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ERGODIC PROPERTIES OF
CONTINUOUS PARAMETER ADDITIVE PROCESSES

Ryotaro Sato
To my wife Masae Sato

Abstract. Let {1} : t € R} be a measure preserving flow in a probability
measure space (2, A, ), and {F; : t € R} be a family of real-valued mea-
surable functions on (€2, A, ) such that Fy, = F; + F; o T; (mod ) for all
t, s € R. In this paper we deduce necessary and sufficient conditions for the
existence of a real-valued measurable function f on Q, with f € L,(, u)
where 0  p oo, such that F; = foT; — f (mod ) for all ¢ € R. Related
results are also obtained. These may be considered to be continuous parame-
ter refinements of the recent discrete parameter results of Alonso, Hong and
Obaya concerning additive real coboundary cocycles.

1. INTRODUCTION

Let (€2, A, 1) be a probability measure space. We denote by Ly(€2, 1) the space
of all real-valued measurable functions on (£2,.4, 1). Most of the time we will not
distinguish between the equivalence class of a function f and the function f itself,
and hence statements and relations are assumed to hold modulo sets of measure
zero, unless the contrary is explicitly explained. We define a metric dy in Lo (2, p)
by

[f(w) = g(w)]|
L+ [f(w) —g(w
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Under this metric, Lo(2, 1) becomes an F-space (cf. Chapter 1 of [18] for the
definition of an F'-space). If 0 < p < oo, then we let

L@ = {1 € Lo [ [f)P i< oo}

When 0 < p < 1, it becomes a locally bounded F'-space under the metric

@ dy(f. ) = /Q F@) - g@Pdp (= (If - gl)?);

and, when 1 p < oo, it becomes a Banach space under the L,-norm

G) 1l = ( / If(w)l”du) "

Furthermore, if Lo (€2, 1) denotes the set of all elements in Lgy(2, p) that are es-
sentially bounded on €2, then it becomes a Banach space under the L.,-norm

4) I flloo = inf{a € R: |f(w)| a for pae we Q}.

We consider a measure preserving flow {T; : t € R} in (Q, A, ). Thus,
{T}; : t € R} satisfies the following hypotheses:

(i) Each T; is an invertible measure preserving transformation in (€2, .4, u).
(il) Ty(Tsw) = Ty4sw for every w € Q, and for every t,s € R.
(iii) The mapping (w,t) — Tiw is a measurable transformation from (2 x R,
A® BR), p®dt) to (2, A, 1), where (2 xR, A® B(R), u ® dt) denotes
the completion of the product measure space (2 x R, A® B(R), u® dt) of

(Q, A, p) and (R,B(R),dt), and where B(R) and dt stand for the o-field
of all Borel subsets of R and the Lebesgue measure on R, respectively.

Here we note that, if necessary, the above hypothesis (ii) can be replaced with
the following weaker hypothesis (ii)’, without any change of the results of the paper:

(ii) T3(Tsw) = Tyqsw for p-a.e. w € Q, for every t,s € R.
We denote by Z the o-field of subsets of 2 defined by

(5) T={AcA:u(AAT;'A)=0 for t € R},

where AAT; ! A stands for the symmetric difference of A and T, *A. A set A in Z
is called invariant (with respect to {73}). The flow {7} is called ergodic if A € T
implies either u(A) = 0 or u(22\ A) = 0. Incidentally, we recall that a measure
preserving transformation 7" in (€2, A, p1) is called ergodic if either p(A) = 0 or
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w(2\ A) = 0 holds for every A € A with u(AAT1A) = 0. For other basic
notions and definitions in ergodic theory we refer the reader e.g. to Krengel’s book
[12].

For each ¢ € R, let T} : Lo(€, 1) — Lo(£2, 12) denote the operator defined by

(6) T,f(w) = f(Tw).

Clearly, T, becomes an invertible linear isometry in Lo(€2, ). Furthermore, we see
that

(7) j;tj—\’s = j\-‘tJrS for ta ERS Ra
and
(®) ||th||p = |lfll, forevery f € Ly(Q,u), with0 p oo.

From the measurability hypothesis (iii) of the flow {T}} it follows (cf. e.g. §1.6 of
[12]) that

) lim |7of — fli=0 forevery f € Ly(%,p).
Thus, an approximation argument implies that

(10) %g% |Tof — fllp=0 forevery fe& L,(Q,u), where 0 p < oc.

By a process we mean a family { F} : ¢ € R} of real-valued measurable functions
on (2, A, ). The process {F3} is called additive (with respect to the flow {7;}) if
it satisfies the following conditions:

(i) Fits(w) = Fi(w) + Fs(Tiw) for p-a.e. w € Q, for every t,s € R.

(ii) The mapping ¢t — F; from R to Lo(2, 1) is continuous with respect to the
metric dy.

Examples. (a) Let 1 p < oo. For an f in L, (2, u), if we define

t
Ft:/ T.fds (t€R),
0

then {F; : t € R} becomes an additive process in Ly (2, ).
(b)Let0 p oo. Foran f in L,(Q, ), if we define

Ft:ﬁf_f (tGR),
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then {F} : t € R} becomes again an additive process in Ly(€2, p).

The purpose of this paper is to investigate the ergodic properties of the additive
process {F;}. In particular, we are interested to obtain necessary and sufficient
conditions for the existence of a function f in L,(€2, ), where 0 p oo, such
that

(11) F,=T,f—f forall teR.

To this end, using {7;} and {F;}, we introduce in Section 2 a skew-product
flow {¥; : t € R} of nonsingular transformations in the probability measure space

(12) (KR, AR, IR) = (Q xR, A® B(R),u® ﬁ) .

We examine ergodic properties of the flow {;} in detail and use them to prove
our theorems. In particular, we prove in Section 3, motivated by [17] and [4], that
the existence of a function f in Lo (€2, p) such that F; = T, f— fforallt e Ris
equivalent to the existence of a ug-equivalent finite invariant measure on (KR, AR)
with respect to the skew-product flow {J;}. We also observe, as in Helson [7], that
this condition is equivalent to the following condition:

For p-a.e. w €  there exists an integer /N > 1 such that

1 b
lim sup —/ Xi—n, N (Ft(w)) dt > 0,
b—o0 b 0
where X|_, ) stands for the indicator function of the interval [-N, N].

From these results we deduce, for example, that if the flow {T}} is ergodic and
if 0 <p o0, then the following conditions are equivalent:

(i) There exists a function f in L,(€2, ) such that F; = T.f — f forall t € R.
(if) There exists a set A in A ,with (A) > 0, such that
b
lim inf 1/ (IIXa - Ft||p)” dt < oo, where v = min{p, 1}.
b—soo b 0
(iii) The skew-product flow {¥;} admits a pug-absolutely continuous invariant
probability measure v = Pdugr with 0 P € L1 (/2 (KR, R).

These may be regarded as continuous parameter refinements of the discrete
parameter results of Alonso, Hong and Obaya [4] (see also [21]). For related topics
we refer the reader to [5], [13], [16] and [22]. We also examine the relationship
between these conditions and the validity of the pointwise ergodic theorem for the
skew-product flow {;}. In Section 4 we restrict ourselves to considering the case
where {F;} C L,(Q, ) with1  p < oo. It is then proved that the function ¢ — F}
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from R to L,(€2, ) is Bochner integrable over the unit interval [0, 1], whence we
see that the process {F}} can be written as

1 t
F,=—(Ty — I)/ F,ds + / T;F1ds forevery t € R.
0 0

From this relation we deduce that the following conditions are equivalent:

() There exists a function f in L, (€, i) such that Fy = fg T, fds forallt € R.

(B) There exists a function f in L,(2, 1) such that lim Ht* F; — fH =0.

() The function fo Fsds € Ly(, 1) belongs to the domain of the infinitesimal
generator A of the one-parameter operator group {Tt te R} in Ly(Q, p).

2. PRELIMINARIES

In this section we prove some auxiliary results. First of all, for an additive
process {F; : t € R} (with respect to the flow {7;}) and an integer n > 1, we
define a real-valued function H,, on 2 x R by

e J Jj+1
Hy(w,t) = F; ), f L o<l
(@) =Fyaw) it 2 t<i2

Then, using the continuity of the mapping ¢ — F; from R to Lo(€2, u) (this conti-
nuity is equivalent to saying that the mapping is continuous in probability, i.e.,

lim p({w ¢ [Fu(w) ~ Fo(@)| > ¢}) =0
for each € > 0 and ¢t € R), we can choose a subsequence (n(k)) of (n) such that
do(Fy(-), Hpgy(-,t)) < 27 FHD
for all t € R and k > 1. Then we have
klgrolo Hygy(w,t) = Fi(w) p-ae w e, foreveryt € R.
Taking this into account, we define

_ | limgsoo Hpgy(w,t)  if the limit exists,
H(w,t) = { 0 otherwise.

It is clear that H becomes a real-valued measurable function on (2 x R, A ®
B(R), 1 @ dt) such that

Fi(w) = H(w, t) for p-a.e. w e, foreveryte R.
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Hence we may assume below, without loss of generality, that
(13) Fi(w)=H(w,t) for weQ and t € R.

Next, we introduce a family {¢; : ¢ € R} of skew-product transformations in
(KR, AR, 1uRr) as follows:

(14) H(w, ) = (Tyw, x + Fi(w)) for (w, z) € Kr and t € R.

It is easy to check that
(i) each ¥ is an invertible, null preserving transformation in (Kgr, AR, UR),
(i) 9 (Vs(w, )) = Fts(w, x) for ur-a.e. (w, x) € K, for every t, s € R,

(iii) the mapping ((w, z),t) — J¢(w, z) is a measurable transformation from
(KR xR, AR ® B(R), UR ® dt) to (KR,.AR,[LR).

