weak*-weak point of sequential continuity (w*-w seq PC))

of K if {x∗
n} ⊆ K and w*-limx∗

n = x∗ implies limx∗
n = x∗ (respectively,

w-limx∗
n = x∗).

The Taylor-Foguel Theorem says that X∗ is strictly convex if and only if every
subspace Y of X is a U -subspace of X , while X is Hahn-Banach Smooth if and

only if X is a U -subspace of X∗∗. It follows that X∗ is strictly convex and X
is Hahn-Banach Smooth if and only if every subspace Y of X is a U -subspace of

X∗∗. The following local version of this phenomenon was obtained in [3].

Theorem 5.11. Let X be a Banach space. For x∗ ∈ S(X∗), the following are
equivalent:

(a) x∗ is a rotund point of B(X∗) as well as a w*-w PC of B(X∗);

(b) x∗ is a rotund point of B(X∗) as well as a w*-w seq PC of B(X∗);

(c) for every unbounded nested sequence {Bn} of balls in X such that x∗ is
bounded below on ∪Bn,, if for any {y∗n} ⊆ S(X∗), the sequence {inf y∗n(Bn)}
is bounded below, then w-limy∗n = x∗;

(d) for every unbounded nested sequence {B∗∗
n } of balls in X∗∗ with centres in

X such that x∗ is bounded below on ∪B∗∗
n , if any x∗∗∗ ∈ S(X∗∗∗) is also

bounded below on ∪B∗∗
n , then x∗∗∗ = x∗;

(e) for every unbounded nested sequence {B∗∗
n } of balls in X∗∗ with centres in

X such that x∗ is bounded below on ∪B∗∗
n , ∪B∗∗

n is an affine half-space in

X∗∗ determined by x∗;
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(f) x∗ is a w*-wALUR point of B(X∗);

(g) for all subspace Y ⊆ X such that ‖x∗|Y ‖ = 1, any of the following conditions
holds.

(i) x∗ is the unique Hahn-Banach extension of x∗|Y to X∗∗;

(ii) if {x∗
α} ⊆ S(X∗) is a net such that limα x∗

α(y) = x∗(y) for all y ∈ Y,

then w-limx∗
α = x∗;

(iii) if {x∗
n} ⊆ S(X∗) is a sequence such that limn x∗

n(y) = x∗(y) for all
y ∈ Y, then w-limx∗

n = x∗.

By Theorems 2.4 and 5.11, we have the following :

Corollary 5.12. Let X be a Banach space. If x∗ ∈ S(X∗) is a rotund point
of B(X∗∗∗), then x∗ is a rotund point of B(X∗) as well as a w*-w PC of B(X∗).
In particular, if X∗∗∗ is strictly convex, then X∗ is strictly convex and X is Hahn-

Banach Smooth.

Is the converse of any of the above results true?

Remark 5.13. It follows that the well-known result that X∗∗∗ strictly convex
implies X is Hahn-Banach Smooth [16] is again a consequence of properties of

rotund points of B(X∗∗∗).

Replacing the weak topology by the norm topology in the above Theorem, we

immediately obtain

Corollary 5.14. Let X be a normed linear space. For x∗ ∈ S(X∗), the
following are equivalent :

(a) x∗ is a rotund point of B(X∗) as well as a w* PC of B(X∗);

(b) x∗ is a rotund point of B(X∗) as well as a w* seq PC of B(X∗);

(c) for every unbounded nested sequence {Bn} of balls such that x∗ is bounded
below on ∪Bn, if for any {y∗n} ⊆ S(X∗), the sequence {inf y∗n(Bn)} is
bounded below, then limy∗n = x∗;

(d) x∗ is a w*-nALUR point of B(X∗);

(e) for all subspace Y ⊆ X such that ‖x∗|Y ‖ = 1, any of the following conditions

holds:

(i) if {x∗
α} ⊆ S(X∗) is a net such that limα x∗

α(y) = x∗(y) for all y ∈ Y,
then limx∗

α = x∗;



Nested Sequence of Balls in Banach Spaces 33

(ii) if {x∗
n} ⊆ S(X∗) is a sequence such that limn x∗

n(y) = x∗(y) for all
y ∈ Y, then limx∗

n = x∗.

We now answer the question raised at the end of Section 4.

Corollary 5.15. Let X be a Banach space. For x ∈ S(X), the following are
equivalent:

(a) x is a wALUR point of B(X) as well as a w*-w PC of B(X∗∗);

(b) x is a wALUR point of B(X) as well as a w*-w seq PC of B(X∗∗);

(c) every x∗ ∈ D(x) is a very smooth point of B(X∗);

(d) for every x∗ ∈ D(x), w*-slices of B(X∗∗) determined by x∗ form a local

base for (B(X∗∗), w) at x;

(e) for every x∗ ∈ D(x) and for any {x∗∗
n } ⊆ S(X∗∗), if x∗∗

n (x∗) → 1, then

w-limx∗∗
n = x;

(f) for every unbounded nested sequence {B∗
n} of balls in X∗ such that x is

bounded below on ∪B∗
n, if for any {y∗∗n } ⊆ S(X∗∗), the sequence {inf y∗∗n (B∗

n)}
is bounded below, then w-limy∗∗n = x;

(g) for every unbounded nested sequence {B∗∗∗
n } of balls in X∗∗∗ with centres

in X∗ such that x is bounded below on ∪B∗∗∗
n , ∪B∗∗∗

n is an affine half-space

in X∗∗∗ determined by x;

(h) x is a w*-wALUR point of B(X∗∗);

(i) for any {x∗∗
n } ⊆ B(X∗∗), if {(x∗∗

n + x)/2)} is asymptotically normed by
B(X∗), then w-limx∗∗

n = x∗.
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