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ERGODIC PROPERTIES OF
CONTINUOUS PARAMETER ADDITIVE PROCESSES

Ryotaro Sato
To my wife Masae Sato

Abstract. Let fTt : t 2 Rg be a measure preserving flow in a probability
measure space (­;A; ¹), and fFt : t 2 Rg be a family of real-valued mea-
surable functions on (­;A; ¹) such that Ft+s = Ft + Fs ± Tt (mod ¹) for all
t; s 2 R. In this paper we deduce necessary and sufficient conditions for the
existence of a real-valued measurable function f on ­, with f 2 Lp(­; ¹)
where 0 · p · 1, such that Ft = f ± Tt ¡ f (mod ¹) for all t 2 R. Related
results are also obtained. These may be considered to be continuous parame-
ter refinements of the recent discrete parameter results of Alonso, Hong and
Obaya concerning additive real coboundary cocycles.

1. INTRODUCTION

Let (­;A; ¹) be a probability measure space. We denote by L0(­; ¹) the space
of all real-valued measurable functions on (­;A; ¹). Most of the time we will not
distinguish between the equivalence class of a function f and the function f itself,
and hence statements and relations are assumed to hold modulo sets of measure
zero, unless the contrary is explicitly explained. We define a metric d0 in L0(­; ¹)
by

d0(f; g) =

Z

­

jf(!)¡ g(!)j
1 + jf(!)¡ g(!)j d¹ (=: kf ¡ gk0):(1)
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Under this metric, L0(­; ¹) becomes an F -space (cf. Chapter 1 of [18] for the
definition of an F -space). If 0 < p <1, then we let

Lp(­; ¹) =

½
f 2 L0(­; ¹) :

Z

­
jf(!)jp d¹ <1

¾
:

When 0 < p < 1, it becomes a locally bounded F -space under the metric

dp(f; g) =

Z

­
jf(!)¡ g(!)jp d¹ ( =: (kf ¡ gkp)p);(2)

and, when 1 · p <1, it becomes a Banach space under the Lp-norm

kfkp =

µZ

­
jf(!)jpd¹

¶1=p

:(3)

Furthermore, if L1(­; ¹) denotes the set of all elements in L0(­; ¹) that are es-
sentially bounded on ­, then it becomes a Banach space under the L1-norm

kfk1 = inffa 2 R : jf(!)j · a for ¹-a.e. ! 2 ­g:(4)

We consider a measure preserving flow fTt : t 2 Rg in (­;A; ¹). Thus,
fTt : t 2 Rg satisfies the following hypotheses:

(i) Each Tt is an invertible measure preserving transformation in (­;A; ¹).

(ii) Tt(Ts!) = Tt+s! for every ! 2 ­, and for every t; s 2 R.

(iii) The mapping (!; t) 7! Tt! is a measurable transformation from (­ £ R,
A­ B(R), ¹­ dt) to (­;A; ¹), where (­£R, A­ B(R), ¹­ dt) denotes
the completion of the product measure space (­£R, A­B(R), ¹­ dt) of
(­;A; ¹) and (R;B(R); dt), and where B(R) and dt stand for the ¾-field
of all Borel subsets of R and the Lebesgue measure on R, respectively.

Here we note that, if necessary, the above hypothesis (ii) can be replaced with
the following weaker hypothesis (ii)0, without any change of the results of the paper:

(ii)0 Tt(Ts!) = Tt+s! for ¹-a.e. ! 2 ­, for every t; s 2 R.

We denote by I the ¾-field of subsets of ­ defined by

I = fA 2 A : ¹(A4T¡1
t A) = 0 for t 2 Rg;(5)

where A4T¡1
t A stands for the symmetric difference of A and T¡1

t A. A set A in I
is called invariant (with respect to fTtg). The flow fTtg is called ergodic if A 2 I
implies either ¹(A) = 0 or ¹(­ n A) = 0. Incidentally, we recall that a measure
preserving transformation T in (­;A; ¹) is called ergodic if either ¹(A) = 0 or
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¹(­ n A) = 0 holds for every A 2 A with ¹(A4T¡1A) = 0. For other basic
notions and definitions in ergodic theory we refer the reader e.g. to Krengel’s book
[12].

For each t 2 R, let bTt : L0(­; ¹) ! L0(­; ¹) denote the operator defined by

bTtf(!) = f(Tt!):(6)

Clearly, bTt becomes an invertible linear isometry in L0(­; ¹). Furthermore, we see
that

bTt bTs = bTt+s for t; s 2 R;(7)

and

kbTtfkp = kfkp for every f 2 Lp(­; ¹); with 0 · p · 1:(8)

From the measurability hypothesis (iii) of the flow fTtg it follows (cf. e.g. x1.6 of
[12]) that

lim
t!0

k bTtf ¡ fk1 = 0 for every f 2 L1(­; ¹):(9)

Thus, an approximation argument implies that

lim
t!0

kbTtf ¡ fkp = 0 for every f 2 Lp(­; ¹); where 0 · p <1:(10)

By a process we mean a family fFt : t 2 Rg of real-valued measurable functions
on (­;A; ¹). The process fFtg is called additive (with respect to the flow fTtg) if
it satisfies the following conditions:

(i) Ft+s(!) = Ft(!) + Fs(Tt!) for ¹-a.e. ! 2 ­, for every t; s 2 R.

(ii) The mapping t 7! Ft from R to L0(­; ¹) is continuous with respect to the
metric d0.

Examples. (a) Let 1 · p <1. For an f in Lp(­; ¹), if we define

Ft =

Z t

0

bTsf ds (t 2 R);

then fFt : t 2 Rg becomes an additive process in Lp(­; ¹).

(b) Let 0 · p · 1. For an f in Lp(­; ¹), if we define

Ft = bTtf ¡ f (t 2 R);
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then fFt : t 2 Rg becomes again an additive process in Lp(­; ¹).

The purpose of this paper is to investigate the ergodic properties of the additive
process fFtg. In particular, we are interested to obtain necessary and sufficient
conditions for the existence of a function f in Lp(­; ¹), where 0 · p · 1, such
that

Ft = bTtf ¡ f for all t 2 R :(11)

To this end, using fTtg and fFtg, we introduce in Section 2 a skew-product
flow f#t : t 2 Rg of nonsingular transformations in the probability measure space

(KR;AR; ¹R) :=

µ
­£R;A­ B(R); ¹­ dx

¼(1 + x2)

¶
:(12)

We examine ergodic properties of the flow f#tg in detail and use them to prove
our theorems. In particular, we prove in Section 3, motivated by [17] and [4], that
the existence of a function f in L0(­; ¹) such that Ft = bTtf ¡ f for all t 2 R is
equivalent to the existence of a ¹R-equivalent finite invariant measure on (KR;AR)
with respect to the skew-product flow f#tg. We also observe, as in Helson [7], that
this condition is equivalent to the following condition:

For ¹-a.e. ! 2 ­ there exists an integer N ¸ 1 such that

lim sup
b!1

1

b

Z b

0

Â
[¡N;N ](Ft(!)) dt > 0;

where Â[¡N;N ] stands for the indicator function of the interval [¡N; N ].
From these results we deduce, for example, that if the flow fTtg is ergodic and

if 0 < p · 1, then the following conditions are equivalent:

(i) There exists a function f in Lp(­; ¹) such that Ft = bTtf ¡ f for all t 2 R.
(ii) There exists a set A in A ,with ¹(A) > 0, such that

lim inf
b!1

1

b

Z b

0
(kÂA ¢ Ftkp)° dt <1; where ° = min fp; 1g:

(iii) The skew-product flow f#tg admits a ¹R-absolutely continuous invariant
probability measure º = P d¹R with 0 · P 2 L1+(p=2)(KR; ¹R).

These may be regarded as continuous parameter refinements of the discrete
parameter results of Alonso, Hong and Obaya [4] (see also [21]). For related topics
we refer the reader to [5], [13], [16] and [22]. We also examine the relationship
between these conditions and the validity of the pointwise ergodic theorem for the
skew-product flow f#tg. In Section 4 we restrict ourselves to considering the case
where fFtg ½ Lp(­; ¹) with 1 · p <1. It is then proved that the function t 7! Ft
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from R to Lp(­; ¹) is Bochner integrable over the unit interval [0; 1], whence we
see that the process fFtg can be written as

Ft = ¡( bTt ¡ I)
Z 1

0
Fs ds +

Z t

0

bTsF1 ds for every t 2 R:

From this relation we deduce that the following conditions are equivalent:

(®) There exists a function f in Lp(­; ¹) such that Ft =
R t
0
bTsf ds for all t 2 R.

(¯) There exists a function f in Lp(­; ¹) such that lim t#0
°°t¡1Ft ¡ f

°°
p

= 0.

(°) The function
R 1
0 Fs ds 2 Lp(­; ¹) belongs to the domain of the infinitesimal

generator bAp of the one-parameter operator group f bTt : t 2 Rg in Lp(­; ¹).

2. PRELIMINARIES

In this section we prove some auxiliary results. First of all, for an additive
process fFt : t 2 Rg (with respect to the flow fTtg) and an integer n ¸ 1, we
define a real-valued function Hn on ­£R by

Hn(!; t) = Fj=n(!) if
j

n
· t <

j + 1

n
:

Then, using the continuity of the mapping t 7! Ft from R to L0(­; ¹) (this conti-
nuity is equivalent to saying that the mapping is continuous in probability, i.e.,

lim
s!t

¹(f! : jFs(!)¡ Ft(!)j > ²g) = 0

for each ² > 0 and t 2 R), we can choose a subsequence (n(k)) of (n) such that

d0(Ft(¢); Hn(k)(¢; t)) < 2¡(k+1)

for all t 2 R and k ¸ 1. Then we have

lim
k!1

Hn(k)(!; t) = Ft(!) ¹-a.e. ! 2 ­; for every t 2 R:

Taking this into account, we define

H(!; t) =

½
limk!1 Hn(k)(!; t) if the limit exists;
0 otherwise:

It is clear that H becomes a real-valued measurable function on (­ £ R;A ­
B(R); ¹­ dt) such that

Ft(!) = H(!; t) for ¹-a.e. ! 2 ­; for every t 2 R:
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Hence we may assume below, without loss of generality, that

Ft(!) = H(!; t) for ! 2 ­ and t 2 R:(13)

Next, we introduce a family f#t : t 2 Rg of skew-product transformations in
(KR;AR; ¹R) as follows:

#t(!; x) = (Tt!; x+ Ft(!)) for (!; x) 2 KR and t 2 R:(14)

It is easy to check that

(i) each #t is an invertible, null preserving transformation in (KR;AR; ¹R),

(ii) #t(#s(!; x)) = #t+s(!; x) for ¹R-a.e. (!; x) 2 KR, for every t; s 2 R,

(iii) the mapping ((!; x); t) 7! #t(!; x) is a measurable transformation from
(KR £R, AR ­ B(R), ¹R ­ dt) to (KR;AR; ¹R).

Thus, f#t : t 2 Rg becomes a measurable flow of nonsingular transformations
in (KR;AR; ¹R). Hence it follows from Krengel [11] (see also [14], [19]) that
if fUt : t 2 Rg denotes the one-parameter group of positive linear isometries in
L1(KR; ¹R) defined by the relation

Z

KR

(Utu)f d¹R =

Z

KR

u ¢ (f ± #t) d¹R;(15)

where u 2 L1(KR; ¹R) and f 2 L1(KR; ¹R), then fUtg becomes strongly con-
tinuous in L1(KR; ¹R), i.e., we have

lim
t!0

kUtu¡ uk1 = 0 for u 2 L1(KR; ¹R):(16)

Now, define a family fwt : t 2 Rg in L1(KR; ¹R) by the relation

wt = U¡t1
µ

=
d¹R ± #t
d¹R

¶
for t 2 R;(17)

where ¹R ± #t stands for the probability measure on (KR;AR) defined by (¹R ±
#t)(E) = ¹R(#t(E)) for E 2 AR, and d¹R ± #t=d¹R is the Radon-Nikodym
derivative of the measure ¹R ± #t with respect to ¹R. It follows that each wt is a
strictly positive function on KR satisfying

Z
(u ± #t) ¢ wt d¹R =

Z
u d¹R for u 2 L1(KR; ¹R):(18)

From this and (15) we deduce without difficulty that U¡t has the form

U¡tu = (u ± #t) ¢ wt for u 2 L1(KR; ¹R):(19)
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Fact 1. For every t; s 2 R we have wt+s = wt ¢ (ws ± #t) ¹R-a.e. on KR.