Thus, {J; : t € R} becomes a measurable flow of nonsingular transformations
in (Kgr, AR, pur). Hence it follows from Krengel [11] (see also [14], [19]) that
if {U; : t € R} denotes the one-parameter group of positive linear isometries in
Li(Kg, ur) defined by the relation

(15) /K (Utu)fduR:/ u- (f o) dum,

Kr

where u € Li(Kg, pr) and f € Loo(KR, pr), then {U;} becomes strongly con-
tinuous in L; (KR, puRr), i-e., we have

(16) %ir% lUzu — ul|y =0 for u € Li(KR,uR)-
—

Now, define a family {w; : t € R} in Li(Kr, ur) by the relation

dug o 9
(17) wy = U_¢1 (: &) for t € R,
dpr

where pg o ¥ stands for the probability measure on (Kg,.Ar) defined by (ugr o
%) (E) = pr(9(E)) for E € Agr, and dur o ¥:/dpr is the Radon-Nikodym
derivative of the measure ugr o ¥; with respect to ugr. It follows that each w; is a
strictly positive function on KR satisfying

(18) /(u o) - wy dug = /ud,uR for u € Li(KR, pRr).
From this and (15) we deduce without difficulty that U_; has the form

(19) U_yu= (uoty) -wy for ue Li(Kr,pR).
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Fact 1. For every t,s € R we have wirs = wy - (ws 0 Y¥¢) pr-a.e. on Kg.
Proof. (19) yields
Wips = U_4—s1 =U_U_s1 =U_jyws = (ws 0 ¥y) - wy,
which establishes Fact 1.

Fact 2. Let v = Pdug, where 0 P € Lo(Kw,pur). Then v becomes
an invariant measure with respect to the skew-product flow {V.} if and only if
(Pody) -ws =P ur-a.e. on Kg, for every t € R.

Proof. If A € Ar and t € R, then (18) yields
A(Poﬁt) - Wt d,U,R = / [(P . XﬁtA) O’l9t] * Wt d,UR = / APd,u,R = V(’l?tA)
V¢

Since v(A) = [, Pdug, it then follows that v(9;A) = v(A) for all A € Ag is
equivalent to (P o) - w; = P ugr-a.e. on KR, and this establishes Fact 2.

By a straightforward observation we know that w; has the form

(duRoﬁt>()_ 1+ 22
dur 1+ (2 + B(w)?

so that we may assume below, without loss of generality, that

we(§) =

for pgr-ae. ¢ = (w, z) € KR,

1+ 22

(200 w(§) = 1+ (z + Fy(w))?

for t€eR and £ = (w, z) € KRr.

It follows that the function (£, t) — w¢(€) is a strictly positive real-valued measur-
able function on (Kgr X R, Ar @ B(R), ur ® dt).
Fact 3. Suppose 0 P € Lo(KR,uRr) has the form

1+ 22
a(w)z? + b(w) + 2¢(w)z

P(é-) = fOV § = (wa .fl]') € KRa
where a, b, ¢ are real-valued measurable functions on (Q, A, ). Then v = P dug
becomes an invariant measure with respect to the skew-product flow {9} if and

only if
a(Tyw) 1 0 0 a(w)

(21) W(Tw) | = FPw) 1 —2F(w) b(w)
c(Thw) —Fi(w) 0 1 c(w)
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for p-a.e. w € S, for every t € R.

Proof. Since ¥¢(w, ) = (Tyw, = + Fi(w)) for £ = (w, ) € KR by definition,
we find

1+ (z+ Fy(w))?

Pobilw, @) = o @+ i) - 0(Tw) + 2T (@ + Fo@))
and
P(w, z) 1+ 22 14 (x4 Fy(w))?
wi(w, ) a(w)z? + b(w) + 2c(w)z 1+ 22

From this and Fact 2, the present Fact follows immediately through an elementary
calculation.

We denote by Zr the o-field of subsets of Kr defined by
(22) Ir = {E € Ar : ur(EAY;'E) = 0 for every t € R},

and by E{-|(KR,Zr, #r)} the conditional expectation operator with respect to the
o-field Zr and the measure uR.

Fact 4. The following conditions are equivalent :
(I) The skew-product flow {U+} admits a pr-equivalent finite invariant measure

v.
(I) The limit

b
w(é) = lim /0 wi(£) dt

b—oo b

exists and is a positive real number for ur-a.e. £ € KR.

Proof. (I) = (II). Let P = dv/dugr. Thus 0 < P € Li(KR,ur). Since
v is invariant with respect to {¢;}, we have U,P = P for t € R. Then by the
continuous parameter version of the Chacon-Ornstein ratio ergodic theorem (see e.g.

[14]),

o <f0bU41dt) (€)
= ¢- lim P(¢)- (fobU_tht> €)

for ur-a.e. £ € Kr, where the notation ¢-lim;_,,, means that the limit is taken
as b tends to oo through the set of rational numbers. (We recall that, since

 E{1[(KR, TR, ir)}(€)
E{P|(Kg,Ir,pr)})

= P(¢)
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fé’ _¢1dt)/ fo _¢Pdt), b > 0, are equivalence classes and not actual func-

tions on {2, the a.e. convergence of ( fo _¢1dt)/ fo _¢+Pdt) as b tends to oo
through the set R does not make sense, so that we must let b range through a count-
able dense subset of R.) Thus (II) follows, because E{1|(KRr,Zr,ur)} (&) =1
and 0 < E{P |(KRr,Ir,ur)}(§) < oo on KR.

(I) = (D). Since the function & — (1/b) fé’ we(§) dt is a representative of the
element (1/b) fo _¢1dt € L1(KR, ur), it follows from Fatou’s lemma that

1 b
/ w(§)dur  ¢-liminf H / U_;1dt
KR b—oo b 0

Hence we have 0 < w € L1(KR,ur), and for each s € R

1.

1

. 1
0 Ve et U, (7 [(0ad) @

= ¢-liminf % (/b_s U_i1 dt) (&) = w()

b—o0 —s

for ur-a.e. £ € Kg. Since |[Usw||; = ||w]|1, it follows that Usw = w, and hence
v = wdug is a pr-equivalent finite invariant measure with respect to {%;}. This
completes the proof.

Fact 5. Let v = Pdugr be a pr-equivalent finite invariant measure with
respect to the skew-product flow {9:}. Suppose 0 < r < oo. Then the following
hold :

(D) For pr-a.e. £ € KR the limit

0= [ ()

exists (but it may be infinite).

(I) For ur-a.e. £ € Kr we have 0 < Qr(§) < oo if and only if there exists
a countable decomposition {E,, : n > 1} of Kr such that E, € Ir and
fEn PYTdugr < oo for every n > 1.

Proof. The following argument is an adaptation of the proof of Theorem 5.5.
in [17].

To prove (I), we may assume that 0 < P(§) < oo for all £ € KR, by hypothesis.
Furthermore, we may assume here that

(23) we(§) = for t € R and £ € KR,
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by Fact 2. Therefore, (£,t) — w:(§) becomes a measurable function on the measure
space (Kr x R, Ar ® B(R), ur ® dt). Then, as in the proof of Fact 4, we find
that

1 1

b
@) QO =g fim g [ P -

E{P"|(Kgr,Tr,v)}(§)
Pr(¢)

for ur-a.e. £ € Kgr, where E{P" |(KRr,Zr,v)} is the conditional expectation of
the function P" with respect to the o-field Zr and the measure v = P dug. Thus
(D) follows, because 0 < E{P" |(KRr,ZIr,v)}(§) oo for ur-a.e. £ € Kg.

To prove (II), we first suppose 0 < Q,(§) < oo for ur-a.e. £ € Kr. Then

write
» d ) 1 1/r
)t an©=(gtg)

(6 = (Qr@)

@)= [ (ﬁ@) dt.

In order to prove that @r € Li(Knr, ur), we proceed as follows. By using the
Holder inequality, if » > 1, then

a1/ (L (k) ) 1/ ([ k) [

and if 0 < r < 1, then

G =1/ (L[ () @) (X[ wmiera)” L[ wem

Thus, in either case, we get

where

Gnl©dun(©) [ 1 [Cw©dedum() =1,

Kr

by Fubini’s theorem. Since ér(g) = limy, 00 @m(g) for pr-a.e. £ € Kg, it then
follows from Fatou’s lemma that ér € L1(KR, UR)-

Letting A = @r dugr, we next prove that X is an invariant measure with respect
to {¥¢}. To do this, we use Facts 1 and 2 as follows. If t € R is fixed arbitrarily,
then, since ws(¥+€) = wits(€)/we(§) for ur-a.e. £ € Kg, for every s € R by
Fact 1, we can apply Fubini’s theorem to infer that for ur-a.e. £ € Kg the equality

Wi+s (5)

Wg (ﬁtf) = wt(f)
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holds for ds-a.e. s € R; hence for ur-a.e. £ € Kr we have

acoortm, (4 ()

~ tw w;@ . (% /0” (m)@ :w:@ .0,(6),

so that A = @T dpr is an invariant measure with respect to {¥:}, by Fact 2.

We then prove that @, € Li,(Kgr,pr). To do this, we notice that if t € R
is fixed arbitrarily, then, since Q,(9:£) = (w(§))"Qr(§) for ur-a.e. £ € Kr, we
have by Fubini’s theorem that

1 IR S Y L A S S | _
tm 5 [ o= e im g <wt<s>> =g @O=1

for yr-a.e. £ € Kr. Since A = @r dugr is a ur-equivalent finite invariant measure
with respect to {1;}, it now follows from the continuous parameter version of the
Birkhoff pointwise ergodic theorem applied to the flow {J;} that

1
/ —d)\:/ 1dX\ = A(KRr) < oo,
KRQ”" Kr

—1/r

whence we have

/ - 1\ /n)+1 1 - 1
Q; " "dur = / <—> dur = —-Qrdur = / — d\ < 0.
Kr Kgr QT’ Kr QT’ Kgr Q’r‘

Since U; P = P and Ut@r = ér for t € R, it then follows that

PO o WUPD)©) B (i T )€
Qr(g) b=o0 (fob Ut@r dt) (f) E{QT ‘(KR7IR5 MR)}(g)

for pur-a.e. £ € Kr. Therefore, there exists an Zr-measurable positive real-valued
function R on Kgr such that

P(§) = Qr(§) - R(§) for pur-ac. &€ Kg.
Here, if {E,, : n > 1} denotes the countable decomposition of Kgr defined by
E,={c€Kr:n—1 R() <n},

then, clearly, E,, € Zr and [ PUTdug  nltT [ e QLY dug < oo for every
n > 1.
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To prove the converse implication of (II), let {E, : n > 1} be a countable
decomposition of Kg such that E, € g and [ B, PYTdur < oo for every
n > 1. Since ¥ = P dug is an invariant measure with respect to {¢;}, and since
Pr(&) - Qr(&) = E{P"|(KR,IRr,v)}() for ur-a.c. £ € Kr by (24), it follows
that
PYE)- QO dim= [ PT(©)- Qrle)ar

En

— [ B Ta ) e
En
= Prdv = / PY"dug < oo,
E'I’L n
whence we have Q,(§) < oo for ur-a.e. £ € E,, and this completes the proof.

