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AN ALGEBRAIC APPROACH TO THE BANACH-STONE THEOREM
FOR SEPARATING LINEAR BIJECTIONS

HwaLong Gau, Jyh-Shyang Jeang and Ngai-Ching Wong

Abstract. Let X be a compact Hausdorff space and C(X) the space of
continuous functions defined on X. There are three versions of the Banach-
Stone theorem. T hey assert that the Banach space geometry, the ring structure,
and the lattice structure of C'(X) determine the topological structure of X,
respectively. In particular, the lattice version states that every digjointness
preserving linear bijection T' from C'(X) onto C(Y") is aweghted compasition
operator T'f = h - f o ¢ which provides a homeomorphism ¢ from Y onto X.
In this note, we manage to use basically al gebraic argumentsto give thislattice
version a short new proof. In this way, all three versions of the Banach-Stone
theorem are unifiedin an algebraic framework such that different isomorphisms
preserve different ideal structures of C'(X).

Let X be a compact Hausdorff space and C'(X') the vector space of continuous
(real or complex) functionson X. It is acommon interes to see how the topological
dructure of X can berecovered from C(X). If welook at C(X) as aBanach space
then the dasscd Banach-Stone theorem states that whenever there is a surjective
linear isometry T' between C(X) and C'(Y") for some other compact Hausdorff space
Y, T induces a homeomorphism between X andY (seeeg. [3, p. 172]). Hereisa
sketch of theproof. The dud map T* of T' preserves extreme points of thedud ba s
which are exactly those linear functionals in the form of A\, for some unimodular
scdar A and point mass ¢, & some point = € X. Thus T*6, = h(y)d,(,) defines

©(y
ascdar-vaued function honY andamap ¢ : Y — X. In other words,

@) Tf(y) =My flely), VyeY,VfeC(X).

It is then aroutine work to verify that A is continuous and ¢ is a homeomorphism.
Operators in the form of (1) are called weighted composition operators.
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We are interested in the dgebrac character of the Banach-Stone Theorem. The
above argument merely shows that a surj ective isometry 7' between the rings C'(X)
and C(Y') of continuous functions preserves maximd ideds. In fact, dl maximd
ideals of C(X) are in the form of M, = {f € C(X) : f(x) = 0}. Thus
TM, = M, where z = ¢(y). Thisis, of course, a wel-known idea In another
gtuation, when 7' is aring isomorphism from C'(X) onto C(Y), T alo induces a
homeomorphism ¢ fromY onto X (see eg. [5, p. 57]). Inthis case, T preserves
all ideds of theringsand T'f = fo,Vf € C(X).

A (not necessarily continuous) linear bijection 7' : C(X) — C(Y) is sad to
be separating, or disjointness preserving, it T fT'g = 0 whenever fg = 0. If T'is
onto, then the inverse of 7" alo preserves disjointness (see eg. [1, Theorem 1] and
dso[2]). Inthis case, T' induces a homeomorphism between X and Y (see eg. [6,
4, 7]). Readers are referred to [2] for more information of disjointness preserving
operators

For each z in X, l&t

I, ={f € C(X): f vanishes in a neighborhood of x}.

Note that theided I, is nether closed, primenor maximd. But it is contained in a
unique maximd ided M,. Moreover, it is somehow ‘prime’ inthe sensetha f € I,
whenever fg =0 and g(x) # 0. In fact, |g(y)| > 0 for dl y in a neighborhood V/
of x and thus forces f vanishesin V. On the other hand, if I is any proper prime
ideal of C'(X) then I must contains a unique .. In fact,  isthe unique common
point in the kernds of all functionsin I. Let B, be the family of all prime ideds
which contains I,,. Then, M, is the union and I, is the intersection of all prime
ideals in B,. Note dso that |, x B consists of all proper prime ideds of C(X).

We do not give new reaults in this note. Instead, we demondrate with new
proofs that the above three Banach-Stone Theorems can be unified in an algebraic
stting. In fact, T' inherits dgebraic properties from C'(X) to C(Y) of different
drength in different cases. When T’ is a ring isomorphism, it preserves dl ideals
When T' is an isometry, it preserves maximd ideals namely, TM,, = M,. When T'
is separating, we will see that it preserves all thoseideds I,,; namey, 71, = I,,. As
consequences of these ided preserving properties 7' can be written as a weighted
compostion operator T'f = h- fopinall three cases. Here, ¢ : Y — X isalways
a homeomorphiam, but the property of the conti nuous weight function A differs. It
is the constent function h(y) = 1 if T isaring isomorphism. Itis unimodular, i.e,
|h(y)| = 1, if T is an isometry. And h is just non-vanishing when 7' is separating.
In this sense, these three Banach-Stone type theorems are unified.