Proof. (19) yields

wt+s = U¡t¡s1 = U¡tU¡s1 = U¡tws = (ws ± #t) ¢ wt;

which establishes Fact 1.

Fact 2. Let º = Pd¹R; where 0 · P 2 L0(KR; ¹R). Then º becomes
an invariant measure with respect to the skew-product flow f#tg if and only if
(P ± #t) ¢ wt = P ¹R-a.e. on KR, for every t 2 R.

Proof. If A 2 AR and t 2 R, then (18) yields
Z

A
(P ± #t) ¢ wt d¹R =

Z
[(P ¢ Â#tA) ± #t] ¢ wt d¹R =

Z

#tA
P d¹R = º(#tA):

Since º(A) =
R
A P d¹R, it then follows that º(#tA) = º(A) for all A 2 AR is

equivalent to (P ± #t) ¢ wt = P ¹R-a.e. on KR, and this establishes Fact 2.

By a straightforward observation we know that wt has the form

wt(») =

µ
d¹R ± #t
d¹R

¶
(») =

1 + x2

1 + (x+ Ft(!))2
for ¹R-a.e. » = (!; x) 2 KR;

so that we may assume below, without loss of generality, that

wt(») =
1 + x2

1 + (x+ Ft(!))2
for t 2 R and » = (!; x) 2 KR:(20)

It follows that the function (»; t) 7! wt(») is a strictly positive real-valued measur-
able function on (KR £R;AR ­ B(R); ¹R ­ dt).

Fact 3. Suppose 0 · P 2 L0(KR; ¹R) has the form

P (») =
1 + x2

a(!)x2 + b(!) + 2c(!)x
for » = (!; x) 2 KR;

where a; b; c are real-valued measurable functions on (­;A; ¹). Then º = P d¹R

becomes an invariant measure with respect to the skew-product flow f#tg if and
only if

0
@

a(Tt!)
b(Tt!)
c(Tt!)

1
A =

0
@

1 0 0
F 2
t (!) 1 ¡2Ft(!)

¡Ft(!) 0 1

1
A
0
@

a(!)
b(!)
c(!)

1
A(21)
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for ¹-a.e. ! 2 ­; for every t 2 R.

Proof. Since #t(!; x) = (Tt!; x+Ft(!)) for » = (!; x) 2 KR by definition,
we find

P ± #t(!; x) =
1 + (x+ Ft(!))2

a(Tt!) ¢ (x+ Ft(!))2 + b(Tt!) + 2c(Tt!) ¢ (x+ Ft(!))

and
P (!; x)

wt(!; x)
=

1 + x2

a(!)x2 + b(!) + 2c(!)x
¢ 1 + (x+ Ft(!))2

1 + x2
:

From this and Fact 2, the present Fact follows immediately through an elementary
calculation.

We denote by IR the ¾-field of subsets of KR defined by

IR = fE 2 AR : ¹R(E4#¡1
t E) = 0 for every t 2 Rg;(22)

and by Ef¢ j(KR;IR; ¹R)g the conditional expectation operator with respect to the
¾-field IR and the measure ¹R.

Fact 4. The following conditions are equivalent :

(I) The skew-product flow f#tg admits a ¹R-equivalent finite invariant measure
º.

(II) The limit

w(») = lim
b!1

1

b

Z b

0
wt(») dt

exists and is a positive real number for ¹R-a.e. » 2 KR.

Proof. (I) ) (II). Let P = dº=d¹R. Thus 0 < P 2 L1(KR; ¹R). Since
º is invariant with respect to f#tg, we have UtP = P for t 2 R. Then by the
continuous parameter version of the Chacon-Ornstein ratio ergodic theorem (see e.g.
[14]),

w(»)= lim
b!1

1

b

Z b

0
wt(») dt

= q- lim
b!1

P (») ¢

³R b
0 U¡t1 dt

´
(»)

³R b
0 U¡tP dt

´
(»)

= P (») ¢ Ef1 j(KR;IR; ¹R)g(»)
EfP j(KR; IR; ¹R)g(»)

for ¹R-a.e. » 2 KR, where the notation q-limb!1 means that the limit is taken
as b tends to 1 through the set of rational numbers. (We recall that, since
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(
R b
0 U¡t1 dt)=(

R b
0 U¡tP dt), b > 0, are equivalence classes and not actual func-

tions on ­, the a.e. convergence of (
R b
0 U¡t1 dt)=(

R b
0 U¡tP dt) as b tends to 1

through the set R does not make sense, so that we must let b range through a count-
able dense subset of R.) Thus (II) follows, because Ef1 j(KR;IR; ¹R)g(») = 1
and 0 < EfP j(KR;IR; ¹R)g(») <1 on KR.

(II) ) (I). Since the function » 7! (1=b)
R b
0 wt(») dt is a representative of the

element (1=b)
R b
0 U¡t1 dt 2 L1(KR; ¹R), it follows from Fatou’s lemma that
Z

KR

w(») d¹R · q- lim inf
b!1

°°°°
1

b

Z b

0
U¡t1 dt

°°°°
1

· 1:

Hence we have 0 < w 2 L1(KR; ¹R), and for each s 2 R

0· Usw(») · q- lim inf
b!1

Us

µ
1

b

Z b

0
U¡t1 dt

¶
(»)

= q- lim inf
b!1

1

b

µZ b¡s

¡s
U¡t1 dt

¶
(») = w(»)

for ¹R-a.e. » 2 KR. Since kUswk1 = kwk1, it follows that Usw = w, and hence
º = w d¹R is a ¹R-equivalent finite invariant measure with respect to f#tg. This
completes the proof.

Fact 5. Let º = P d¹R be a ¹R-equivalent finite invariant measure with
respect to the skew-product flow f#tg. Suppose 0 < r < 1. Then the following
hold :

(I) For ¹R-a.e. » 2 KR the limit

Qr(») = lim
b!1

1

b

Z b

0

µ
1

wt(»)

¶r
dt

exists (but it may be infinite).

(II) For ¹R-a.e. » 2 KR we have 0 < Qr(») < 1 if and only if there exists
a countable decomposition fEn : n ¸ 1g of KR such that En 2 IR andR
En
P 1+rd¹R <1 for every n ¸ 1.

Proof. The following argument is an adaptation of the proof of Theorem 5.5.
in [17].

To prove (I), we may assume that 0 < P (») <1 for all » 2 KR, by hypothesis.
Furthermore, we may assume here that

wt(») =
P (»)

P (#t»)
for t 2 R and » 2 KR;(23)
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by Fact 2. Therefore, (»; t) 7! wt(») becomes a measurable function on the measure
space (KR £R;AR ­B(R); ¹R ­ dt). Then, as in the proof of Fact 4, we find
that

Qr(») =
1

P r(»)
¢ lim
b!1

1

b

Z b

0
P r(#t») dt =

EfP r j(KR;IR; º)g(»)
P r(»)

(24)

for ¹R-a.e. » 2 KR, where EfP r j(KR;IR; º)g is the conditional expectation of
the function P r with respect to the ¾-field IR and the measure º = P d¹R. Thus
(I) follows, because 0 < EfP r j(KR; IR; º)g(») · 1 for ¹R-a.e. » 2 KR.

To prove (II), we first suppose 0 < Qr(») < 1 for ¹R-a.e. » 2 KR. Then
write

eQr(») =

µ
1

Qr(»)

¶1=r

and eQr; n(») =

µ
1

Qr; n(»)

¶1=r

;

where

Qr; n(») :=
1

n

Z n

0

µ
1

wt(»)

¶r
dt:

In order to prove that eQr 2 L1(KR; ¹R), we proceed as follows. By using the
Hölder inequality, if r ¸ 1, then

eQr;n(») = 1
.µ 1

n

Z n

0

µ
1

wt(»)

¶r
dt

¶1=r

· 1
.µ 1

n

Z n

0

1

wt(»)
dt

¶
· 1

n

Z n

0
wt(») dt;

and if 0 < r < 1, then

eQr;n(») = 1
.µ 1

n

Z n

0

µ
1

wt(»)

¶r
dt

¶1=r

·
µ

1

n

Z n

0
(wt(»))

rdt

¶1=r

· 1

n

Z n

0
wt(»)dt:

Thus, in either case, we get
Z

KR

eQr; n(») d¹R(») ·
Z

KR

1

n

Z n

0
wt(») dt d¹R(») = 1;

by Fubini’s theorem. Since eQr(») = limn!1 eQr; n(») for ¹R-a.e. » 2 KR, it then
follows from Fatou’s lemma that eQr 2 L1(KR; ¹R).

Letting ¸ = eQr d¹R, we next prove that ¸ is an invariant measure with respect
to f#tg. To do this, we use Facts 1 and 2 as follows. If t 2 R is fixed arbitrarily,
then, since ws(#t») = wt+s(»)=wt(») for ¹R-a.e. » 2 KR, for every s 2 R by
Fact 1, we can apply Fubini’s theorem to infer that for ¹R-a.e. » 2 KR the equality

ws(#t») =
wt+s(»)

wt(»)



Continuous Parameter Additive Processes 357

holds for ds-a.e. s 2 R; hence for ¹R-a.e. » 2 KR we have

eQr(#t(»))= lim
b!1

µ
1

b

Z b

0

µ
1

ws(#t»)

¶r
ds

¶¡1=r

= lim
b!1

1

wt(»)
¢
µ

1

b

Z b

0

µ
1

wt+s(»)

¶r
ds

¶¡1=r

=
1

wt(»)
¢ eQr(»);

so that ¸ = eQr d¹R is an invariant measure with respect to f#tg, by Fact 2.
We then prove that eQr 2 L1+r(KR; ¹R). To do this, we notice that if t 2 R

is fixed arbitrarily, then, since Qr(#t») = (wt(»))
rQr(») for ¹R-a.e. » 2 KR, we

have by Fubini’s theorem that

lim
b!1

1

b

Z b

0

1

Qr(#t»)
dt =

1

Qr(»)
¢ lim
b!1

1

b

Z b

0

µ
1

wt(»)

¶r
dt =

1

Qr(»)
¢Qr(») = 1

for ¹R-a.e. » 2 KR. Since ¸ = eQr d¹R is a ¹R-equivalent finite invariant measure
with respect to f#tg, it now follows from the continuous parameter version of the
Birkhoff pointwise ergodic theorem applied to the flow f#tg that

Z

KR

1

Qr
d¸ =

Z

KR

1 d¸ = ¸(KR) <1;

whence we have
Z

KR

eQ1+r
r d¹R =

Z

KR

µ
1

Qr

¶(1=r)+1

d¹R =

Z

KR

1

Qr
¢ eQr d¹R =

Z

KR

1

Qr
d¸ <1:

Since UtP = P and Ut eQr = eQr for t 2 R, it then follows that

P (»)

eQr(»)
= q- lim

b!1

³R b
0 UtP dt

´
(»)

³R b
0 Ut

eQr dt
´

(»)
=

EfP j(KR;IR; ¹R)g(»)
Ef eQr j(KR; IR; ¹R)g(»)

for ¹R-a.e. » 2 KR. Therefore, there exists an IR-measurable positive real-valued
function R on KR such that

P (») = eQr(») ¢R(») for ¹R-a.e. » 2 KR:

Here, if fEn : n ¸ 1g denotes the countable decomposition of KR defined by

En = f» 2 KR : n¡ 1 · R(») < ng;

then, clearly, En 2 IR and
R
En
P 1+r d¹R · n1+r

R
KR

eQ1+r
r d¹R < 1 for every

n ¸ 1.



358 Ryotaro Sato

To prove the converse implication of (II), let fEn : n ¸ 1g be a countable
decomposition of KR such that En 2 IR and

R
En
P 1+r d¹R < 1 for every

n ¸ 1. Since º = P d¹R is an invariant measure with respect to f#tg, and since
P r(») ¢ Qr(») = EfP r j(KR;IR; º)g(») for ¹R-a.e. » 2 KR by (24), it follows
that Z

En

P 1+r(») ¢Qr(») d¹R =

Z

En

P r(») ¢Qr(»)dº

=

Z

En

EfP rj(KR;IR; º)g(»)dº

=

Z

En

P r dº =

Z

En

P 1+rd¹R <1;

whence we have Qr(») <1 for ¹R-a.e. » 2 En, and this completes the proof.