Remark 1. The above proof of (II) of Fact 5 shows that, without assuming
the existence of a ug-equivalent finite invariant measure with respect to the skew-
product flow {9}, if the limit Q,(£) exists and is a positive real number for ur-a.e.
¢ € KR, then the function Q. (&) = (1/Q- (€)Y7 is in L1, (KR, ur) and satisfies
UiQr = Q, for t € R; consequently the flow {¥:} admits a pugr-equivalent finite
invariant measure v = Q) duR.

Fact 6. The following conditions are equivalent :

(I) For every F € Loo(KR, pRr) the limit

. 1 rb
F(¢) = lim = | F(%¢)dt
b—o0 0
exists for yr-a.e. £ € KR.

(1) {U; : t € R} satisfies the Li-mean ergodic theorem, i.e., to every W €
Ly (KR, uR) there corresponds a function W* € Li(KR, ur) such that

=0

b
lim Hl/ UW dt — W*
b 0 1

b—oo

Proof. (I) = (II). If we write (W, F) = [, WF dug for W € Li(Kr, ir)
and F' € Lo(KR, ur), then, by (I) together with Fubini’s theorem and Lebesgue’s
convergence theorem, we find

<%/ObUtht, F> = (&) (% /ObF(ﬂté) dt) dpr(€)

— [ W F(€) dur(€)
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as b — oo. Thus, the Vitali-Hahn-Saks theorem implies that there exists a function
W* € L1(KR, pr) such that limp, o, (1/b) fob UW dt = W* in the weak topology
of L1(Kr, ur). It is then routine to check that W* is a fixed point for {U;}, and
W — W* belongs to the closed linear subspace of L;(Kr, ur) generated by the set
{U,G—-G:G e Li(Kr,ur), t > 0}. Thus (II) follows.

(I) = (D). Let W =1 (€ L1(KRr,pR)), and put v = 1*dugr. Since 1* is a
fixed point for {U;} and 1* > 0 on KR, v becomes a ug-equivalent finite invariant
measure with respect to {¢;}, hence (I) follows from the continuous parameter
version of the Birkhoff ergodic theorem. This completes the proof.

Remark 2. By the above proof, if {U,} satisfies the L;-mean ergodic theorem,
then there exists a strictly positive function e in L;(Kr,ur) with Uie = e for
every t € R; it follows that for every W € Li(Kr, pur) we have

L/ (Jy vow at) (¢)
e =g i 3 ([Uwa) © =i 92
b \Jo 0 (Jfy eedt) (&)
= e(§) - E{W/e| (KR, Ir, e dur)}(¢)
for pr-a.e. £ € KR, where {W/e|(KRr,Ir,edur)} denotes the conditional ex-
pectation of the function W/e € Li(Kr, edur) with respect to the o-field Zr

and the measure e dygr. Similarly, W* is also the ur-a.e. limit of the averages
bt ffb UsW dt as b tends to oo through the set of rational numbers.

Fact 7. Let1 pi,p2 oo, and 1/p;+ 1/p; = 1 for i = 1, 2. Then the
following conditions are equivalent :

(I) For every F € Ly, (Kr,uR) the limit

b—oo 0

exists for pr-a.e. £ € Kg, and the limit function F belongs to Ly, (KR, IR)-

(I) {U; : t € R} satisfies the Li-mean ergodic theorem, and furthermore if
W € Ly (KR, UR), then the limit function W* in the condition (1l) of Fact
6 belongs to Ly (KR, pr)-

Proof. (I) = (II). Since Lo (KR, uR) C Lp, (KR, pr), (I) implies that {U;}
satisfies the L;-mean ergodic theorem, by Fact 6. Suppose 0 W € L, (Kr, 1iR)
and 0 F € Ly, (KR, ur). Then, by putting

Fyn(€) = min {F(€), N} for ¢ € Kr,
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we have
W*F dug = lim W*Fn dugr
Kr N—o0 Kgr
1 b
= Jm (blggo o (&) - (g/o Fn (0¢€) dt) dﬂR(f))
= lim [ W) Fy(¢) dur(€) W (&) - F(€) du(¢)
—00 Kr Kr

Wl 1 Ellp, < o0

This proves that W* € L, (KR, pr), and hence (II) follows.

(I) = (I). Suppose 0 F € Ly, (Kgr,pr). Since the first condition of (II)
implies the existence of a pg-equivalent finite invariant measure v with respect
to {¥:}, it follows from the continuous parameter version of the Birkhoff ergodic
theorem that the limit

b—o0

N b
F(é) = lim % /0 F(9:€) dt

exists (but it may be infinite) for ug-a.e. £ € Kr. Since 0  Fn(§) T F(§) as
N — oo on KR, it then follows that

0 Fn(6)1F(€) as N— oo

for uyr-a.e. £ € Kr. Thus, if 0 W € Lpé(KR, UR), then, using the relation
W* e Ly (KR, ur) which comes from the second condition of (II), we obtain

WFdug = Jim W Fy dug = Jim W*Fy dug

Kgr *© JKgr — JKgr

— [ W Fdum WPl < o0
Kr
Therefore we have F € Ly, (KR, r), and hence the proof is complete.

3. SOLVABILITY OF THE EQUATION F} = ﬁ f—fNL,(Qu),witHO p o0

From the results of Section 2 we first observe that this problem is strongly
connected with the problem of the existence of a pg-equivalent finite invariant
measure with respect to the skew-product flow {J; : t € R}.

Proposition 1. Let {F; : t € R} be an additive process (with respect to {T}).
Then the following conditions are equivalent:
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(I) There exists a function f in Lo(Q2, u) such that F; = T.f — f forall t € R.
(I) The skew-product flow {9+} admits a pr-equivalent finite invariant measure.

Here if {T;} is assumed to be ergodic, then the above conditions are also
equivalent to the condition:

(I The skew-product flow {0:} admits a ur-absolutely continuous nontrivial
finite invariant measure.

Proof. (I) = (I). If f is a function in Ly(€2, u) such that Fy = T, f— f for all
t € R, define

_ 1+ 22
It (z - f(w)?

(24) P(¢) for ¢ = (w, z) € KR.
Then it follows that 0 < P € Li(KR,ur), and if we set v = Pdug, then v
becomes a pgr-equivalent finite invariant measure with respect to {¢;}, by Fact 3.
(II) = (D. Let v = Pdur be a ur-equivalent finite invariant measure with
respect to {¥:}. By Fubini’s theorem we see that for p-a.e. w € Q, P(w, z)
belongs, as a function of € R, to L1(R, B(R),dz/n(1 + x2)); and since P is
a strictly positive function on Kgr, we can define for py-a.e. w € ) the probability
measure A\, on (R, B(R)), absolutely continuous with respect to dz, by the relation

B dx 1 Pw, z)
Ao = /RP(w, x)w(l + z2) (1 + 22?)

We will identify the measure ), and the Radon-Nikodym derivative d(\,)/dx €
Li(R, B(R),dx). Since there exists a sequence (P,) of nonnegative simple func-
tions in L1 (KR, ur) such that lim,_, |P— Py, ||1 = 0, it follows that the mapping
wi Ay = d(Ay)/dz from (Q, A, 1) to L1 (R, B(R), dz) is strongly measurable.

We next prove that if t € R is fixed arbitrarily, then, for p-a.e. w € €, the
mapping F, ;) : R — R defined by

dz.

F () =2+ F(w) for zeR

becomes a measure preserving transformation from (R,B(R),\,) to (R, B(R),
)\Ttw)-

To do this, let D denote the set of all intervals of the form [a,b), where a, b
are rational numbers with @ < b. Since v = P dug is invariant with respect to 9,
it follows that

v(Ax B) =v(9(A x B)) forevery A€ Aand B €D,
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so that if v denotes the u-equivalent finite measure on (€2,.4) defined by
(26) vo(A) =v(AxR) for Ac A,

then, by using Fubini’s theorem and the relation
dvg 1
<E> (w) = /RIP((.U, f) . m dxr for p-a.c. w S Q,
we have that for every A € A and B € D

/AAM(B) dvg(w)=v(A x B) = v(9:(A x B))

Ao(B + Ft(thlw)) dvg(w)
T: A

_ / Mio(B + Fyw)) dva(w),
A

where the last equality comes from the Ti-invariance of the measure vq. Since
A € A is arbitrary, this implies that

(27) Ao(B) = Aryw(B + Fi(w))

for p-a.e. w € Q. Then, since D is countable and generates the o-field B(R), we
conclude that the equality (27) holds for all B € B(R), for p-a.e. w € . This
establishes the desired result.

We now define, for p-a.e. w € €2,

(28) fw)=sup{a€R: A, ((—00, a]) =27"}.
Then, f is a real-valued measurable function on (€2, .4, 1), and by (27) we have
F(w) = f(Tw) — f(w) for p-ae. w € Q,

for each fixed t € R. Thus (I) follows.

Lastly, suppose {7;} is ergodic and (1)’ holds. We will prove that (I) fol-
lows. To do this, let v = Pdugr be a ugr-absolutely continuous nontrivial finite
invariant measure with respect to {0J;}. Then, the measure v on (2,.A) defined
in (26) becomes a p-absolutely continuous finite invariant measure with respect to
{T}}. Since {T;} is ergodic and vq is nontrivial, it follows that vq is p-equivalent.

Therefore we get
dvg dx
—_— = P =T 0
()@= fren o >
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for p-a.e. w € Q, whence (I) follows as in the proof of (II) = (I).
This completes the proof of Proposition 1.

Example. (c) An additive process { F;} need not have the form F; = T, =17
for some f in Lo(f2, ). To see this, we give an example of an ergodic measure
preserving flow {7} and an additive process {F;} C Loo(f2, ) such that {F;}
cannot have the form F, = T} f— f for any f € Ly(Q2,u). For this purpose, let
(Q, A, n) = ([0, 1),B([0, 1)), dx), where B([0, 1)) and dx stand for the o-field of
all Borel subsets of the interval [0, 1) and the Lebesgue measure on [0, 1), respec-
tively. Consider the ergodic measure preserving flow {73} in (22, A, 1) defined by
Tix =t+x (mod 1) for x € [0, 1) and ¢t € R. If h is a nonnegative function in
L ([0, 1)) such that ||h||s > 0, then define

Ft(m):/o h(Tsx) ds

forx € [0,1) = Q and t € R. Clearly, {F;} becomes an additive process in
Loo([0, 1)). It has the desired property, because if the process {F;} had the form
F, =T,f — f for some f € Lo(2, ), then, since

T.f = f+F, and lim Fy(z) = oo forall z€0,1) =,
—00

we must have limy_,o0 ||T}f|jo = 1, which contradicts |} f|lo = || f|lo < 1 for all
teR.

Theorem 1. Let {F;} be an additive process (with respect to {T;}). Suppose
0<r oo. Then the following conditions are equivalent :

() The skew-product flow {9} admits a pr-equivalent finite invariant measure
v = Pdur such that 0 < P € Ly (,/2)(KR; IR)-

(I) There exists a function f in Lo(S2, u), with Fy = T.f — f for all t € R, and
a countable decomposition {A,, : n > 1} of Q, with A, € T for all n > 1,
such that the restriction f|a, belongs to Ly(An, ), for every n > 1.

() There exists a countable decomposition { Ay, : n > 1} of Q, with A, € T for
all n > 1, such that if F' € Ly, (2/r)(An X R, uR), then the limit

b
(29) Fe) = fim 5 [ ) i

exists for ur-a.e. £ € A, x R, and the limit function F belongs to L1(A,, x
R, uRr) for every n > 1.

Here if {T}} is assumed to be ergodic, then the above conditions are also
equivalent to the condition :
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() The skew-product flow {9:} admits a pr-absolutely continuous nontrivial
finite invariant measure v = P dug such that 0 P € Ly (;/2)(KR, IUR)-

Proof. (I) = (II). By Proposition 1 there exists a function f in Lo(£2, u) such
that F; = T;f — f for all ¢ € R. Here we may assume below, without loss of
generality, that

(30) Fi(w) = f(Tw) — f(w) forallwe Qandt e R.

Case 1: Suppose r = oo. By the proof of (I) = (II) of Proposition 1, we see
that if Py denotes the function on K'r defined by

_ 1+ 22
14 (z— f(w)?

then it satisfies 0 < Py € L1(KR, ur) and Py = U; Py for all ¢ € R. On the other
hand, since the measure v = P dug is invariant with respect to {J;} by hypothesis,
we also see that Uy P = P for all t € R. Thus, as in the proof of Fact 5, we find
that

@1 Pr(8) for ¢ = (w, z) € KR,

Pr§) _ E{P;|(KRr,IRr,sr)}(§)
P)  E{P|(Kr,Ir,pr)}(&)
and hence Py can be written as P(§) = R(§) - P(§) on Kr, where the function
R(§) = Pf(&)/P(&) is measurable with respect to the o-field Zr, and thus it
satisfies Ro ¥, = R ur-a.e. on Ky for all ¢ € R. Since ||P||oc < oo in this case,
if Q denotes the set of all rational numbers, then, by (31) and (30), we have for
pr-a.e. £ = (w, z) € Kp

00> R(w, ) - sup P(Y¢(w, x)) = sup P(¥¢(w, ))

(32)

for upr-ae. ¢ € KR;

teQ teQ
= Su W, T w = Ssu 1 + ($ + Ft(w>)2
= sup Py(Tuw, o+ F(w)) = 00 T B ) — ()2
o L@ A(T0) — )
T It @ f@)?

Hence, Fubini’s theorem implies that for p-a.e. w € €2 the inequality

wp L@ S T) = F@)?

teQ 1+ (z— f(w))?

holds for dz-a.e. x € R, and thus the function

heo(w) = sup |f(Tiw)|
teQ
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satisfies 0 hoo(w) < oo for prae. w € . Letting A, = {w e N :n—-1
hoo(w) < m} for n > 1, we then obtain a countable decomposition {A, : n > 1}
of €. Here, by the definition of ho, we get TthOO = hoo for all £ € Q. Then, since
limy_,4 ||Tt -T shoollo = 0 for every s € R by (10), Tihoo = heo holds for all
t € R. Consequently, we find that A,, € Z and |f| n on A, for every n > 1.

Case 2 : Suppose 0 < r < oco. Then, by Fact 5 together with (20), the limit

lim /Ob(1+<z+pt<w>>2>”2 »

1422

exists and is a positive real number for ug-a.e. £ = (w, ) € Kg. It then follows
from Fubini’s theorem that for u-a.e. w € €2 the inequality

1 b
(33) lim sup 3/ |z + Fy(w)|" dt < oo
0

b—oo

holds for dx-a.e. x € R; but this is obviously equivalent to the validity of the
inequality (33) for a given real number z. Thus, using (30), we get for p-a.e.
w e N

limsup — /|f Tiw)|" dt—hmsup /|f )+ Fi(w)|" dt < oo.

b—o0

By this and the pointwise ergodic theorem for the measure preserving flow {7;},
the limit

(34) )= jim 3 [ 117w
b—oo

exists and satisfies 0  ¢g,(w) < oo for p-a.e. w € Q. Letting 4, = {w € Q:
n—1 g¢,(w) <n} forn > 1, we obtain a countable decomposition {A,, : n > 1}
of Q, and since ﬁgr = g, for all t € R, it follows that A,, € Z and fAn |f|"du =
fAngrdu < n for every n > 1.

() = (I). Let f € Lo(2, p) be the function given in (II). We first notice that
Py dug is a pr-equivalent finite invariant measure with respect to {1;} and, by an
elementary calculation, the inequality

1+ 22
1+ (z — f(w))?

holds for every £ = (w, =) € KR.

(35) Py(€) (= ) <24 W) (seo(31))
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Case 1: Suppose r = oco. Then, since f|a, € Loo(An, ) in this case, there
exists a constant «,, such that |f(w)|  «y, on the set A,. Thus, if we define a
function P on Ky by

1
=3
n=1

then it satisfies 0 < P(§) < 1 on KR by (35), and the measure v = P dugr becomes
an invariant measure with respect to {¢;}, because A4,, € Z for every n > 1, by
hypothesis.

§) - Xa,xr(§) for &€ Kr,

Case 2: Suppose 0 < r < oo. Then, since f|a, € L,(A,, 1) by hypothesis, it
follows from (35) and Fubini’s theorem that

[ P P [ 24 @) P, o) dunie, )
A xR Ap X

2 r/2
/ / {1?26 &,}))z} dz dp(w) (by (31))

= [ @+ PO au) < .

Therefore, we can define a function P on Ky by

o0

1
P(§) = nzl 2”ﬁnp £(€) - Xa,xr(§) for £ € KR,
where By, := || Py - X4, xR|l14(r/2) < 00 for n > 1, to obtain a ur-equivalent finite

invariant measure v = P dug with respect to {0 } such that P € Ly (,/2)(KR, UR)-

(I) = (III). Since (II) implies the existence of pr-equivalent finite invariant
measure with respect to {1J; }, the condition (I) of Fact 6 holds, so that {U,} satisfies
the Li-mean ergodic theorem. Since every A,, in the condition (II) of Theorem 1
is an invariant subset of Q2 with respect to {7}}, it may be assumed for the proof,
without loss of generality, that 0 = A,,. Then, Fact 7 implies that it suffices to
show that for every W € Lo (KR, ur) the limit function W* in the condition (II)
of Fact 6 belongs to Ly (, /2)(KR, ur). But, for this purpose it is clearly enough
to show that 1* € Ly (;/2)(KR, ur). And to do this, we observe that

I L R N R
(36)  17(¢) = lim 3/0 we(§) dt = lim ‘/0 1+ (z+ F(w))? «

for ur-a.e. { = (w, z) € Kr, by (17), (20) and Remark 2.
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Case 1: Suppose r = co. Then, since

0 1+ 22
(37) L+ (z + Fy(w))
=2+ (f(Tiw) — fW))?  2+4]f[% < o0

for pr-a.e. £ = (w,z) € KRg, it follows from (36) that 0 1*(&) 2 + 4| f||%
< oo for pr-a.e. £ € Kr. Hence, we have 1* € Lo (KR, UR)-

s <24 F7(w)

Case 2 : Suppose 0 < r < oco. Then, since (37) implies

_ 1—1—332
14 (z+ F(w))?

for ¢ = (w, ) € KR, the function

w(§)

2+ 2 (|fA(Tw) + | (@)

1

b
(38) GO = [ w(©dt for ¢ = (w.7) € Kn

satisfies, by Holder’s inequality,

b
G 3 [ a
0
b
5 | (2 2P + 2P} ) e

b
%/0 {1+ [f1"(Tiw) + | f]"(w)} - we(€) dt,

where C). is an absolute constant depending only on 7. Thus, by Fubini’s theorem,

/ |Gy(w, )" dug (w, @)

Kr

C, (b ) i
7/0 /KR{1+|f| (Tow) + |f]" ()} - wi(w, z) dur(w, z)dt

c, [°
- T/o /Q{l + [f|"(Thw) + | f]"(w)} du(w) dt (by (20))
= Cr {1+ 2[|f[7} < oo

for all b > 0. Since 1*(§) = limp_00 Gp(§) for pr-a.e. £ € KR, it follows from
Fatou’s lemma that the limit function 1* belongs to L1, /2) (KR, UR)-
(M) = (). If F € Loo(KR, pr), then (III) implies that the limit

R b
(&)= im 3 /0 F(9,€) dt

b—o0
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exists for ugr-a.e. £ € Kr. Thus, {U;} satisfies the Li-mean ergodic theorem by
Fact 6. Since every A,, in (IIl) is an invariant subset of Q2 with respect to {7}}, we
can apply Fact 7, with p; = 1+ (2/r) and pa = 1, to infer that the restriction of
the limit function 1* to the set A, X R belongs to L (r/2)(An x R, ur). Then
the function
> 1
PE) =)
n=1
satisfies P(§) > 0 for ur-a.e. £ € Kr, P € Ly1(;/2)(KR,pr) and Uy P = P for
every t € R. Thus, by putting v = P dugr, (I) follows.
Lastly, suppose {T;} is ergodic and (I)’ holds. We will prove that (II) follows.
To do this, let v = P dugr be a ur-absolutely continuous nontrivial finite invariant
measure with respect to {¥;} such that 0 P € Ly (,/2)(KR,uRr). By the second
part of Proposition 1 there exists a function f in Ly(€2, 1) such that F} = T, i
for all ¢ € R. Then the function Py satisfies, as before, that 0 < Py € Li(KRr,ur)
and Uy Py = Py for all t € R. On the other hand, since 0 P =UP €
Lit(r/2) (KR, pr) for all t € R, it also follows, as in the proof of (I) = (II), that
there exists an Zr-measurable real-valued function R on KR such that

P(&) = Pf(§) - R() on Kg.