Remark 1. The above proof of (II) of Fact 5 shows that, without assuming
the existence of a ¹R-equivalent finite invariant measure with respect to the skew-
product flow f#tg, if the limit Qr(») exists and is a positive real number for ¹R-a.e.
» 2 KR, then the function eQr(») = (1=Qr(»))

1=r is in L1+r(KR; ¹R) and satisfies
Ut eQr = eQr for t 2 R; consequently the flow f#tg admits a ¹R-equivalent finite
invariant measure º = eQr d¹R.

Fact 6. The following conditions are equivalent :

(I) For every F 2 L1(KR; ¹R) the limit

bF (») = lim
b!1

1

b

Z b

0
F (#t») dt

exists for ¹R-a.e. » 2 KR.

(II) fUt : t 2 Rg satisfies the L1-mean ergodic theorem, i.e:; to every W 2
L1(KR; ¹R) there corresponds a function W ¤ 2 L1(KR; ¹R) such that

lim
b!1

°°°°
1

b

Z b

0
UtW dt¡W ¤

°°°°
1

= 0

Proof. (I) ) (II). If we write hW; F i =
R
KR

WF d¹R for W 2 L1(KR; ¹R)
and F 2 L1(KR; ¹R), then, by (I) together with Fubini’s theorem and Lebesgue’s
convergence theorem, we find

¿
1

b

Z b

0
UtW dt; F

À
=

Z

KR

W (») ¢
µ

1

b

Z b

0
F (#t») dt

¶
d¹R(»)

¡!
Z

KR

W (») ¢ bF (») d¹R(»)
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as b!1. Thus, the Vitali-Hahn-Saks theorem implies that there exists a function
W ¤ 2 L1(KR; ¹R) such that limb!1 (1=b)

R b
0 UtW dt = W ¤ in the weak topology

of L1(KR; ¹R). It is then routine to check that W ¤ is a fixed point for fUtg, and
W ¡W ¤ belongs to the closed linear subspace of L1(KR; ¹R) generated by the set
fUtG¡G : G 2 L1(KR; ¹R); t > 0g. Thus (II) follows.

(II) ) (I). Let W = 1 (2 L1(KR; ¹R)), and put º = 1¤ d¹R. Since 1¤ is a
fixed point for fUtg and 1¤ > 0 on KR, º becomes a ¹R-equivalent finite invariant
measure with respect to f#tg, hence (I) follows from the continuous parameter
version of the Birkhoff ergodic theorem. This completes the proof.

Remark 2. By the above proof, if fUtg satisfies the L1-mean ergodic theorem,
then there exists a strictly positive function e in L1(KR; ¹R) with Ute = e for
every t 2 R; it follows that for every W 2 L1(KR; ¹R) we have

W ¤(»)= q- lim
b!1

1

b

µZ b

0
UtW dt

¶
(») = q- lim

b!1
e(») ¢

³R b
0 UtW dt

´
(»)

³R b
0 Ute dt

´
(»)

= e(») ¢EfW=e j (KR; IR; e d¹R)g(»)

for ¹R-a.e. » 2 KR, where fW=e j (KR;IR; e d¹R)g denotes the conditional ex-
pectation of the function W=e 2 L1(KR; e d¹R) with respect to the ¾-field IR
and the measure e d¹R. Similarly, W ¤ is also the ¹R-a.e. limit of the averages
b¡1

R 0
¡b UtW dt as b tends to 1 through the set of rational numbers.

Fact 7. Let 1 · p1; p2 · 1; and 1=pi + 1=p0i = 1 for i = 1; 2. Then the
following conditions are equivalent :

(I) For every F 2 Lp1(KR; ¹R) the limit

bF (») = lim
b!1

1

b

Z b

0
F (#t») dt

exists for ¹R-a.e. » 2 KR, and the limit function bF belongs to Lp2(KR; ¹R).

(II) fUt : t 2 Rg satisfies the L1-mean ergodic theorem; and furthermore if
W 2 Lp02(KR; ¹R); then the limit function W ¤ in the condition (II) of Fact
6 belongs to Lp01(KR; ¹R).

Proof. (I) ) (II). Since L1(KR; ¹R) ½ Lp1(KR; ¹R), (I) implies that fUtg
satisfies the L1-mean ergodic theorem, by Fact 6. Suppose 0 ·W 2 Lp02(KR; ¹R)
and 0 · F 2 Lp1(KR; ¹R). Then, by putting

FN(») = min fF (»); Ng for » 2 KR;
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we have
Z

KR

W ¤F d¹R = lim
N!1

Z

KR

W ¤FN d¹R

= lim
N!1

µ
lim
b!1

Z

KR

W (») ¢
µ

1

b

Z b

0
FN(#t») dt

¶
d¹R(»)

¶

= lim
N!1

Z

KR

W (») ¢ bFN(») d¹R(») ·
Z

KR

W (») ¢ bF (») d¹(»)

· kWkp02k bFkp2 <1:

This proves that W ¤ 2 Lp01(KR; ¹R), and hence (II) follows.
(II) ) (I). Suppose 0 · F 2 Lp1(KR; ¹R). Since the first condition of (II)

implies the existence of a ¹R-equivalent finite invariant measure º with respect
to f#tg, it follows from the continuous parameter version of the Birkhoff ergodic
theorem that the limit

bF (») = lim
b!1

1

b

Z b

0
F (#t») dt

exists (but it may be infinite) for ¹R-a.e. » 2 KR. Since 0 · FN(») " F (») as
N !1 on KR, it then follows that

0 · bFN(») " bF (») as N !1

for ¹R-a.e. » 2 KR. Thus, if 0 · W 2 Lp02(KR; ¹R), then, using the relation
W ¤ 2 Lp01(KR; ¹R) which comes from the second condition of (II), we obtain

Z

KR

W bF d¹R = lim
N!1

Z

KR

W bFN d¹R = lim
N!1

Z

KR

W ¤FN d¹R

=

Z

KR

W ¤F d¹R · kW ¤kp01kFkp1 <1:

Therefore we have bF 2 Lp2(KR; ¹R), and hence the proof is complete.

3. SOLVABILITY OF THE EQUATION Ft = bTtf ¡ f IN Lp(­; ¹), WITH 0 · p · 1

From the results of Section 2 we first observe that this problem is strongly
connected with the problem of the existence of a ¹R-equivalent finite invariant
measure with respect to the skew-product flow f#t : t 2 Rg.

Proposition 1. Let fFt : t 2 Rg be an additive process (with respect to fTtg).
Then the following conditions are equivalent :
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(I) There exists a function f in L0(­; ¹) such that Ft = bTtf ¡ f for all t 2 R.

(II) The skew-product flow f#tg admits a ¹R-equivalent finite invariant measure.

Here if fTtg is assumed to be ergodic; then the above conditions are also
equivalent to the condition:

(II)0 The skew-product flow f#tg admits a ¹R-absolutely continuous nontrivial
finite invariant measure.

Proof. (I) ) (II). If f is a function in L0(­; ¹) such that Ft = bTtf ¡ f for all
t 2 R, define

P (») =
1 + x2

1 + (x¡ f(!))2
for » = (!; x) 2 KR:(24)

Then it follows that 0 < P 2 L1(KR; ¹R), and if we set º = P d¹R, then º
becomes a ¹R-equivalent finite invariant measure with respect to f#tg, by Fact 3.

(II) ) (I). Let º = P d¹R be a ¹R-equivalent finite invariant measure with
respect to f#tg. By Fubini’s theorem we see that for ¹-a.e. ! 2 ­, P (!; x)
belongs, as a function of x 2 R, to L1(R;B(R); dx=¼(1 + x2)); and since P is
a strictly positive function on KR, we can define for ¹-a.e. ! 2 ­ the probability
measure ¸! on (R;B(R)), absolutely continuous with respect to dx, by the relation

¸! =

·Z

R
P (!; x)

dx

¼(1 + x2)

¸¡1

¢ P (!; x)

¼(1 + x2)
dx:

We will identify the measure ¸! and the Radon-Nikodym derivative d(¸!)=dx 2
L1(R, B(R); dx). Since there exists a sequence (Pn) of nonnegative simple func-
tions in L1(KR; ¹R) such that limn!1 kP¡Pnk1 = 0, it follows that the mapping
! 7! ¸! = d(¸!)=dx from (­;A; ¹) to L1(R;B(R); dx) is strongly measurable.

We next prove that if t 2 R is fixed arbitrarily, then, for ¹-a.e. ! 2 ­, the
mapping F(!; t) : R ! R defined by

F(!; t)(x) = x+ Ft(!) for x 2 R

becomes a measure preserving transformation from (R;B(R); ¸!) to (R, B(R),
¸Tt!).

To do this, let D denote the set of all intervals of the form [a; b), where a; b
are rational numbers with a < b. Since º = P d¹R is invariant with respect to #t,
it follows that

º(A£B) = º(#t(A£B)) for every A 2 A and B 2 D;
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so that if º­ denotes the ¹-equivalent finite measure on (­;A) defined by

º­(A) = º(A£R) for A 2 A;(26)

then, by using Fubini’s theorem and the relation
µ
dº­

d¹

¶
(!) =

Z

R
P (!; x) ¢ 1

¼(1 + x2)
dx for ¹-a.e. ! 2 ­;

we have that for every A 2 A and B 2 D
Z

A
¸!(B) dº­(!)= º(A£B) = º(#t(A£B))

=

Z

TtA
¸!(B + Ft(T

¡1
t !)) dº­(!)

=

Z

A
¸Tt!(B + Ft(!)) dº­(!);

where the last equality comes from the Tt-invariance of the measure º­. Since
A 2 A is arbitrary, this implies that

¸!(B) = ¸Tt!(B + Ft(!))(27)

for ¹-a.e. ! 2 ­. Then, since D is countable and generates the ¾-field B(R), we
conclude that the equality (27) holds for all B 2 B(R), for ¹-a.e. ! 2 ­. This
establishes the desired result.

We now define, for ¹-a.e. ! 2 ­,

f(!) = sup
©
a 2 R : ¸!((¡1; a]) = 2¡1

ª
:(28)

Then, f is a real-valued measurable function on (­;A; ¹), and by (27) we have

Ft(!) = f(Tt!)¡ f(!) for ¹-a.e. ! 2 ­;

for each fixed t 2 R. Thus (I) follows.
Lastly, suppose fTtg is ergodic and (II)0 holds. We will prove that (I) fol-

lows. To do this, let º = P d¹R be a ¹R-absolutely continuous nontrivial finite
invariant measure with respect to f#tg. Then, the measure º­ on (­;A) defined
in (26) becomes a ¹-absolutely continuous finite invariant measure with respect to
fTtg. Since fTtg is ergodic and º­ is nontrivial, it follows that º­ is ¹-equivalent.
Therefore we get

µ
dº­

d¹

¶
(!) =

Z

R
P (!; x) ¢ dx

¼(1 + x2)
> 0
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for ¹-a.e. ! 2 ­, whence (I) follows as in the proof of (II) ) (I).
This completes the proof of Proposition 1.

Example. (c) An additive process fFtg need not have the form Ft = bTtf ¡ f
for some f in L0(­; ¹). To see this, we give an example of an ergodic measure
preserving flow fTtg and an additive process fFtg ½ L1(­; ¹) such that fFtg
cannot have the form Ft = bTtf ¡ f for any f 2 L0(­; ¹). For this purpose, let
(­;A; ¹) = ([0; 1);B([0; 1)); dx), where B([0; 1)) and dx stand for the ¾-field of
all Borel subsets of the interval [0; 1) and the Lebesgue measure on [0; 1), respec-
tively. Consider the ergodic measure preserving flow fTtg in (­;A; ¹) defined by
Ttx = t + x (mod 1) for x 2 [0; 1) and t 2 R. If h is a nonnegative function in
L1([0; 1)) such that khk1 > 0, then define

Ft(x) =

Z t

0
h(Tsx) ds

for x 2 [0; 1) = ­ and t 2 R. Clearly, fFtg becomes an additive process in
L1([0; 1)). It has the desired property, because if the process fFtg had the form
Ft = bTtf ¡ f for some f 2 L0(­; ¹), then, since

bTtf = f + Ft and lim
t!1

Ft(x) = 1 for all x 2 [0; 1) = ­;

we must have limt!1 k bTtfk0 = 1, which contradicts k bTtfk0 = kfk0 < 1 for all
t 2 R.