Therefore, the relation {{ € Kgr : P(§) > 0} = {{ € Kr : R(§) > 0} (mod ug)
holds, and hence the set

1%(¢) - x for £ € K-
2n[1* - XAnXRHl-‘r(’r‘/Q) (&) - Xa,xr(§) 3 R

E={{eKgr:P() >0}

belongs to Zg. Here we notice that ugr(E) > 0, because v (= Pdur) is a
nontrivial measure, by hypothesis.

Case 1: Suppose 7 = oco. Then ||P|loc < oo holds, and thus for pg-a.e.
¢ = (w, ) € E we have
00> sup P(¥¢(w,z)) = R(w, z) - sup P¢(V¢(w, ))
teQ teQ
1 Tiw) — 2
= R(w, z) - sup * @+ /(Tw) f2(w)) ,
teQ 1+ (z - f(w))

so that the function

hoo(w) = sup |f(Tiw)|  (weQ)
teQ

satisfies hoo(w) < oo for ur-a.e. (w, ) € E, and hoo(Tiw) = hoo(w) for p-a.e.
w € §, for every t € Q (and hence for every t € R as before). By the fact
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that g (E) > 0, Fubini’s theorem implies that ho(w) < oo on a set of positive
p-measure. This, together with the ergodicity of {7;}, shows that ho, is a constant
function in Lo (€2, 1), and consequently f is a function in Lo (€2, i).

Case 2: Suppose 0 < r < oo. Since v = Pdug is invariant with respect to
{¥:}, it follows from Fact 2 that (Po ;) -w; = P ur-a.e. on Kg, for every t € R.
By this and (20), we have

V14 (z+ Fw)?- P (w,z) PY?0d (v, z)

for pr-a.e. (w, z) € K. Since Fi(w) = f(Tiw) — f(w) for p-ae. w € Q, for
every t € R, it follows that

‘.% + f(Tt(—d) - f(w)‘ ’ P1/2(w7 :IZ‘) P1/2 © 1975((“17 :IZ‘)

for ur-a.e. (w, x) € K, for every t € R. Then we find, by Fubini’s theorem and
the pointwise ergodic theorem applied to the flow {¥;}, that

P"/?(w, x) - limsup 1/b |z + f(Tiw) — f(w)|" dt

b—o0

lim —/ P2 0 9y(w, ) dt

b—oo

= E{PT/Q |(KR71RanHR)}(wa ‘T) <0

for v-a.e. (w, ) € KR, where the last inequality comes from the hypothesis that
P € Lyiy(/2)(KR,ur). Hence the pointwise ergodic theorem for the flow {73}
implies that the almost everywhere limit function

gr(w) = lim —/ |fI" (Tyw) d (we)
b—oo
satisfies gr(w) < oo for pur-a.e. (w, z) € E. Then, using the invariance of the
function gr with respect to {73} and the ergodicity of {73}, we see, as in Case
1, that g,(w) = [o|f|"dp < oo for p-a.e. w € Q. Consequently, we find that
f e L(Q, u)
This completes the proof of Theorem 1.

For further studies of the ergodic properties of the process {Fi} we need to
introduce another probability measure space. Denote

d
(39) (Kop, Aop, ttoD) 1= (Q x 0D, A® B(0D), u ® %) ,
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where 0D = {e®® : 0 x < 2}, and where B(D) and dx stand for the o-field
of all Borel subsets of 9D and the Lebesgue measure on dD, respectively.

If s € R is fixed arbitrarily, then we introduce a family {9(s); : ¢ € R} of
skew-product transformations as follows:

(40)  9(s)¢(w,e™) = <7}w,eme_5Ft(“’)> for (w,e®) € Kyp and t € R.

It is easy to check that

(i) each 5(s)t is an invertible measure preserving transformation in (Ksp, Asp,
16D)
(i) 9(s); 0 9(s)u(w, ™) = F(5)iu(w, ) for psp-ae. (w,e®) € Kyp, for
every t,u € R,
(iii) the mapping ((w,e®), t) — U(s):(w,e™®) is a measurable transformation
from (Kop x R, Agp ® B(R), pop ® dt) to (Kop, Asp, 1oD)-

Thus, {9(s); : t € R} becomes a measure preserving flow in (Kop, Ao, 11D ).
Since the function g(w, ™) = €' for (w, e'”) € Kap belongs to L1 (Kp, pop), it
then follows from the pointwise ergodic theorem, applied to the flow {J(s); : t € R}
with the function g, and Fubini’s theorem that the limit

1 0.
lim ~ / e—isFi®) gy
b—o0 b 0

exists for p-a.e. w € €. Taking this into account, we define a real-valued function
J on Q x R by

i 1 ’ —isFy(w) . .. .
(41) J(w,s) = Jim g/o e " dt  if the limit exists,

2 otherwise.

Then J becomes a measurable function on (2 x R, A® B(R), 1 ®ds) (cf. (13)),
so that, by Fubini’s theorem, there exists ; € A, with u(€2;1) = 1, such that

O ={weQ:J(w,s)#2 for ds-a.e. s € R}.

If w € Q, then J(w,s) is, as a function of s € R, the ds-a.e. limit of the

continuous positive definite functions b~! fob e~ F (@) dt as b — oo, whence there

exists a finite measure p,, on (R, B(R)) such that

(42) J(w,s) :/ et du,(t) for ds-ae. s cR.
R
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(This is a well-known fact on harmonic analysis. See e.g. §32 and §33 of [8].)
Here we notice that 0 p,(R) 1 for w € Qq, because |J(w,s)| 1 for ds-a.e.
s € R, by (41).

Since Fy(w) + Fi(Tyw) = Fyyi(w) for pae. w € Q, for every u,t € R, we
can choose another set Qo € A, with (£22) = 1, such that

D={weQ: F,(w) + Fi(Tyw)
(43)
= Fy4i(w) for dt-ae. t € R, forall u € Q}.
Ifwe Q21 NQy and u € Q, then we get, by (41), that
(44) Tw e and J(Tyw,s) = ) J(w, s)

for every s € R with J(w, s) # 2. Therefore, (42) implies that

(45) / et dur,, = et Fuw) / et du,(t) for ds-ae. s € R.
R R

But, since both sides of (45) are continuous functions of s € R, it follows that the
equality in (45) holds for all s € R. This proves that if w € Q3 Ny and u € Q,
then

(46) pr,w(B) = pw(B — Fy(w)) for every B € B(R).

We next characterize the set {w € Q; : p, # 0} as follows. For an integer
N > 1, we introduce a function o on €2 by

. L

(47) ay(w) = limsup E/ X-n, N (Fi(w)) dt (we ),
b—o0 0

and then put

(48) ax(w) = lim ay(w) (we ).

N—oo

Since each ay is a measurable function on (€2,.4, 1) by Fubini’s theorem (cf. (13)),
their limit function a is also a measurable function on (€2, A, 11). Furthermore, if
w € Q9 and u € Q, then we have, by (43), that

(49) aoo(w) >0 ifand only if ae(Tyw) > 0.
Taking this into account, we introduce a set 24 in A by

(50) Qp ={w e N an(w) >0} N2 NN.
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Since p,, = 0 (w € 1) is equivalent to
/ B(8) dpo(t) = 0 for every v € Ly (R, ds),
R

where ¥ is the Fourier transform of v, i.e., 0(t) = [g v(s)e “*ds for t € R, and
since

(51) /R () dp (£) = /R /R o(s)e~ "t ds dyuu(t) = /R (v(s) /R e_“td,uw(t)> ds
_ /R o(s) T (w, —s) ds = /R o(s) (blggo % /0 beiSFt(“’)dt) ds

N B N
~ lim -/0 B(— Fy(w))dt,

b—oco b

it follows that u,, = 0 is equivalent to

for every v € Li(R,ds). Consequently, we see that p, = 0 is equivalent to
Qoo(w) = 0. Thus, the equality

(52) Qy ={we pu,>0NQ
holds and, by (46) and/or (49), we have
(53) w(QeAT4) =0 forall ue Q.

It follows that u(Q4 AT, Q1) =0 for all w € R, ie., Q4 € T.
We now define a real-valued function f on €2 by

[ sup {a€R:p,((—00,a]) 27'u,(R)} if weQy,
GH flw)= { 0 otherwise.

By an easy approximation argument, together with Fubini’s theorem and (51), we
see that f is an extended real-valued measurable functin on (€2, .A, 1) such that
—00 < f(w) < oo for every w € Q. We also see, by (46), that the equality

Fuy(w) = f(Tuw) = f(w)

holds for all w € €4 and v € Q. Then, since the mappings v — F, and v —
foT, — f are continuous from R to Ly(€2, u) with respect to the metric dy, the
equality Fy(w) = f(Tyw) — f(w) holds for p-a.e. w € Q, for every u € R.
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Lastly, let A € Z be such that there exists a real-valued measurable function
fa on A with Fy(w) = fa(Tiw) — fa(w) for p-ae. w € A, for every t € R.
(Here, it may be assumed without loss of generality that A C 2; N g, because
1(21 N Q) = 1.) By Fubini’s theorem there exists B € A, with B C A and
w(A\ B) = 0, such that if w € B, then the function ¢ — f4(Tiw) is Lebesgue
measurable on R, and the equality

(55) Fy(w) = fa(Tw) — fa(w)
holds for dt-a.e. t € R. Let
By={weB:|faw)| N} (N=1).

Since By C By C ... 1T B and B € Z, the functions

b
BN (w) = lim %/0 Xpy (Tiw) dt (we)

b—oo

satisfy limy o0 On(w) =1 for p-a.e. w € B. Thus, by putting
A = B: li =1
1 {w € Ngnoo /QN(w) }v

we have A; C A and pu(A\ A1) = 0. Suppose w € A;. Then there exists an integer
N > 1 such that w € By and Bx(w) > 0. Then, by using the inequalities

B (W) [fa(Tiw)| + [fa(w)|  [fa(Tiw)|+ N 2N

for dt-a.e. t € R with Tiw € By, we have

0< ﬂN(w)

_b~>oo b

1 b
lim —/ XBy (Tiw) dt
0

b—oo b

. I
lim sup —/0 X2, 2n] (Fi(w)) dt = azn(w).

Consequently, ao(w) > 0 for all w € Aj, and we find that u(A \ Q4) = 0.
We have thus established the following

Proposition 2. Let {F;} be an additive process (with respect to {T;}). Then
the following conditions are equivalent :
(I) There exists a function f in Lo(Q2, u) such that F; = T.f — f forall t € R.
(I) The inequality as(w) > 0 holds for p-a.e. w € .

Here if {T}} is assumed to be ergodic, then the condition (1) can be replaced
with the following weaker condition
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(I The inequality aso(w) > 0 holds on a set of positive p-measure.

By using Theorem 1 and Proposition 2 we next prove the following

Theorem 2. Let {F;} be an additive process (with respect to {T}}). Suppose
0 < p < o0. Then, among the following conditions, the implications

DO = (I) = 1) = Iy
hold. Here if {T}} is assumed to be ergodic, then the implication
" = @
also holds, so that all the conditions are equivalent.

(I) There exists a function f in Ly(S2, p) such that Fy = fftf —fforallt € R.
(1) The inequality iminfy o (1/b) [} || 4|5 dt < oo holds.

(Il) The skew-product flow {9:} admits a pr-equivalent finite invariant measure
v = Pdur such that 0 < P € Ly (,/2)(KR, UR)-

(I The inequality lim infy, .. (1/b) fob X4 - Fy||bdt < oo holds for some A € A
with u(A) > 0.

Proof. (I) = (II). Suppose F; = fftf — f for some f € L,(Q,p) and all t € R.
Then, from the relations

IR = /Q FoTi—fPdu 2%V f|E,

(II) follows at once.
(I) = (11). Define an extended real-valued measurable function 7 on (2, A, u)
by

(56) n(w) = hmlnf —/ |Fr(w)Pdt (we ).
Then, (II) implies that

(57) 0 /Qn(w)d,u hmlorolfb/ /|Ft )[Pdp(w)dt < oo

by Fubini’s theorem and Fatou’s lemma, so that we have 0 n(w) < oo for p-a.e.
w € Q. This implies easily that as(w) > 0 for p-a.e. w € Q. Thus, by Proposition
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2, there exists a function f in Lo(€2, ) such that F; = T, f—fforallt € R. Then
we have

(58) n(w) —hmlnf —/ |f(Tiw) — f(w)|P dt < 00

for p-a.e. w € €. By this and the pointwise ergodic theorem for the flow {7}}, we
find that the limit function

(59) o) = Jim 3 [UP@wd @e)

satisfies 0 gp(w) < oo for p-a.e. w € Q. Thus, as in the proof of (I) = (II)
of Theorem 1, letting A, = {w € Q:n—-1 gp(w) < n} for n > 1, we get
a countable decomposition {A,, : n > 1} of Q such that A, € Z and [ a, | fIP
dp = [ 4, 9p dp < n for every n > 1, which is equivalent to (III), by Theorem 1.

(IIl) = (I1y’. By Theorem 1, (III) implies the existence of a function f in
Lo(Q, p), with F;, = ZIA} f— f forall t € R, and a countable decomposition {4,
n > 1} of Q such that A, € Z and f|a, € Ly(A,, p) for every n > 1. Thus (1)
follows by setting A = A,, for some n > 1, as before.

Lastly, suppose {T;} is ergodic and (II)’ holds. We will prove that (I) follows.
As in the proof of (II) = (III), we find that n(w) < oo and hence a, > 0 for
p-a.e. w € A, so that by Proposition 2 there exists a function f in Lo(2, ) with
F = Tt f — f forall t € R. It follows that the function g, in (59) satisfies
gp(w) < oo for p-a.e. w € A. Since ﬁgp = gp for all t € R, the ergodicity
of {T;} implies that g, is a constant real-valued function on (2, whence we have
|fIP € L1(Q, n) by the pointwise ergodic theorem for the flow {73}, and thus (I)
follows.

This completes the proof of Theorem 2.

Example. (d) We give here an example of ergodic measure preserving flow {7} }
and an additive process {F;} in L, (2, 1), with 0 < p oo, such that the process
{F;} has the form F; = th — f for some f € Ny<p Ly (€2, 1), but this f cannot be
a function in Ly(§2, ). Since {T}} is ergodic, this means that the additive process
{Fi} C Lp(Q, 1) induces a pr-equivalent finite invariant measasure v = Pdug
(with respect to the skew-product flow {¥;}) such that 0 < P € L,(Kr, ur) for
every 7 < 1+ (p/2), but there does not exist a nontrivial finite measure 7 = Pdug,
with0 P e Li4(p2) (KR, pR), which is invariant with respect to the flow {0;}.
We also note that this skew-product flow {¢;} is not ergodic, because the flow is,
at the same time, a measure preserving flow in the o-finite product measure space
(QxR,A® B(R), 1 ® dx).
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In order to construct such an example, we first consider a single transformation
T. 1t is known (cf. [4]) that if p = oo, then there exists an ergodic invertible
measure preserving transformation 7" in a probability measure space (£2o,.4o, o)
and a function fo & Loo(Q0, po), with fo € L, (Qo, po) for all r < oo, such that
T fo— fo € Loo(Q0, o). A similar result holds for every p, with 0 < p < oo.
That is, there exists an ergodic invertible measure preserving transformation 7' in
a probability measure space (£, Ao, 110) and a function fy & L,(Qo, po), with
fo € Ly(Qo, o) for all 7 < p (< o00), such that Tfy — fo € Ly(Qo, po). To see
this, let (by,)22, be a strictly decreasing sequence of positive real numbers such that
lim,, o0 by =0 and ) 7 (b, = 1. Putting oy, = bp—1 — by, for n > 1, we get a
sequence (ap,)02 ; of positive real numbers such that

o0 (o] o0
Zan:bo and Znan:anzl.
n=1 n=1 n=0

By an elementary argument (we may omit here the details) we see that the sequence
(bn)22 can be modified so that it has the property that there exist two sequences
(Pn)p2; and (d,)92; of positive real numbers such that p,, < p for n > 1 and
lim,, 00 Pn = p, and also such that

Znan - (dp)Pm < 00, Zan - (dn)? < oo and Znan - (dp)P = o0.
n=1 n=1

n=1

Putting A, = {(n, ) : € [0, by)} for n > 0, we then set

QOZ DAna
n=0

and
o bn
po(B) = Z/ Xp(n, z)dz for B € Ay,
n=0"0

where Ag is the o-field of all subsets B of ¢ with the property that for each
n > 0, the set B, = {z : (n, ) € B} is a Lebesgue measurable subset of [0, by,).
Thus, (Q0,.40, o) becomes a probability measure space. Let S be an ergodic
invertible measure preserving transformation in the interval [0, by) with respect to
the Lebesgue measure on [0, by). By Kakutani’s skyscraper construction (cf. e.g.
p. 21 of [12]), we can obtain an ergodic invertible measure preserving transformation
T in (Q0,. Ao, 110) as follows. For (n, x) € A,, we define

| (n+1, ) if 0 x<bpy,
T(n, z) = { (0, Sz) if byyr @ < by
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We next define a function fy on Qg as follows. If wg € o, then wy = (n, z) € A4,
and by x < bp_q forsome n >0 and k > n + 1, unless z = 0. Since these n, k
are uniquely determined, we can define

fo(wo) = di

to obtain a function fy on €. It is easy to check that fo & L,(S0, o), that
fo € Lr(Q0, o) for all < p, and that T'fo — fo € L,(Q0, po). Hence the desired
result holds.

Now, using the above 1" and fj, we define an ergodic measure preserving flow
{T}} in the product probability measure space

(Q, A, 1) = (2 x10,1), A® B([0, 1)), p ® dx),

where B([0, 1)) is the o-field of all Borel subsets of [0, 1), by the relation
Ti(wg, x) = (T[tﬂ]wo, t+x—[t+ ac]) for (wp, ) € Qand t € R,

where [t + x| denotes the greatest integer not exceeding ¢ + x, and a function f on
Q2 by the relation

f(wo, ) = fo(wp) for (wp, x) € Q.

Then we find that f & L, (€, ) and that f € L,(Q, p) for all 7 < p. Nevertherless,
the additive process Fy = Ty f — f (t € R) satisfies {F;} C L,(Q, p).

Theorem 3. Let {F;} be an additive process (with respect to {T;}). Suppose
1 p oo. Then the following conditions are equivalent :

(I) There exists a function f in Ly(Q, p) such that Fy = T.f — f forall t € R.
(I), The inequality liminfy_,, (1/b) fé’ | F¢||p dt < oo holds.

Here if {T}} is assumed to be ergodic, then the condition (1), can be replaced
with the following weaker condition :

(I, The inequality liminfy_,,(1/b) fé’ |Xa- Ftllpdt < oo holds for some A € A
with p(A) > 0.