Theorem 1. Let fFtg be an additive process (with respect to fTtg). Suppose
0 < r · 1. Then the following conditions are equivalent :

(I) The skew-product flow f#tg admits a ¹R-equivalent finite invariant measure
º = P d¹R such that 0 < P 2 L1+(r=2)(KR; ¹R).

(II) There exists a function f in L0(­; ¹); with Ft = bTtf ¡ f for all t 2 R; and
a countable decomposition fAn : n ¸ 1g of ­; with An 2 I for all n ¸ 1;
such that the restriction f jAn belongs to Lr(An; ¹); for every n ¸ 1.

(III) There exists a countable decomposition fAn : n ¸ 1g of ­; with An 2 I for
all n ¸ 1; such that if F 2 L1+(2=r)(An £R; ¹R); then the limit

bF (») = lim
b!1

1

b

Z b

0
F (#t») dt(29)

exists for ¹R-a.e. » 2 An£R; and the limit function bF belongs to L1(An£
R; ¹R) for every n ¸ 1.

Here if fTtg is assumed to be ergodic, then the above conditions are also
equivalent to the condition :
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(I)0 The skew-product flow f#tg admits a ¹R-absolutely continuous nontrivial
finite invariant measure º = P d¹R such that 0 · P 2 L1+(r=2)(KR; ¹R).

Proof. (I) ) (II). By Proposition 1 there exists a function f in L0(­; ¹) such
that Ft = bTtf ¡ f for all t 2 R. Here we may assume below, without loss of
generality, that

Ft(!) = f(Tt!)¡ f(!) for all ! 2 ­ and t 2 R:(30)

Case 1 : Suppose r = 1. By the proof of (I) ) (II) of Proposition 1, we see
that if Pf denotes the function on KR defined by

Pf (») =
1 + x2

1 + (x¡ f(!))2
for » = (!; x) 2 KR;(31)

then it satisfies 0 < Pf 2 L1(KR; ¹R) and Pf = UtPf for all t 2 R. On the other
hand, since the measure º = P d¹R is invariant with respect to f#tg by hypothesis,
we also see that UtP = P for all t 2 R. Thus, as in the proof of Fact 5, we find
that

Pf (»)

P (»)
=
EfPf j(KR; IR; ¹R)g(»)
EfP j(KR;IR; ¹R)g(») for ¹R-a.e. » 2 KR;(32)

and hence Pf can be written as Pf (») = R(») ¢ P (») on KR, where the function
R(») = Pf (»)=P (») is measurable with respect to the ¾-field IR, and thus it
satisfies R ± #t = R ¹R-a.e. on KR for all t 2 R. Since kPk1 <1 in this case,
if Q denotes the set of all rational numbers, then, by (31) and (30), we have for
¹R-a.e. » = (!; x) 2 KR

1> R(!; x) ¢ sup
t2Q

P (#t(!; x)) = sup
t2Q

Pf (#t(!; x))

= sup
t2Q

Pf (Tt!; x+ Ft(!)) = sup
t2Q

1 + (x+ Ft(!))2

1 + f(x+ Ft(!))¡ f(Tt!)g2

= sup
t2Q

1 + (x+ f(Tf!)¡ f(!))2

1 + (x¡ f(!))2

Hence, Fubini’s theorem implies that for ¹-a.e. ! 2 ­ the inequality

sup
t2Q

1 + (x+ f(Tt!)¡ f(!))2

1 + (x¡ f(!))2
<1

holds for dx-a.e. x 2 R, and thus the function

h1(!) = sup
t2Q

jf(Tt!)j
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satisfies 0 · h1(!) < 1 for ¹-a.e. ! 2 ­. Letting An = f! 2 ­ : n ¡ 1 ·
h1(!) < ng for n ¸ 1, we then obtain a countable decomposition fAn : n ¸ 1g
of ­. Here, by the definition of h1, we get bTth1 = h1 for all t 2 Q. Then, since
limt!s k bTth1 ¡ bTsh1k0 = 0 for every s 2 R by (10), bTth1 = h1 holds for all
t 2 R. Consequently, we find that An 2 I and jf j · n on An for every n ¸ 1.

Case 2 : Suppose 0 < r <1. Then, by Fact 5 together with (20), the limit

lim
b!1

1

b

Z b

0

µ
1 + (x+ Ft(!))2

1 + x2

¶r=2
dt

exists and is a positive real number for ¹R-a.e. » = (!; x) 2 KR. It then follows
from Fubini’s theorem that for ¹-a.e. ! 2 ­ the inequality

lim sup
b!1

1

b

Z b

0
jx+ Ft(!)jr dt <1(33)

holds for dx-a.e. x 2 R; but this is obviously equivalent to the validity of the
inequality (33) for a given real number x. Thus, using (30), we get for ¹-a.e.
! 2 ­

lim sup
b!1

1

b

Z b

0
jf(Tt!)jr dt = lim sup

b!1

1

b

Z b

0
jf(!) + Ft(!)jr dt <1:

By this and the pointwise ergodic theorem for the measure preserving flow fTtg,
the limit

gr(!) = lim
b!1

1

b

Z b

0
jf jr(Tt!) dt(34)

exists and satisfies 0 · gr(!) < 1 for ¹-a.e. ! 2 ­. Letting An = f! 2 ­ :
n¡1 · gr(!) < ng for n ¸ 1, we obtain a countable decomposition fAn : n ¸ 1g
of ­, and since bTtgr = gr for all t 2 R, it follows that An 2 I and

R
An
jf jr d¹ =R

An
gr d¹ < n for every n ¸ 1.
(II) ) (I). Let f 2 L0(­; ¹) be the function given in (II). We first notice that

Pf d¹R is a ¹R-equivalent finite invariant measure with respect to f#tg and, by an
elementary calculation, the inequality

Pf (»)

µ
=

1 + x2

1 + (x¡ f(!))2

¶
< 2 + f2(!) (see(31))(35)

holds for every » = (!; x) 2 KR.
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Case 1 : Suppose r = 1. Then, since f jAn 2 L1(An; ¹) in this case, there
exists a constant ®n such that jf(!)j · ®n on the set An. Thus, if we define a
function P on KR by

P (») =

1X

n=1

1

2 + ®2
n

Pf (») ¢ ÂAn£R(») for » 2 KR;

then it satisfies 0 < P (») < 1 on KR by (35), and the measure º = P d¹R becomes
an invariant measure with respect to f#tg, because An 2 I for every n ¸ 1, by
hypothesis.

Case 2 : Suppose 0 < r <1. Then, since f jAn 2 Lr(An; ¹) by hypothesis, it
follows from (35) and Fubini’s theorem that
Z

An£R
jPf (»)j1+(r=2) d¹R·

Z

An£R
f2 + f2(!)gr=2 ¢ Pf (!; x) d¹R(!; x)

=

Z

An

Z 1

¡1

f2 + f2(!)gr=2
f1 + (x¡ f(!))2g¼ dx d¹(!) (by (31))

=

Z

An

f2 + f2(!)gr=2 d¹(!) <1:

Therefore, we can define a function P on KR by

P (») =
1X

n=1

1

2n¯n
Pf (») ¢ ÂAn£R(») for » 2 KR;

where ¯n := kPf ¢ÂAn£Rk1+(r=2) <1 for n ¸ 1, to obtain a ¹R-equivalent finite
invariant measure º = P d¹R with respect to f#tg such that P 2 L1+(r=2)(KR; ¹R).

(II) ) (III). Since (II) implies the existence of ¹R-equivalent finite invariant
measure with respect to f#tg, the condition (I) of Fact 6 holds, so that fUtg satisfies
the L1-mean ergodic theorem. Since every An in the condition (II) of Theorem 1
is an invariant subset of ­ with respect to fTtg, it may be assumed for the proof,
without loss of generality, that ­ = An. Then, Fact 7 implies that it suffices to
show that for every W 2 L1(KR; ¹R) the limit function W ¤ in the condition (II)
of Fact 6 belongs to L1+(r=2)(KR; ¹R). But, for this purpose it is clearly enough
to show that 1¤ 2 L1+(r=2)(KR; ¹R). And to do this, we observe that

1¤(») = lim
b!1

1

b

Z b

0
wt(») dt = lim

b!1
1

b

Z b

0

1 + x2

1 + (x+ Ft(!))2
dt(36)

for ¹R-a.e. » = (!; x) 2 KR, by (17), (20) and Remark 2.
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Case 1 : Suppose r = 1. Then, since

0· 1 + x2

1 + (x+ Ft(!))2
< 2 + F 2

t (!)

= 2 + (f(Tt!)¡ f(!))2 · 2 + 4kfk21 <1
(37)

for ¹R-a.e. » = (!; x) 2 KR, it follows from (36) that 0 · 1¤(») · 2 + 4kfk21
<1 for ¹R-a.e. » 2 KR. Hence, we have 1¤ 2 L1(KR; ¹R).

Case 2 : Suppose 0 < r <1. Then, since (37) implies

wt(») =
1 + x2

1 + (x+ Ft(!))2
· 2 + 2

¡
jf j2(Tt!) + jf j2(!)

¢

for » = (!; x) 2 KR, the function

Gb(») =
1

b

Z b

0
wt(») dt for » = (!; x) 2 KR(38)

satisfies, by Hölder’s inequality,

jGb(»)j1+(r=2)· 1

b

Z b

0
jwt(»)j1+(r=2) dt

· 1

b

Z b

0

©
2 + 2jf j2(Tt!) + 2jf j2(!)

ªr=2 ¢ wt(») dt

· Cr
b

Z b

0
f1 + jf jr(Tt!) + jf jr(!)g ¢ wt(») dt;

where Cr is an absolute constant depending only on r. Thus, by Fubini’s theorem,
Z

KR

jGb(!; x)j1+(r=2) d¹R(!; x)

· Cr
b

Z b

0

Z

KR

f1 + jf jr(Tt!) + jf jr(!)g ¢ wt(!; x) d¹R(!; x) dt

=
Cr
b

Z b

0

Z

­
f1 + jf jr(Tt!) + jf jr(!)g d¹(!) dt (by (20))

= Cr f1 + 2kfkrrg <1

for all b > 0. Since 1¤(») = limb!1Gb(») for ¹R-a.e. » 2 KR, it follows from
Fatou’s lemma that the limit function 1¤ belongs to L1+(r=2)(KR; ¹R).

(III) ) (I). If F 2 L1(KR; ¹R), then (III) implies that the limit

bF (») = lim
b!1

1

b

Z b

0
F (#t») dt
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exists for ¹R-a.e. » 2 KR. Thus, fUtg satisfies the L1-mean ergodic theorem by
Fact 6. Since every An in (III) is an invariant subset of ­ with respect to fTtg, we
can apply Fact 7, with p1 = 1 + (2=r) and p2 = 1, to infer that the restriction of
the limit function 1¤ to the set An £R belongs to L1+(r=2)(An £R; ¹R). Then
the function

P (») =
1X

n=1

1

2nk1¤ ¢ ÂAn£Rk1+(r=2)
1¤(») ¢ ÂAn£R(») for » 2 KR

satisfies P (») > 0 for ¹R-a.e. » 2 KR, P 2 L1+(r=2)(KR; ¹R) and UtP = P for
every t 2 R. Thus, by putting º = P d¹R, (I) follows.

Lastly, suppose fTtg is ergodic and (I)0 holds. We will prove that (II) follows.
To do this, let º = P d¹R be a ¹R-absolutely continuous nontrivial finite invariant
measure with respect to f#tg such that 0 · P 2 L1+(r=2)(KR; ¹R). By the second

part of Proposition 1 there exists a function f in L0(­; ¹) such that Ft = bTtf ¡ f
for all t 2 R. Then the function Pf satisfies, as before, that 0 < Pf 2 L1(KR; ¹R)
and UtPf = Pf for all t 2 R. On the other hand, since 0 · P = UtP 2
L1+(r=2)(KR; ¹R) for all t 2 R, it also follows, as in the proof of (I) ) (II), that
there exists an IR-measurable real-valued function R on KR such that

P (») = Pf (») ¢R(») on KR:

Therefore, the relation f» 2 KR : P (») > 0g = f» 2 KR : R(») > 0g (mod ¹R)
holds, and hence the set

E = f» 2 KR : P (») > 0g

belongs to IR. Here we notice that ¹R(E) > 0, because º (= P d¹R) is a
nontrivial measure, by hypothesis.