Proof. (I) = (II),. This is obvious.
(IN), = (D). Since ||Ft|l1 || Ft|lp, (1), implies that

1 b
(60) liminf—/ |Ey|1 dt < oo.
b—o0 b 0
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Thus, by Theorem 2 and Proposition 1, there exists a function g in Lo(€2, 1) such
that F, = Tyg — g for all ¢ € R.. Then, using the inequality |go Ty|  |Fy| + |g| on
2, we see from (60), together with the pointwise ergodic theorem for the flow {7}}
and Fatou’s lemma, that

I 1 [°
(61) lim —/ lg|(Tiw) dt hmlnf —/ |Fy(w)| dt + |g|(w) < 0o
b—oo b Jy b—

for p-a.e. w € 2. Hence

b b
(62) lim 1/ Fi(w)dt = lim %/ g(Tw) dt — g(w)
0

b—oo b

for p-a.e w € . Let G denote the almost everywhere limit function on €2 defined
by

b
G(w) = lim —/0 g(Tyw) dt (we Q).

Then, clearly, it is invariant with respect to the flow {7}}, and so if f denotes the
almost everywhere limit function on 2 defined by

b
63) fw) = lim == [ Fw)dt  (weq)
b—oo b 0

then f’t f—f= ﬁg — g = F; for all t € R. Furthermore, by (II), and Fatou’s

lemma,
1 b
‘—/ Ft(LU)dt
bJo

so that f € L,(£2, ), and hence (I) follows.

Next, suppose {73} is ergodic and (H); holds. We will prove that (I) follows.
To do this, we first notice that there exists a function g in L1 (€2, ) such that
F, = Ttg —g for all t € R (cf. the condition (1)’ of Theorem 2, with p = 1). Here,
modifying the set A slightly, if necessary, we may assume without loss of generality
that X4 - g € L,(€2, p). Then, since X4 - (g0 Tz) = X4 - (F; + g), it follows that

64 lim inf
©4) |l limin

hmlnf —/ | Fillp dt < oo,
LP(QHU')

I I
5 | Bl + 1l > 5 [ o Tl at
(65) b b
1 1
=3 [ 1000 gl > 5 [ atr) gt

LP(QHU')
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Here if we set, for b > 0,

(65) ) =inf < [CxalTwde (e,

a>b a

then, by the pointwise ergodic theorem for the flow {7}} and the ergodicity of {7},
we see that

0 (w) T u(lA) >0 for p-ae we as b— oo.

Thus, by Lebesgue’s convergence theorem,

S YL .
(67 oo > limint 3 [ [Xa- Fillpde+ [Xa-gllp > im0+ gll, = n(A)lgl
— 00 0 b—o0

whence g € L,(, 1), and (I) follows.
This completes the proof of Theorem 3.

Remark 3. If 1 p < oo, then, by the inequality a? > a for a > 1, it is clear
that

1 [? I
librgioglf 3/0 | F¢|ID dt < oo implies librgiogf 3/0 | F¢||p dt < oo;

Theorems 2 and 3 show, on the other hand, that the converse implication is also
true.

4. ERGODIC PROPERTIES OF {F}} IN L,(€2, 1), WITH1  p < 0o

First of all we prove the following lemma, which is stated in a more general
setting than needed.

Lemma 1. Let {F;} be an additive process (with respect to {1i}). If {E} C
L,(2, ), where 0 < r oo, then we have

(68) M(r) :=sup {||F¢|-:0 t 1} <oo.
Proof. If 0 < r < 1, then, by Fubini’s theorem, the function

(69) b (t) = /ﬂ Fldy  (teR)
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is Lebesgue measurable on R, and since {7;} is a measure preserving flow, it
follows that

0 ¢r<t+s>=/\Ft+Fsom’"du /(!B!’"HFsoTt\’")d#
Q Q

= ¢r(t) + ¢r(5) <00

for t,s € R. Thus, by Theorem 7.4.1 of [9], ¢, is bounded on the interval [0, 1].
This proves (68), when 0 < r < 1. A similar argument is sufficient to prove
(68), when 1 r < oo. Hence we omit the details. If »r = oo, then, since
| Ftlloo = limy—soo ||F%||r, the function

(70) $oo(t) = | Fillc  (t€R)
is also Lebesgue measurable on R, and satisfies

0 @oo(t+3) ¢Poolt) + doo(s) <o for t,s € R.
Thus, as before, we have (68) for » = oo, and this completes the proof.

From now on, we assume that {F;} C L, (2, 1), where 1~ p < oo, unless the
contrary is explained explicitly. Since the function (w, t) — Fi(w) on 2 x R is
measurable with respect to the product o-field A ® B(R) (cf. (13)), it then follows
from Lemma II1.11.16 of [6] that the mapping ¢ — F} becomes a strongly measurable
function from R to L, (2, 1), so that it is Bochner integrable over every bounded
interval, by Lemma 1. Thus, using the additivity of the process {F}} with respect
to the flow {7};}, we can deduce, through a standard calculation, the fundamental
relation

1 t
(71) Ft:(I—Tt)/ Fsds—f—/ T.Fids forall t€R,
0 0

where [ TuFyds == — [ T,Fids if t < 0.
By the pointwise and mean ergodic theorems for the measure preserving flow
{T}}, we then see that the limit

(72) foo(w) = lim —/ Fy(Tw)
t—o00
exists for p-a.e. w € €, the limit function fo, is a function in L, (2, i) such that
1 ("4
(73) lim —/ ToFids — fool =0,
t—oo ||t Jo »
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and foo can be written as foo = E{F1[(Q,Z, p)}. R
Let A, denote the infinitesimal generator of the one-parameter group {7} : t €

-~

R} in L,(2, ). Thus, if f € D(A,), then

T,f— f

—L (i (2,0

4 Af = -li
(74) pf = strong lim

and the domain D(ﬁp) of ﬁp is the set of all f in L,(2, ) for which the limit of

~ —~

the right-hand side of (74) exists in Ly(2, ). We denote by R(A,) and R(A,)
the range of ﬁp and the closure of the range of ﬁp in L,(Q, p), respectively. The
following are known results from semigroup theory and mean ergodic theory (cf.
e.g. Chapter VIII of [6]):

(i) If f and g are functions in L, (£, ) such that

Ttg—g_f

=0,
t

p

lim inf
t—0+0

then f = A\pg.
(ii) f = Apg if and only if [ Tsf ds = Trg — g in Ly(, ), for all t > 0.
(iii) The set {T,f — f : f € L,(2, ), t > 0} is a dense subset of R(A\p).

(iv) E{f|(Q,Z, 1)} = 0 in Ly(Q, ») if and only if f € R(A,).
It is also known (see [15]) that

(v) R(A\p) = R(A\p) is equivalent to the validity of the uniform mean ergodic
theorem for {7}} in L,(Q, p), ie.,

RPN
75) i | ECI@.Z0) - 7 [ Ts| <o
t—o00 t 0
where || || denotes the operator norm in Ly (£2, u1).

From these results, together with Theorem 3 in Section 3 and the fundamental
relation (71), we can obtain immediately the next theorem; we may omit the details.

Theorem 4. Let {F}} be an additive process (with respect to {T}). Assume
that {F;} C Ly(Q, 1), where 1~ p < co. Then:

~

(I) F1 € R(Ap) is equivalent to the existence of a function f in L,(Q, p)
such that Fy = T,f — f for all t € R (which is also equivalent to
Hminfy o0 (1/t) [3 [|Fsllp ds < oo).
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I Fy € R(A\p) \R(A\p) is equivalent to

1 1
(76) tlgiolo ;/0 | Fs|lpds = oo and tlg(r)lo ;HFth—O.

() Fy ¢ R(gp) is equivalent to

. 1
(17 Jim ZFll, = |B{F (9,2, m)}Hlp > 0.

(Iv) fol Fqds € D(A\p) is equivalent to the existence of a function f in Ly(2, p)

such that Fy = fot fsf ds for all t € R, which is also equivalent to the
existence of a function f in Ly(SY, ) such that

(78) lim inf
t—0+0

=0.
p

1
ZF —
]tt f

Corollary (cf. [13]). Let f € L,(, ), where 1~ p < oo. Then f € R(A\p)

is equivalent to
S o~
/ T.f du
0

In particular, if {T};} is assumed to be ergodic, then f € R(A\p) is equivalent to
the existence of a set A in A, with u(A) > 0, such that

XA-</OSfufdu>

Remark 4. Let {F};} be an additive process (with respect to {7} }). Assume that
{Fi} C Lp(Q,p), wherel p oo, and that Fy = Tig—g for some g € L,(2, p).
Then there exists a function f in L,(€, i) such that Fy = T, f—fforallteR.
In fact, we have for an integer n > 0

ds < 0.
P

1 t
(79) liminf — /
t Jo

t—o00

ds < oo.
P

t—o00

1 t
(80) liminf - /
t Jo

Foys :Fn'f‘ans = (Tng_g> +TnF5a
so that Lemma 1 implies that

sup |[Foysllp  2[lgllp + sup [[Fsllp  2llgllp + M(p) < oo,
0 s 1 0 s 1
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whence Theorem 3 can be applied to obtain the desired conclusion. (Incidentally,
we remark that (i) if {F,} C Lo(Q, 1) and F1 = T1g — g for some g € Lo(%, p),
then {F,} has the foom F, = T,f — f (t € R) for some f € Lo(S, ) (cf.
Proposition 1); (ii) if {Fi} C L,(2,p), where 0 < r < 1, and F} = Tig — g for
some g € L, (€, ), then the skew-product flow {¢J;} admits a ugr-equivalent finite
invariant measure v = P dug such that 0 < P € Ly (,/2)(Q, ur), thus {F;} has
the form Fy = T,f — f (t € R) for some f € Lo(€, p) with f|a, € Liir(An, p)
for every n > 1, where {4,, : n > 1} is some countable decomposition of §2 such
that A,, € Z for every n > 1 (cf. Theorems 2 and 1).)