Case 1 : Suppose r = 1. Then kPk1 < 1 holds, and thus for ¹R-a.e.
» = (!; x) 2 E we have

1> sup
t2Q

P (#t(!; x)) = R(!; x) ¢ sup
t2Q

Pf (#t(!; x))

= R(!; x) ¢ sup
t2Q

1 + (x+ f(Tt!)¡ f(!))2

1 + (x¡ f(!))2
;

so that the function

h1(!) = sup
t2Q

jf(Tt!)j (! 2 ­)

satisfies h1(!) < 1 for ¹R-a.e. (!; x) 2 E, and h1(Tt!) = h1(!) for ¹-a.e.
! 2 ­, for every t 2 Q (and hence for every t 2 R as before). By the fact
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that ¹R(E) > 0, Fubini’s theorem implies that h1(!) < 1 on a set of positive
¹-measure. This, together with the ergodicity of fTtg, shows that h1 is a constant
function in L1(­; ¹), and consequently f is a function in L1(­; ¹).

Case 2 : Suppose 0 < r < 1. Since º = P d¹R is invariant with respect to
f#tg, it follows from Fact 2 that (P ±#t) ¢wt = P ¹R-a.e. on KR, for every t 2 R.
By this and (20), we have

p
1 + (x+ Ft(!))2 ¢ P 1=2(!; x) · P 1=2 ± #t(!; x)

for ¹R-a.e. (!; x) 2 KR. Since Ft(!) = f(Tt!) ¡ f(!) for ¹-a.e. ! 2 ­, for
every t 2 R, it follows that

jx+ f(Tt!)¡ f(!)j ¢ P 1=2(!; x) · P 1=2 ± #t(!; x)

for ¹R-a.e. (!; x) 2 KR, for every t 2 R. Then we find, by Fubini’s theorem and
the pointwise ergodic theorem applied to the flow f#tg, that

P r=2(!; x) ¢ lim sup
b!1

1

b

Z b

0
jx+ f(Tt!)¡ f(!)jr dt

· lim
b!1

1

b

Z b

0
P r=2 ± #t(!; x) dt

= EfP r=2 j(KR; IR; P d¹R)g(!; x) <1

for º-a.e. (!; x) 2 KR, where the last inequality comes from the hypothesis that
P 2 L1+(r=2)(KR; ¹R). Hence the pointwise ergodic theorem for the flow fTtg
implies that the almost everywhere limit function

gr(!) = lim
b!1

1

b

Z b

0
jf jr(Tt!) dt (! 2 ­)

satisfies gr(!) < 1 for ¹R-a.e. (!; x) 2 E. Then, using the invariance of the
function gr with respect to fTtg and the ergodicity of fTtg, we see, as in Case
1, that gr(!) =

R
­ jf jr d¹ < 1 for ¹-a.e. ! 2 ­. Consequently, we find that

f 2 Lr(­; ¹).
This completes the proof of Theorem 1.

For further studies of the ergodic properties of the process fFtg we need to
introduce another probability measure space. Denote

(K@D;A@D; ¹@D) :=

µ
­£ @D;A­B(@D); ¹­ dx

2¼

¶
;(39)
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where @D = feix : 0 · x < 2¼g, and where B(@D) and dx stand for the ¾-field
of all Borel subsets of @D and the Lebesgue measure on @D, respectively.

If s 2 R is fixed arbitrarily, then we introduce a family fe#(s)t : t 2 Rg of
skew-product transformations as follows:

e#(s)t(!; e
ix) =

³
Tt!; e

ixe¡sFt(!)
´

for (!; eix) 2 K@D and t 2 R:(40)

It is easy to check that

(i) each e#(s)t is an invertible measure preserving transformation in (K@D, A@D,
¹@D),

(ii)0 e#(s)t ± e#(s)u(!; e
ix) = e#(s)t+u(!; e

ix) for ¹@D-a.e. (!; eix) 2 K@D, for
every t; u 2 R,

(iii) the mapping ((!; eix); t) 7! e#(s)t(!; e
ix) is a measurable transformation

from (K@D £R, A@D ­ B(R), ¹@D ­ dt) to (K@D, A@D, ¹@D).

Thus, fe#(s)t : t 2 Rg becomes a measure preserving flow in (K@D;A@D; ¹@D).
Since the function g(!; eix) = eix for (!; eix) 2 K@D belongs to L1(K@D; ¹@D), it
then follows from the pointwise ergodic theorem, applied to the flow fe#(s)t : t 2 Rg
with the function g, and Fubini’s theorem that the limit

lim
b!1

1

b

Z b

0
e¡isFt(!) dt

exists for ¹-a.e. ! 2 ­. Taking this into account, we define a real-valued function
J on ­£R by

J(!; s) =

8
<
:

lim
b!1

1

b

Z b

0
e¡isFt(!) dt if the limit exists,

2 otherwise.
(41)

Then J becomes a measurable function on (­£R, A­B(R), ¹­ ds) (cf. (13)),
so that, by Fubini’s theorem, there exists ­1 2 A, with ¹(­1) = 1, such that

­1 = f! 2 ­ : J(!; s) 6= 2 for ds-a.e. s 2 Rg:

If ! 2 ­1, then J(!; s) is, as a function of s 2 R, the ds-a.e. limit of the
continuous positive definite functions b¡1

R b
0 e

¡isFt(!) dt as b ! 1, whence there
exists a finite measure ¹! on (R;B(R)) such that

J(!; s) =

Z

R
eist d¹!(t) for ds-a.e. s 2 R:(42)
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(This is a well-known fact on harmonic analysis. See e.g. x32 and x33 of [8].)
Here we notice that 0 · ¹!(R) · 1 for ! 2 ­1, because jJ(!; s)j · 1 for ds-a.e.
s 2 R, by (41).

Since Fu(!) + Ft(Tu!) = Fu+t(!) for ¹-a.e. ! 2 ­, for every u; t 2 R, we
can choose another set ­2 2 A, with ¹(­2) = 1, such that

­2 = f! 2 ­ : Fu(!) + Ft(Tu!)

= Fu+t(!) for dt-a.e. t 2 R; for all u 2 Qg:
(43)

If ! 2 ­1 \­2 and u 2 Q, then we get, by (41), that

Tu! 2 ­1 and J(Tu!; s) = eisFu(!)J(!; s)(44)

for every s 2 R with J(!; s) 6= 2. Therefore, (42) implies that
Z

R
eist d¹Tu! = eisFu(!)

Z

R
eist d¹!(t) for ds-a.e. s 2 R:(45)

But, since both sides of (45) are continuous functions of s 2 R, it follows that the
equality in (45) holds for all s 2 R. This proves that if ! 2 ­1 \ ­2 and u 2 Q,
then

¹Tu!(B) = ¹!(B ¡ Fu(!)) for every B 2 B(R):(46)

We next characterize the set f! 2 ­1 : ¹! 6= 0g as follows. For an integer
N ¸ 1, we introduce a function ®N on ­ by

®N(!) = lim sup
b!1

1

b

Z b

0

Â
[¡N;N ](Ft(!)) dt (! 2 ­);(47)

and then put

®1(!) = lim
N!1

®N (!) (! 2 ­):(48)

Since each ®N is a measurable function on (­;A; ¹) by Fubini’s theorem (cf. (13)),
their limit function ®1 is also a measurable function on (­;A; ¹). Furthermore, if
! 2 ­2 and u 2 Q, then we have, by (43), that

®1(!) > 0 if and only if ®1(Tu!) > 0:(49)

Taking this into account, we introduce a set ­+ in A by

­+ := f! 2 ­ : ®1(!) > 0g \ ­1 \ ­2:(50)
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Since ¹! = 0 (! 2 ­1) is equivalent to
Z

R
bv(t) d¹!(t) = 0 for every v 2 L1(R; ds);

where bv is the Fourier transform of v, i.e., bv(t) =
R
R v(s)e

¡its ds for t 2 R, and
since

(51)
Z

R
bv(t)d¹!(t)=

Z

R

Z

R
v(s)e¡istds d¹!(t) =

Z

R

µ
v(s)

Z

R
e¡istd¹!(t)

¶
ds

=

Z

R
v(s)J(!;¡s) ds =

Z

R
v(s)

µ
lim
b!1

1

b

Z b

0
eisFt(!)dt

¶
ds

= lim
b!1

1

b

Z b

0
bv(¡Ft(!))dt;

it follows that ¹! = 0 is equivalent to

lim
b!1

1

b

Z b

0
bv(¡Ft(!)) dt = 0

for every v 2 L1(R; ds). Consequently, we see that ¹! = 0 is equivalent to
®1(!) = 0. Thus, the equality

­+ = f! 2 ­1 : ¹! > 0g \ ­2(52)

holds and, by (46) and/or (49), we have

¹(­+4Tu­+) = 0 for all u 2 Q:(53)

It follows that ¹(­+4Tu­+) = 0 for all u 2 R, i.e., ­+ 2 I.
We now define a real-valued function f on ­ by

f(!) =

½
sup

©
a 2 R : ¹!((¡1; a]) · 2¡1¹!(R)

ª
if ! 2 ­1;

0 otherwise.
(54)

By an easy approximation argument, together with Fubini’s theorem and (51), we
see that f is an extended real-valued measurable functin on (­;A; ¹) such that
¡1 < f(!) <1 for every ! 2 ­+. We also see, by (46), that the equality

Fu(!) = f(Tu!)¡ f(!)

holds for all ! 2 ­+ and u 2 Q. Then, since the mappings u ! Fu and u !
f ± Tu ¡ f are continuous from R to L0(­; ¹) with respect to the metric d0, the
equality Fu(!) = f(Tu!)¡ f(!) holds for ¹-a.e. ! 2 ­+, for every u 2 R.
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Lastly, let A 2 I be such that there exists a real-valued measurable function
fA on A with Ft(!) = fA(Tt!) ¡ fA(!) for ¹-a.e. ! 2 A, for every t 2 R.
(Here, it may be assumed without loss of generality that A ½ ­1 \ ­2, because
¹(­1 \ ­2) = 1.) By Fubini’s theorem there exists B 2 A, with B ½ A and
¹(A n B) = 0, such that if ! 2 B, then the function t ! fA(Tt!) is Lebesgue
measurable on R, and the equality

Ft(!) = fA(Tt!)¡ fA(!)(55)

holds for dt-a.e. t 2 R. Let

BN = f! 2 B : jfA(!)j · Ng (N ¸ 1):

Since B1 ½ B2 ½ : : : " B and B 2 I, the functions

¯N(!) = lim
b!1

1

b

Z b

0

ÂBN (Tt!) dt (! 2 ­)

satisfy limN!1 ¯N (!) = 1 for ¹-a.e. ! 2 B. Thus, by putting

A1 =
©
! 2 B : lim

N!1
¯N (!) = 1

ª
;

we have A1 ½ A and ¹(AnA1) = 0. Suppose ! 2 A1. Then there exists an integer
N ¸ 1 such that ! 2 BN and ¯N(!) > 0. Then, by using the inequalities

jFt(!)j · jfA(Tt!)j+ jfA(!)j · jfA(Tt!)j+N · 2N

for dt-a.e. t 2 R with Tt! 2 BN , we have

0< ¯N (!) = lim
b!1

1

b

Z b

0
ÂBN (Tt!) dt

· lim sup
b!1

1

b

Z b

0

Â
[¡2N; 2N ](Ft(!)) dt = ®2N(!):

Consequently, ®1(!) > 0 for all ! 2 A1, and we find that ¹(A n ­+) = 0.
We have thus established the following

Proposition 2. Let fFtg be an additive process (with respect to fTtg). Then
the following conditions are equivalent :

(I) There exists a function f in L0(­; ¹) such that Ft = bTtf ¡ f for all t 2 R.

(II) The inequality ®1(!) > 0 holds for ¹-a.e. ! 2 ­.

Here if fTtg is assumed to be ergodic, then the condition (II) can be replaced
with the following weaker condition :
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(II)0 The inequality ®1(!) > 0 holds on a set of positive ¹-measure.

By using Theorem 1 and Proposition 2 we next prove the following

Theorem 2. Let fFtg be an additive process (with respect to fTtg). Suppose
0 < p <1. Then, among the following conditions, the implications

(I) ) (II) ) (III) ) (II)0

hold. Here if fTtg is assumed to be ergodic; then the implication

(II)0 ) (I)

also holds; so that all the conditions are equivalent.

(I) There exists a function f in Lp(­; ¹) such that Ft = bTtf ¡ f for all t 2 R.

(II) The inequality lim infb!1 (1=b)
R b
0 kFtk

p
p dt <1 holds.

(III) The skew-product flow f#tg admits a ¹R-equivalent finite invariant measure
º = P d¹R such that 0 < P 2 L1+(p=2)(KR; ¹R).

(II)0 The inequality lim infb!1(1=b)
R b
0 kÂA ¢Ftk

p
p dt <1 holds for some A 2 A

with ¹(A) > 0.

Proof. (I) ) (II). Suppose Ft = bTtf ¡f for some f 2 Lp(­; ¹) and all t 2 R.
Then, from the relations

kFtkpp =

Z

­
jf ± Tt ¡ f jp d¹ · 2p+1kfkpp;

(II) follows at once.
(II) ) (III). Define an extended real-valued measurable function ´ on (­;A; ¹)

by

´(!) = lim inf
b!1

1

b

Z b

0
jFt(!)jp dt (! 2 ­):(56)

Then, (II) implies that

0 ·
Z

­
´(!)d¹ · lim inf

b!1
1

b

Z b

0

Z

­
jFt(!)jpd¹(!)dt <1(57)

by Fubini’s theorem and Fatou’s lemma, so that we have 0 · ´(!) <1 for ¹-a.e.
! 2 ­. This implies easily that ®1(!) > 0 for ¹-a.e. ! 2 ­. Thus, by Proposition
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2, there exists a function f in L0(­; ¹) such that Ft = bTtf ¡f for all t 2 R. Then
we have

´(!) = lim inf
b!1

1

b

Z b

0
jf(Tt!)¡ f(!)jp dt <1(58)

for ¹-a.e. ! 2 ­. By this and the pointwise ergodic theorem for the flow fTtg, we
find that the limit function

gp(!) = lim
b!1

1

b

Z b

0
jf jp(Tt!) dt (! 2 ­)(59)

satisfies 0 · gp(!) < 1 for ¹-a.e. ! 2 ­. Thus, as in the proof of (I) ) (II)
of Theorem 1, letting An = f! 2 ­ : n ¡ 1 · gp(!) < ng for n ¸ 1, we get
a countable decomposition fAn : n ¸ 1g of ­ such that An 2 I and

R
An
jf jp

d¹ =
R
An
gp d¹ < n for every n ¸ 1, which is equivalent to (III), by Theorem 1.

(III) ) (II)0. By Theorem 1, (III) implies the existence of a function f in
L0(­; ¹), with Ft = bTtf ¡ f for all t 2 R, and a countable decomposition fAn :
n ¸ 1g of ­ such that An 2 I and f jAn 2 Lp(An; ¹) for every n ¸ 1. Thus (II)0

follows by setting A = An for some n ¸ 1, as before.

Lastly, suppose fTtg is ergodic and (II)0 holds. We will prove that (I) follows.
As in the proof of (II) ) (III), we find that ´(!) < 1 and hence ®1 > 0 for
¹-a.e. ! 2 A, so that by Proposition 2 there exists a function f in L0(­; ¹) with
Ft = bTtf ¡ f for all t 2 R. It follows that the function gp in (59) satisfies
gp(!) < 1 for ¹-a.e. ! 2 A. Since bTtgp = gp for all t 2 R, the ergodicity
of fTtg implies that gp is a constant real-valued function on ­, whence we have
jf jp 2 L1(­; ¹) by the pointwise ergodic theorem for the flow fTtg, and thus (I)
follows.

This completes the proof of Theorem 2.

Example. (d) We give here an example of ergodic measure preserving flow fTtg
and an additive process fFtg in Lp(­; ¹), with 0 < p · 1, such that the process
fFtg has the form Ft = bTtf ¡ f for some f 2 \ r<p Lr(­; ¹), but this f cannot be
a function in Lp(­; ¹). Since fTtg is ergodic, this means that the additive process
fFtg ½ Lp(­; ¹) induces a ¹R-equivalent finite invariant measasure º = Pd¹R

(with respect to the skew-product flow f#tg) such that 0 < P 2 Lr(KR; ¹R) for
every r < 1+(p=2), but there does not exist a nontrivial finite measure eº = ePd¹R,
with 0 · eP 2 L1+(p=2)(KR; ¹R), which is invariant with respect to the flow f#tg.
We also note that this skew-product flow f#tg is not ergodic, because the flow is,
at the same time, a measure preserving flow in the ¾-finite product measure space
(­£R;A­ B(R); ¹­ dx).
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In order to construct such an example, we first consider a single transformation
T . It is known (cf. [4]) that if p = 1, then there exists an ergodic invertible
measure preserving transformation T in a probability measure space (­0;A0; ¹0)
and a function f0 62 L1(­0; ¹0), with f0 2 Lr(­0; ¹0) for all r < 1, such that
bTf0 ¡ f0 2 L1(­0; ¹0). A similar result holds for every p, with 0 < p < 1.
That is, there exists an ergodic invertible measure preserving transformation T in
a probability measure space (­0;A0; ¹0) and a function f0 62 Lp(­0; ¹0), with
f0 2 Lr(­0; ¹0) for all r < p (< 1), such that bTf0 ¡ f0 2 Lp(­0; ¹0). To see
this, let (bn)

1
n=0 be a strictly decreasing sequence of positive real numbers such that

limn!1 bn = 0 and
P1

n=0 bn = 1. Putting ®n = bn¡1 ¡ bn for n ¸ 1, we get a
sequence (®n)

1
n=1 of positive real numbers such that

1X

n=1

®n = b0 and
1X

n=1

n®n =

1X

n=0

bn = 1:

By an elementary argument (we may omit here the details) we see that the sequence
(bn)

1
n=0 can be modified so that it has the property that there exist two sequences

(pn)
1
n=1 and (dn)

1
n=1 of positive real numbers such that pn < p for n ¸ 1 and

limn!1 pn = p, and also such that

1X

n=1

n®n ¢ (dn)pn <1;
1X

n=1

®n ¢ (dn)p <1 and
1X

n=1

n®n ¢ (dn)p = 1:

Putting An = f(n; x) : x 2 [0; bn)g for n ¸ 0, we then set

­0 =
1[

n=0

An;

and

¹0(B) =
1X

n=0

Z bn

0

ÂB(n; x) dx for B 2 A0;

where A0 is the ¾-field of all subsets B of ­0 with the property that for each
n ¸ 0, the set Bn = fx : (n; x) 2 Bg is a Lebesgue measurable subset of [0; bn).
Thus, (­0;A0; ¹0) becomes a probability measure space. Let S be an ergodic
invertible measure preserving transformation in the interval [0; b0) with respect to
the Lebesgue measure on [0; b0). By Kakutani’s skyscraper construction (cf. e.g.
p. 21 of [12]), we can obtain an ergodic invertible measure preserving transformation
T in (­0;A0; ¹0) as follows. For (n; x) 2 An we define

T (n; x) =

½
(n+ 1; x) if 0 · x < bn+1;
(0; Sx) if bn+1 · x < bn:
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We next define a function f0 on ­0 as follows. If !0 2 ­0, then !0 = (n; x) 2 An
and bk · x < bk¡1 for some n ¸ 0 and k ¸ n+ 1, unless x = 0. Since these n; k
are uniquely determined, we can define

f0(!0) = dk

to obtain a function f0 on ­0. It is easy to check that f0 62 Lp(­0; ¹0), that
f0 2 Lr(­0; ¹0) for all r < p, and that bTf0 ¡ f0 2 Lp(­0; ¹0). Hence the desired
result holds.

Now, using the above T and f0, we define an ergodic measure preserving flow
fTtg in the product probability measure space

(­;A; ¹) = (­0 £ [0; 1);A­ B([0; 1)); ¹­ dx);

where B([0; 1)) is the ¾-field of all Borel subsets of [0; 1), by the relation

Tt(!0; x) =
³
T [t+x]!0; t+ x¡ [t+ x]

´
for (!0; x) 2 ­ and t 2 R;

where [t+ x] denotes the greatest integer not exceeding t+ x, and a function f on
­ by the relation

f(!0; x) = f0(!0) for (!0; x) 2 ­:

Then we find that f 62 Lp(­; ¹) and that f 2 Lr(­; ¹) for all r < p. Nevertherless,
the additive process Ft = bTtf ¡ f (t 2 R) satisfies fFtg ½ Lp(­; ¹).

Theorem 3. Let fFtg be an additive process (with respect to fTtg). Suppose
1 · p · 1. Then the following conditions are equivalent :

(I) There exists a function f in Lp(­; ¹) such that Ft = bTtf ¡ f for all t 2 R.

(II)p The inequality lim infb!1 (1=b)
R b
0 kFtkp dt <1 holds.

Here if fTtg is assumed to be ergodic; then the condition (II)p can be replaced
with the following weaker condition :

(II)0p The inequality lim infb!1(1=b)
R b
0 kÂA ¢Ftkp dt <1 holds for some A 2 A

with ¹(A) > 0.

Proof. (I) ) (II)p. This is obvious.
(II)p ) (I). Since kFtk1 · kFtkp, (II)p implies that

lim inf
b!1

1

b

Z b

0
kFtk1 dt <1:(60)
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Thus, by Theorem 2 and Proposition 1, there exists a function g in L0(­; ¹) such
that Ft = bTtg ¡ g for all t 2 R. Then, using the inequality jg ± Ttj · jFtj+ jgj on
­, we see from (60), together with the pointwise ergodic theorem for the flow fTtg
and Fatou’s lemma, that

lim
b!1

1

b

Z b

0
jgj(Tt!) dt · lim inf

b!1
1

b

Z b

0
jFt(!)j dt+ jgj(!) <1(61)

for ¹-a.e. ! 2 ­. Hence

lim
b!1

1

b

Z b

0
Ft(!) dt = lim

b!1
1

b

Z b

0
g(Tt!) dt¡ g(!)(62)

for ¹-a.e ! 2 ­. Let G denote the almost everywhere limit function on ­ defined
by

G(!) = lim
b!1

1

b

Z b

0
g(Tt!) dt (! 2 ­):

Then, clearly, it is invariant with respect to the flow fTtg, and so if f denotes the
almost everywhere limit function on ­ defined by

f(!) = lim
b!1

¡1

b

Z b

0
Ft(!) dt (! 2 ­);(63)

then bTtf ¡ f = bTtg ¡ g = Ft for all t 2 R. Furthermore, by (II)p and Fatou’s
lemma,

kfkp · lim inf
b!1

°°°°
1

b

Z b

0
Ft(!) dt

°°°°
Lp(­;¹)

· lim inf
b!1

1

b

Z b

0
kFtkp dt <1;(64)

so that f 2 Lp(­; ¹), and hence (I) follows.
Next, suppose fTtg is ergodic and (II)0p holds. We will prove that (I) follows.

To do this, we first notice that there exists a function g in L1(­; ¹) such that
Ft = bTtg¡ g for all t 2 R (cf. the condition (II)0 of Theorem 2, with p = 1). Here,
modifying the set A slightly, if necessary, we may assume without loss of generality
that ÂA ¢ g 2 Lp(­; ¹). Then, since ÂA ¢ (g ± Tt) = ÂA ¢ (Ft + g), it follows that

1

b

Z b

0
kÂA ¢ Ftkp dt+ kÂA ¢ gkp ¸

1

b

Z b

0
kÂA ¢ (g ± Tt)kp dt

=
1

b

Z b

0
k(ÂA ± T¡t) ¢ gkp dt ¸

°°°°
1

b

Z b

0
ÂA(T¡t!) ¢ g(!) dt

°°°°
Lp(­;¹)

:

(65)
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Here if we set, for b > 0,

°b(!) = inf
a¸b

1

a

Z a

0
ÂA(T¡t!) dt (! 2 ­);(65)

then, by the pointwise ergodic theorem for the flow fTtg and the ergodicity of fTtg,
we see that

0 · °b(!) " ¹(A) > 0 for ¹-a.e. ! 2 ­ as b!1:

Thus, by Lebesgue’s convergence theorem,

(67) 1 > lim inf
b!1

1

b

Z b

0
kÂA ¢ Ftkp dt+ kÂA ¢ gkp ¸ lim

b!1
k°b ¢ gkp = ¹(A)kgkp,

whence g 2 Lp(­; ¹), and (I) follows.
This completes the proof of Theorem 3.