If {F}} is an additive process in L,(€2, p), with 1 p < oo, then we have

=0,

1
(81) mﬂ#ﬂ—h
¢ p

t—o00

by (71) and (73). But we cannot expect in general the following pointwise conver-
gence result (cf. the example below):

1
(82) q- thm ;Ft(w) = foo(w) for p-ae weQ.
— 00

Example. (e) We give a simple example of an ergodic measure preserving
flow {Ti} and an additive process {F;} C [} oo Lp(€2 1) such that the limit
q-limy o t 1 Fy(w) fails to exist for p-a.e. w € €. For this purpose, let (2, A, i)
and {T;} be the same as in Example (c). Take a nonnegative increasing continuous
function f on [0, 1) such that lim, ,;1_¢ f(z) = oo, and also such that f €
Ly([0, 1)) for all p with 1  p < oo. Then, define an additive process {F;} C
N1 peoo Lp([0,1)) by Ft = foTp — f for t € R. It is clear that for every
ze0,1)=9Q

1 1
0 = ¢-liminf —Fj(z) < ¢-limsup —Fi(x) = oo.
t—oo t—oo L

By the above example, studying the a.e. convergence of the averages (1/t)F; as
t — oo (or t — 0+ 0) becomes interesting. We will examine in the rest this a.e.
convergence problem.

(A) First, it follows from Kingman [10] (see also [3]) that in order to obtain
(82) it suffices to assume the following condition:
The function

83) GHw)=sup{|Fi(w) - Fy(w)]:t,s€Q,0 t<s 1} (weQ)

belongs to L1(2, p).
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The process {Fi} C Ly(?, ), where 1 p oo, is called linearly bounded
[resp. bounded] in L,(Q, ) if

1
sup =||Fy|l, < oo [resp. sup ||Fy|, < oo].
>0 t >0

It is immediate that the linear boundedness of {F;} in Ly(£2, ), where 1 <p oo,
implies the linear boundedness of the process in Lj (€2, 1), and the latter condition
implies G¥ € L1(Q, p).

Here it is interesting to note that the condition G* € L;(f, 1) need not imply
the a.e. convergence of (1/¢)F; as t — 0+ 0 (through the set Q). To see this, we
give the following

Example. (f) Let (2,4, 1) and {T}} be the same as in Example (c). Take a
real-valued continuous function f on [0, 1) = €2 such that for every = € [0, 1) the

limit
L @)@
t—040 t

fails to exist (existence of such a function is well-known), and let F; = f’t f—f
for t € R. Then, since | Fy|oo  2||f]loco < 00, G¥ is a function in Lo (8, 1), and
hence G* € L1(£2, 1). On the other hand, the limit

¢ lim < Fy(x) (: ¢ lim f(@““i—f(x))

t—0+0 t t—040

cannot exist for any z € [0, 1) = Q.

(B) It follows from [1] (see also [20]), together with the next lemma, that if
{F;} is linearly bounded in L;(f2, 1), then the limit

(84) fo(w) = g-lim = F(w)

exists for p-a.e. w € €.

Lemma 2. Let {F;} be an additive process in Ly(2, ) (with respect to {1;}).
If the two local limits

. 1 . 1
85 forlw) =g lim -Fw) and fo-(w) =g lim - Fw)
exist and are finite for p-a.e. w € €, then for = fo— on Q.

Proof of Lemma 2. 1f t # 0, then we write

1
ft = th-
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Suppose {tx} is a sequence of positive rational numbers satisfying limy_, . tx = 0.
Then, since

for@) = lim fi,(@) and fo-(@) = lm fg ()

for p-a.e. w € Q by hypothesis, it suffices to show that f_;, converges to foi in
probability.
To do this, we first notice that the relation F_;, + F;, oT_; = 0 implies

(86) f—tk = ftk % T—tk7

so that

(87) fety = for ={ft, 0T, — fo,} + {ft, — for} = Ix+ 1,

and
(88) Jim Iy(w) = lm {fy (0) = for (w)} =0

for p-a.e. w € €.
To estimate I, we use the relations

(89)
fo. o Tt, — ft, = {(fer, — for) + for} o Tty — {(ftr — for) + for}
={fo, — foryo T4, —{fe, — for} + {for o T4, — for},

where (88) implies that

(90) kli}ngo {ftp — fox}oT 4, =0 (in probability),
and (9) implies that

91) klggo {for oT—4, — fo+} =0 (in probability).

Hence, llmk*mo Ik = hmkﬁoo{ftk o T—tk — ftk} = llmk*)oo {ftk — f0+} =0
(in probability), and this completes the proof of Lemma 2.

Remark 5. Let 1 < p < oo, and suppose {Fi} C L,(€2, p). Then, {F;} is
linearly bounded in L, (€2, 1) if and only if there exists a function f in L,(€2, x) such
that F}; = fot fs fds for all t € R. In fact, if {F}} is linearly bounded in L (€2, p),
then, since L,({2, 1) is a reflexive Banach space, we can choose a sequence {t;}
of positive real numbers, with limy_,., tx = 0, for which there exists a function
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f € Ly(Q, ) such that f = weak- limy_, oo (1/t5)Fy, in Ly(€2, ). By using (71)
and (10), we then see that

(92) f—F = weak- im —(I — Ttk / Fsds,

k—oo k

so that

t ¢ ¢
/ Tsfds:/ Ts(f—Fl)ds—i—/ T.F ds
0 0 0

(93) o -
:(I—Tt)/ Fsds—i—/ T.F ds = F,
0 0

for all £ > 0 (and hence for all ¢ € R). The converse implication is obvious. (This
can be shown in a more general setting. See e.g. Theorem 10 of [2].)

It is interesting to note that the condition 1 < p < oo cannot be replaced with
p =1, in Remark 5. To see this, we give the following

Example. (g) Let (2, 4, 1) and {T;} be the same as in Example (c). Take a
nonnegative function g in L1 ([0, 1)) with ||g||; = 1. If ¢ > 0, then define a function
Gt in L1([0, 1)) by

T+t
Gi(z) = / g(u)du for xz €10,1) =1,

where g denotes the periodic function on R, with period 1, such that g = g on
[0, 1). Next, if ¢t > 0 and = € [0, 1), then let H;(z) be the number of integers k
satisfying x  k + 27! < x +t. By putting

Ft:Gt—Ht 1ft20, and Fy = —F_;0T; 1ft<0,

we obtain a bounded and linearly bounded additive process {3} in L1([0, 1)).
This {F}} cannot have the form F; = fg Tsf ds for any f € L1(Q, ). In fact, by

Theorem 3, the process { F;} has the form F; = fth — h for some h € Li([0, 1)).
Hence (or directly), we find

Fi(x)dez =0 forall teR.
[0,1)

Thus, if {F;} had the form F; = fot T f ds for some f € L1([0, 1)), then we must
have from (10) that f[o 1 f(x)dx = 0. But, this is a contradiction, because

1
f(z) = ¢-lim =Fy(z) = g(z) for dz-a.e. z €0, 1).
t—0 ¢
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(C) From now on we will restrict ourselves to considering the case where { F;} C
L1(Q, p). The process { F3} is called positive if F; > 0 for all t > 0, and absolutely
continuous if there exists a function f in L1 (2, u) such that F; = f(f T, f ds for all
t € R. It is also called singular if there exists a positive additive process {G;} in
L1(Q, ) with the properties that |F;| G forallt > 0andthat0 g€ L1(Q,un)
and fot T.gds Gy for all t > 0 imply g = 0. Assume {F;} is linearly bounded
in Li(2,p), and let fo € Li(2, ) be the local limit function in (84). Since
fo € L1(2, 1) by Fatou’s lemma, we can define

t
(94) Xt:Ft—/Tsfods (teR)
0
to obtain a linearly bounded additive process {X;} in L1 (€2, ) such that
.1
(95) q- %g% ;Xt(w) =0 for p-ae we.

It is clear that X; = 0 for all ¢ € R if and only if {F}} is absolutely continuous;
and the former condition is equivalent to liminf; ,o1¢ ||t71X;||; = O by the fun-
damental relation (71) and the statements (i) and (ii) over Theorem 4. Furthermore,
we notice the following

Remark 6. A necessary and sufficient condition for a linearly bounded additive
process {F;} in Li(Q, ) to be singular is that fo = 0. For this proof we use
Theorem (3.2) of [1], by which {F};} can be written as F; = Ft(l) — Ft(2), where
{Ft(j )}, j = 1,2, are two positive linearly bounded additive processes in L1 (€2, ).
Then, by putting

D — ot L)
(96) o (w)=gq %g% tFt (w) (w € ),
and
. t .
97) HY = / T.fds  (teR),
0

we obtain two positive linearly bounded additive processes {Ht(J )} in Ly(Q, p).

Since fo(l)(w) = liminf, 0o nFr(Ll_)1 (w) for p-ae. w € Q, if we put hy(w) =

infy,>n mFﬁzl(w) for n > 1, then for every ¢ > 0

1 PN 1 PN
o HY :/ T.fVds = lim [ Tihnds
0 0

n—oo
lim tfs (nFr(Ll,)l) ds = lim Otn <F(1) — F(l)) ds

-1
n—oo Jq n—00 stn §

t+n_1 n—1
= lim n Fégl) ds — Fs(l) ds | = Ft(l),
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(1)

where the last equality comes from the strong continuity of the function s — Fj
in L1 (€, ), together with the relation

n=1 n~1
n/ Fs(l) ds n/
0 1 0

Similarly, we find that 0 Ht(2) Ft(2) fort > 0.

Now, assume the process {F};} is singular. By definition there exists a positive
additive process, {Gi} in L1(Q, p), with |F| Gy forallt >0, such that0 g€
Li(Q,p) and fo sgds Gy for all t > 0 imply g = 0. Then, from Akcoglu and
Krengel’s construction of the processes {Ft(J )} ( =1, 2) it follows (cf. [1]) that
0 Ft(] ) G, forall t > 0, whence

Fs(l)H1 ds —+0, as n— oo.

t . . .
0 / T.fPds=HD FY Gy forall t>0,
0

and this implies that féj ) — 0, and hence fo = él) (2) 0.
Conversely, assume fo = 0. Then, since fy = fo fo 2)
{H } {H } which implies that

= 0, it follow that

F=FY-HY)—F®-H?) forall teR

Furthermore, we see that {(Ft(l) - Ht(l)) + (Ft(2) - Ht(2)) : t € R} is a positive
(linearly bounded) additive process in L1 (£, 1) such that |Fy| (Ft(l) - Ht(l)) +
(Ft(2 - Ht(2)) for all ¢ > 0, and also such that

ey {(5 - 80) @+ (517 )
— <f0(1)(w) B 0(1)(w)> n <f(§2)(w) B féQ)(w)> 0

for p-a.e. w € 2. Consequently, we find that the process {F}} is singular.
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