Remark 3. If 1 · p <1, then, by the inequality ap ¸ a for a ¸ 1, it is clear
that

lim inf
b!1

1

b

Z b

0
kFtkpp dt <1 implies lim inf

b!1
1

b

Z b

0
kFtkp dt <1;

Theorems 2 and 3 show, on the other hand, that the converse implication is also
true.

4. ERGODIC PROPERTIES OF fFtg IN Lp(­; ¹), WITH 1 · p <1

First of all we prove the following lemma, which is stated in a more general
setting than needed.

Lemma 1. Let fFtg be an additive process (with respect to fTtg). If fFtg ½
Lr(­; ¹); where 0 < r · 1; then we have

M(r) := sup fkFtkr : 0 · t · 1g <1:(68)

Proof. If 0 < r < 1, then, by Fubini’s theorem, the function

Ár(t) =

Z

­
jFtjr d¹ (t 2 R)(69)
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is Lebesgue measurable on R, and since fTtg is a measure preserving flow, it
follows that

0 · Ár(t+ s)=

Z

­
jFt + Fs ± Ttjr d¹ ·

Z

­
(jFtjr + jFs ± Ttjr) d¹

= Ár(t) + Ár(s) <1

for t; s 2 R. Thus, by Theorem 7.4.1 of [9], Ár is bounded on the interval [0; 1].
This proves (68), when 0 < r < 1. A similar argument is sufficient to prove
(68), when 1 · r < 1. Hence we omit the details. If r = 1, then, since
kFtk1 = limr!1 kFtkr, the function

Á1(t) = kFtk1 (t 2 R)(70)

is also Lebesgue measurable on R, and satisfies

0 · Á1(t+ s) · Á1(t) + Á1(s) <1 for t; s 2 R:

Thus, as before, we have (68) for r = 1, and this completes the proof.

From now on, we assume that fFtg ½ Lp(­; ¹), where 1 · p <1, unless the
contrary is explained explicitly. Since the function (!; t) 7! Ft(!) on ­ £ R is
measurable with respect to the product ¾-field A­B(R) (cf. (13)), it then follows
from Lemma III.11.16 of [6] that the mapping t 7! Ft becomes a strongly measurable
function from R to Lp(­; ¹), so that it is Bochner integrable over every bounded
interval, by Lemma 1. Thus, using the additivity of the process fFtg with respect
to the flow fTtg, we can deduce, through a standard calculation, the fundamental
relation

Ft = (I ¡ bTt)
Z 1

0
Fs ds+

Z t

0

bTsF1 ds for all t 2 R;(71)

where
R t
0
bTsF1 ds := ¡

R 0
t
bTsF1 ds if t < 0.

By the pointwise and mean ergodic theorems for the measure preserving flow
fTtg, we then see that the limit

f1(!) = lim
t!1

1

t

Z t

0
F1(Ts!) ds(72)

exists for ¹-a.e. ! 2 ­, the limit function f1 is a function in Lp(­; ¹) such that

lim
t!1

°°°°
1

t

Z t

0

bTsF1 ds¡ f1
°°°°
p

= 0;(73)
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and f1 can be written as f1 = EfF1 j(­; I; ¹)g.
Let bAp denote the infinitesimal generator of the one-parameter group f bTt : t 2

Rg in Lp(­; ¹). Thus, if f 2 D( bAp), then

bApf = strong- lim
t!0

bTtf ¡ f
t

(in Lp(­; ¹));(74)

and the domain D( bAp) of bAp is the set of all f in Lp(­; ¹) for which the limit of

the right-hand side of (74) exists in Lp(­; ¹). We denote by R( bAp) and R( bAp)
the range of bAp and the closure of the range of bAp in Lp(­; ¹), respectively. The
following are known results from semigroup theory and mean ergodic theory (cf.
e.g. Chapter VIII of [6]):

(i) If f and g are functions in Lp(­; ¹) such that

lim inf
t!0+0

°°°°°
bTtg ¡ g
t

¡ f
°°°°°
p

= 0;

then f = bApg.

(ii) f = bApg if and only if
R t
0
bTsf ds = bTtg ¡ g in Lp(­; ¹), for all t > 0.

(iii) The set f bTtf ¡ f : f 2 Lp(­; ¹); t > 0g is a dense subset of R( bAp).

(iv) Eff j(­;I; ¹)g = 0 in Lp(­; ¹) if and only if f 2 R( bAp).
It is also known (see [15]) that

(v) R( bAp) = R( bAp) is equivalent to the validity of the uniform mean ergodic
theorem for f bTtg in Lp(­; ¹), i.e.,

lim
t!1

°°°°Ef¢j(­;I; ¹)g ¡ 1

t

Z t

0

bTs(¢)ds
°°°° = 0;(75)

where k k denotes the operator norm in Lp(­; ¹).
From these results, together with Theorem 3 in Section 3 and the fundamental

relation (71), we can obtain immediately the next theorem; we may omit the details.

Theorem 4. Let fFtg be an additive process (with respect to fTtg). Assume
that fFtg ½ Lp(­; ¹); where 1 · p <1. Then :

(I) F1 2 R( bAp) is equivalent to the existence of a function f in Lp(­; ¹)

such that Ft = bTtf ¡ f for all t 2 R (which is also equivalent to
lim inft!1 (1=t)

R t
0 kFskp ds <1).
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(II) F1 2 R( bAp) n R( bAp) is equivalent to

lim
t!1

1

t

Z t

0
kFskp ds = 1 and lim

t!1
1

t
kFtkp = 0:(76)

(III) F1 62 R( bAp) is equivalent to

lim
t!1

1

t
kFtkp = kEfF1 j(­;I; ¹)gkp > 0:(77)

(IV)
R 1
0 Fs ds 2 D( bAp) is equivalent to the existence of a function f in Lp(­; ¹)

such that Ft =
R t
0
bTsf ds for all t 2 R; which is also equivalent to the

existence of a function f in Lp(­; ¹) such that

lim inf
t!0+0

°°°°
1

t
Ft ¡ f

°°°°
p

= 0:(78)

Corollary (cf. [13]). Let f 2 Lp(­; ¹); where 1 · p <1. Then f 2 R( bAp)
is equivalent to

lim inf
t!1

1

t

Z t

0

°°°°
Z s

0

bTuf du
°°°°
p

ds <1:(79)

In particular; if fTtg is assumed to be ergodic; then f 2 R( bAp) is equivalent to
the existence of a set A in A; with ¹(A) > 0; such that

lim inf
t!1

1

t

Z t

0

°°°°ÂA ¢
µZ s

0

bTuf du
¶°°°°

p

ds <1:(80)

Remark 4. Let fFtg be an additive process (with respect to fTtg). Assume that
fFtg ½ Lp(­; ¹), where 1 · p · 1, and that F1 = bT1g¡g for some g 2 Lp(­; ¹).
Then there exists a function f in Lp(­; ¹) such that Ft = bTtf ¡ f for all t 2 R.
In fact, we have for an integer n ¸ 0

Fn+s = Fn + bTnFs =
³
bTng ¡ g

´
+ bTnFs;

so that Lemma 1 implies that

sup
0·s·1

kFn+skp · 2kgkp + sup
0·s·1

kFskp · 2kgkp +M(p) <1;
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whence Theorem 3 can be applied to obtain the desired conclusion. (Incidentally,
we remark that (i) if fFtg ½ L0(­; ¹) and F1 = bT1g ¡ g for some g 2 L0(­; ¹),
then fFtg has the form Ft = bTtf ¡ f (t 2 R) for some f 2 L0(­; ¹) (cf.
Proposition 1); (ii) if fFtg ½ Lr(­; ¹), where 0 < r < 1, and F1 = bT1g ¡ g for
some g 2 Lr(­; ¹), then the skew-product flow f#tg admits a ¹R-equivalent finite
invariant measure º = P d¹R such that 0 < P 2 L1+(r=2)(­; ¹R), thus fFtg has

the form Ft = bTtf ¡ f (t 2 R) for some f 2 L0(­; ¹) with f jAn 2 L1+r(An; ¹)
for every n ¸ 1, where fAn : n ¸ 1g is some countable decomposition of ­ such
that An 2 I for every n ¸ 1 (cf. Theorems 2 and 1).)

If fFtg is an additive process in Lp(­; ¹), with 1 · p <1, then we have

lim
t!1

°°°°
1

t
Ft ¡ f1

°°°°
p

= 0;(81)

by (71) and (73). But we cannot expect in general the following pointwise conver-
gence result (cf. the example below):

q- lim
t!1

1

t
Ft(!) = f1(!) for ¹-a.e. ! 2 ­:(82)

Example. (e) We give a simple example of an ergodic measure preserving
flow fTtg and an additive process fFtg ½

T
1·p<1 Lp(­; ¹) such that the limit

q-limt!1 t¡1Ft(!) fails to exist for ¹-a.e. ! 2 ­. For this purpose, let (­;A; ¹)
and fTtg be the same as in Example (c). Take a nonnegative increasing continuous
function f on [0; 1) such that limx!1¡0 f(x) = 1, and also such that f 2
Lp([0; 1)) for all p with 1 · p < 1. Then, define an additive process fFtg ½T

1·p<1 Lp([0; 1)) by Ft = f ± Tt ¡ f for t 2 R. It is clear that for every
x 2 [0; 1) = ­

0 = q- lim inf
t!1

1

t
Ft(x) < q- lim sup

t!1

1

t
Ft(x) = 1:

By the above example, studying the a.e. convergence of the averages (1=t)Ft as
t ! 1 (or t ! 0 + 0) becomes interesting. We will examine in the rest this a.e.
convergence problem.

(A) First, it follows from Kingman [10] (see also [3]) that in order to obtain
(82) it suffices to assume the following condition:

The function

G](!) = sup fjFt(!)¡ Fs(!)j : t; s 2 Q; 0 · t < s · 1g (! 2 ­)(83)

belongs to L1(­; ¹).
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The process fFtg ½ Lp(­; ¹), where 1 · p · 1, is called linearly bounded
[resp. bounded] in Lp(­; ¹) if

sup
t>0

1

t
kFtkp <1

£
resp: sup

t>0
kFtkp <1

¤
:

It is immediate that the linear boundedness of fFtg in Lp(­; ¹), where 1 < p · 1,
implies the linear boundedness of the process in L1(­; ¹), and the latter condition
implies G] 2 L1(­; ¹).

Here it is interesting to note that the condition G] 2 L1(­; ¹) need not imply
the a.e. convergence of (1=t)Ft as t! 0 + 0 (through the set Q). To see this, we
give the following

Example. (f) Let (­;A; ¹) and fTtg be the same as in Example (c). Take a
real-valued continuous function f on [0; 1) = ­ such that for every x 2 [0; 1) the
limit

lim
t!0+0

f(x+ t)¡ f(x)

t

fails to exist (existence of such a function is well-known), and let Ft = bTtf ¡ f
for t 2 R. Then, since kFtk1 · 2kfk1 <1, G] is a function in L1(­; ¹), and
hence G] 2 L1(­; ¹). On the other hand, the limit

q- lim
t!0+0

1

t
Ft(x)

µ
= q- lim

t!0+0

f(x+ t)¡ f(x)

t

¶

cannot exist for any x 2 [0; 1) = ­.

(B) It follows from [1] (see also [20]), together with the next lemma, that if
fFtg is linearly bounded in L1(­; ¹), then the limit

f0(!) = q- lim
t!0

1

t
Ft(!)(84)

exists for ¹-a.e. ! 2 ­.

Lemma 2. Let fFtg be an additive process in L0(­; ¹) (with respect to fTtg).
If the two local limits

f0+(!) = q- lim
t!0+0

1

t
Ft(!) and f0¡(!) = q- lim

t!0¡0

1

t
Ft(!)(85)

exist and are finite for ¹-a.e. ! 2 ­, then f0+ = f0¡ on ­.

Proof of Lemma 2. If t 6= 0, then we write

ft =
1

t
Ft:
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Suppose ftkg is a sequence of positive rational numbers satisfying limk!1 tk = 0.
Then, since

f0+(!) = lim
k!1

ftk(!) and f0¡(!) = lim
k!1

f¡tk(!)

for ¹-a.e. ! 2 ­ by hypothesis, it suffices to show that f¡tk converges to f0+ in
probability.

To do this, we first notice that the relation F¡tk + Ftk ± T¡tk = 0 implies

f¡tk = ftk ± T¡tk ;(86)

so that

f¡tk ¡ f0+ = fftk ± T¡tk ¡ ftkg+ fftk ¡ f0+g =: Ik + IIk ;(87)

and

lim
k!1

IIk(!) = lim
k!1

fftk(!)¡ f0+(!)g = 0(88)

for ¹-a.e. ! 2 ­.
To estimate Ik we use the relations

ftk ± T¡tk ¡ ftk = f(ftk ¡ f0+) + f0+g ± T¡tk ¡ f(ftk ¡ f0+) + f0+g
= fftk ¡ f0+g ± T¡tk ¡ fftk ¡ f0+g+ ff0+ ± T¡tk ¡ f0+g;

(89)

where (88) implies that

lim
k!1

fftk ¡ f0+g ± T¡tk = 0 (in probability),(90)

and (9) implies that

lim
k!1

ff0+ ± T¡tk ¡ f0+g = 0 (in probability):(91)

Hence, limk!1 Ik = limk!1fftk ± T¡tk ¡ ftkg = limk!1 fftk ¡ f0+g = 0
(in probability), and this completes the proof of Lemma 2.

Remark 5. Let 1 < p < 1, and suppose fFtg ½ Lp(­; ¹). Then, fFtg is
linearly bounded in Lp(­; ¹) if and only if there exists a function f in Lp(­; ¹) such
that Ft =

R t
0
bTsf ds for all t 2 R. In fact, if fFtg is linearly bounded in Lp(­; ¹),

then, since Lp(­; ¹) is a reflexive Banach space, we can choose a sequence ftkg
of positive real numbers, with limk!1 tk = 0, for which there exists a function
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f 2 Lp(­; ¹) such that f = weak- limk!1 (1=tk)Ftk in Lp(­; ¹). By using (71)
and (10), we then see that

f ¡ F1 = weak- lim
k!1

1

tk
(I ¡ bTtk)

Z 1

0
Fs ds;(92)

so that
Z t

0

bTsf ds =

Z t

0

bTs(f ¡ F1) ds+

Z t

0

bTsF1 ds

= (I ¡ bTt)
Z 1

0
Fs ds+

Z t

0

bTsF1 ds = Ft

(93)

for all t > 0 (and hence for all t 2 R). The converse implication is obvious. (This
can be shown in a more general setting. See e.g. Theorem 10 of [2].)

It is interesting to note that the condition 1 < p < 1 cannot be replaced with
p = 1, in Remark 5. To see this, we give the following

Example. (g) Let (­;A; ¹) and fTtg be the same as in Example (c). Take a
nonnegative function g in L1([0; 1)) with kgk1 = 1. If t ¸ 0, then define a function
Gt in L1([0; 1)) by

Gt(x) =

Z x+t

x
eg(u) du for x 2 [0; 1) = ­;

where eg denotes the periodic function on R, with period 1, such that eg = g on
[0; 1). Next, if t ¸ 0 and x 2 [0; 1), then let Ht(x) be the number of integers k
satisfying x · k + 2¡1 < x+ t. By putting

Ft = Gt ¡Ht if t ¸ 0; and Ft = ¡F¡t ± Tt if t < 0;

we obtain a bounded and linearly bounded additive process fFtg in L1([0; 1)).
This fFtg cannot have the form Ft =

R t
0
bTsf ds for any f 2 L1(­; ¹). In fact, by

Theorem 3, the process fFtg has the form Ft = bTth¡ h for some h 2 L1([0; 1)).
Hence (or directly), we find

Z

[0; 1)
Ft(x) dx = 0 for all t 2 R:

Thus, if fFtg had the form Ft =
R t
0
bTsf ds for some f 2 L1([0; 1)), then we must

have from (10) that
R
[0; 1) f(x) dx = 0. But, this is a contradiction, because

f(x) = q- lim
t!0

1

t
Ft(x) = g(x) for dx-a.e. x 2 [0; 1):
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(C) From now on we will restrict ourselves to considering the case where fFtg ½
L1(­; ¹). The process fFtg is called positive if Ft ¸ 0 for all t ¸ 0, and absolutely
continuous if there exists a function f in L1(­; ¹) such that Ft =

R t
0
bTsf ds for all

t 2 R. It is also called singular if there exists a positive additive process fGtg in
L1(­; ¹) with the properties that jFtj · Gt for all t ¸ 0 and that 0 · g 2 L1(­; ¹)
and

R t
0
bTsg ds · Gt for all t ¸ 0 imply g = 0. Assume fFtg is linearly bounded

in L1(­; ¹), and let f0 2 L1(­; ¹) be the local limit function in (84). Since
f0 2 L1(­; ¹) by Fatou’s lemma, we can define

Xt = Ft ¡
Z t

0

bTsf0 ds (t 2 R)(94)

to obtain a linearly bounded additive process fXtg in L1(­; ¹) such that

q- lim
t!0

1

t
Xt(!) = 0 for ¹-a.e. ! 2 ­:(95)

It is clear that Xt = 0 for all t 2 R if and only if fFtg is absolutely continuous;
and the former condition is equivalent to lim inft!0+0 kt¡1Xtk1 = 0 by the fun-
damental relation (71) and the statements (i) and (ii) over Theorem 4. Furthermore,
we notice the following

Remark 6. A necessary and sufficient condition for a linearly bounded additive
process fFtg in L1(­; ¹) to be singular is that f0 = 0. For this proof we use

Theorem (3.2) of [1], by which fFtg can be written as Ft = F
(1)
t ¡ F

(2)
t , where

fF (j)
t g, j = 1; 2, are two positive linearly bounded additive processes in L1(­; ¹).

Then, by putting

f
(j)
0 (!) = q- lim

t!0

1

t
F

(j)
t (!) (! 2 ­);(96)

and

H
(j)
t =

Z t

0

bTsf (j)
0 ds (t 2 R);(97)

we obtain two positive linearly bounded additive processes fH(j)
t g in L1(­; ¹).

Since f
(1)
0 (!) = lim infn!1 nF

(1)
n¡1(!) for ¹-a.e. ! 2 ­, if we put hn(!) =

infm¸n mF
(1)
m¡1(!) for n ¸ 1, then for every t ¸ 0

0 · H
(1)
t =

Z t

0

bTsf (1)
0 ds = lim

n!1

Z t

0

bTshn ds

· lim
n!1

Z t

0

bTs
³
nF

(1)
n¡1

´
ds = lim

n!1

Z t

0
n
³
F

(1)
s+n¡1 ¡ F (1)

s

´
ds

= lim
n!1

n

ÃZ t+n¡1

t
F (1)
s ds¡

Z n¡1

0
F (1)
s ds

!
= F

(1)
t ;
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where the last equality comes from the strong continuity of the function s 7! F
(1)
s

in L1(­; ¹), together with the relation
°°°°°n
Z n¡1

0
F (1)
s ds

°°°°°
1

· n

Z n¡1

0

°°°F (1)
s

°°°
1
ds! 0; as n!1:

Similarly, we find that 0 · H
(2)
t · F

(2)
t for t ¸ 0.

Now, assume the process fFtg is singular. By definition there exists a positive
additive process fGtg in L1(­; ¹), with jFtj · Gt for all t ¸ 0, such that 0 · g 2
L1(­; ¹) and

R t
0
bTsg ds · Gt for all t ¸ 0 imply g = 0. Then, from Akcoglu and

Krengel’s construction of the processes fF (j)
t g (j = 1; 2) it follows (cf. [1]) that

0 · F
(j)
t · Gt for all t > 0, whence

0 ·
Z t

0

bTsf (j)
0 ds = H

(j)
t · F

(j)
t · Gt for all t ¸ 0;

and this implies that f (j)
0 = 0, and hence f0 = f

(1)
0 ¡ f (2)

0 = 0.

Conversely, assume f0 = 0. Then, since f0 = f
(1)
0 ¡ f

(2)
0 = 0, it follow that

fH(1)
t g = fH(2)

t g, which implies that

Ft = (F
(1)
t ¡H(1)

t )¡ (F
(2
t ¡H(2)

t ) for all t 2 R

Furthermore, we see that f(F (1)
t ¡ H

(1)
t ) + (F

(2)
t ¡ H

(2)
t ) : t 2 Rg is a positive

(linearly bounded) additive process in L1(­; ¹) such that jFtj · (F
(1)
t ¡H

(1)
t ) +

(F
(2
t ¡H(2)

t ) for all t ¸ 0, and also such that

q- lim
t!0

1

t

n³
F

(1)
t ¡H(1)

t

´
(!) +

³
F

(2)
t ¡H(2)

t

´
(!)
o

=
³
f

(1)
0 (!)¡ f (1)

0 (!)
´

+
³
f

(2)
0 (!)¡ f (2)

0 (!)
´

= 0

for ¹-a.e. ! 2 ­. Consequently, we find that the process fFtg is singular.

REFERENCES

1. M. A. Akcoglu and U. Krengel, A differentiation theorem for additive processes,
Math. Z. 163 (1978), 199-210.

2. M. A. Akcoglu and U. Krengel, A differentiation theorem in Lp, Math. Z. 169
(1979), 31-40.

3. M. A. Akcoglu and U. Krengel, Ergodic theorems for superadditive processes, J.
Reine Angew. Math. 323 (1981), 53-67.



Continuous Parameter Additive Processes 389

4. A. I. Alonso, J. Hong and R. Obaya, Absolutely continuous dynamics and real
coboundary cocycles in Lp-spaces, 0 < p < 1, Studia Math. 138 (2000), 121-
134.

5. I. Assani, A note on the equation Y = (I ¡T )X in L1, Illinois J. Math. 43 (1999),
540-541.

6. N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Inter-
science, New York, 1958.

7. H. Helson, Note on additive cocycles, J. London Math. Soc. (2) 31 (1985), 473-477.

8. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Volume II, Springer-Verlag,
Berlin-Heidelberg-New York, 1970.

9. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math.
Soc., Providence, 1958.

10. J. F. C. Kingman, Subadditive ergodic theory, Ann. Probab. 1 (1973), 883-909.

11. U. Krengel, A necessary and sufficient condition for the validity of the local ergodic
theorem, in: Springer Lecture Notes in Math., no. 89, Springer-Verlag, Berlin-
Heidelberg-New York, 1969, pp. 170-177.

12. U. Krengel, Ergodic Theorems, Walter de Grayter, Berlin-New York, 1985.

13. U. Krengel and M. Lin, On the range of the generator of a Markovian semigroup,
Math. Z. 185 (1984), 553-565.

14. M. Lin, Semi-groups of Markov operators, Boll. Un. Mat. Ital. (4) 6 (1972), 20-44.

15. M. Lin, On the uniform ergodic theorem. II, Proc. Amer. Math. Soc. 46 (1974),
217-225.

16. M. Lin and R. Sine, Ergodic theory and the functional equation (I ¡ T )x = y, J.
Operator Theory 10 (1983), 153-166.

17. S. Novo and R. Obaya, An ergodic and topological approach to almost periodic
bidimensional linear systems, in: Contemp. Math., vol. 215, , Amer. Math. Soc.,
Providence, 1998, pp. 299-322.

18. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

19. R. Sato, On local properties of k-parameter semiflows of nonsingular point transfor-
mations, Acta Math. Hungar. 44 (1984), 243-247.

20. R. Sato, A general differentiation theorem for superadditive processes, Colloq. Math.
83 (2000), 125-136.

21. R. Sato, A remark on real coboundary cocycles in L1-space, Proc. Amer. Math.
Soc. 131 (2003), 231-233.

22. S.-Y. Shaw, On the range of a closed operator, J. Operator Theory 22 (1989), 157-
163.



390 Ryotaro Sato

Ryotaro Sato
Department of Mathematics, Okayama University
Okayama, 700-8530 Japan
E-mail: satoryot@math.okayama-u.ac.jp