We would like to thank K. I. Bedar for hdpful discussions. Some of the
new algebraic idea utilized in the following proofs originate in a series of dgebra
seminars co-organized by him.
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Lemma 1. Let T : C(X) — C(Y) be a separating linear bijection. Then
for each x in X there is a unique y in Y such that

Moreover; this defines a bijection  from'Y onto X by ¢(y) = «.

Proof. For eech z in X, denote by ker T'(I,;) the st () (T'f)~1(0). We first
fels
damtha ker T(1,) is non-empty. Suppose on contrary thet for each y in Y, there

were an f, in I, with T'f, (y) # 0. Thus, an open neighborhood U, of y exids
such that 7'f, is nonvanishing in U,. Since Y = U,cyU, and Y is compadt,
Y = Uy UUy, U --- UU,y, for some y1,y2,-- ,yn iINY. Let V be an open
neighborhood of « such that f, |y =0 forall i =1,2,--- ,n. Let g € C(X) such
that g(x) = 1 and g vanishesoutside V. Then fy, g =0, and thus T'f,,Tg = 0 since
T preserves digointness This forces Tg|y, = 0 for dl i = 1,2,- -+ ,n. Therefore,
Tg = 0 and hence g = 0 by the injectivity of 7', a contradiction! We thus prove
thet ker T'(1,;) # 0.

Let y € ker T'(1,). For eech f € I, we want to show that T'f € I,. If there
existsa g in C(X) such tha Tg(y) # 0 and fg = 0, then we are done by the
digointness preserving property of 7. Suppose there were no such g; tha is, for
awy g in C(X) vanishing outsde V = f~1(0), we have Tg(y) = 0. Lee W C V
be a compact neighborhood of = and k € C(X) such that k| = 1 and k vanishes
outside V. Then for any g in C(X), g = kg + (1 — k)g. Since (1 — k)| = 0,
(1—k)ge I,. ThisimpliessT((1 —k)g)(y) =0 asy € kerT(I,). On the other
hend, kg vanishes outsde V. Hence T'(kg)(y) = 0 by the above assumption. It
follows that Tg(y) = Tkg(y) +T'(1—k)g(y) =0 for all g in C(X). This conflicts
with the sujectivity of T. Therefore, T, C I,. Similarly, T-(1,) C I for
some z’ in X since T~! is dso separating. It follows that I, € T (I,) C I.
Consequently, z = 2’ and T'(I;) = I,. The bijectivity of p isdso cear now. m

Theorem 2. Two compact Hausdorff spaces X and Y are homeomorphic
whenever there is a separating linear bijection T from C(X) onto C(Y).

Proof. We show that the bijection ¢ given in Lemma 1 is a homeomorphism.
It suffices to verify the continuity of ¢ since Y is compact and X is Hausdorff.
Suppose on contrary that there exists anet {y, } in Y converging to y but ¢ (y») —
T # ¢(y). Let Uy and Uy, be digoint open neighborhoods of = and ¢ (y),
respectively. Now for any f in C(X) venishing outside U,,,), we shdl show that
Tf(y) =0. Infact, p(y) bdongs to U, for large X\. Since f|y, = 0 and U, is
dso a neighborhood of p(y»), we have f € I,,,). ByLemma 1, T f € I, andin
paticular T'f(yx) = 0 for large A. Thisimplies T'f (y) = 0 by the continuity of 7" f.
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Let k € C(X) such tha k|y = 1 and & venishes outsde U, where V' C U,
is a compact neighborhood of ¢(y). Then g = kg+ (1 — k)g for every g in C(X).
Since kg vanishes outside U, we have T(kg)(y) = 0. On the other hand, we
have (1 —k)g € I, since (1 —k)|y =0. By Lemma 1, T'((1 — k)g) € I, and
thus T'((1 —k)g)(y) = 0. It follows that T'g(y) = T'(kg)(y) +T((1 —k)g)(y) = 0.
This is a contradiction Snce 7' is onto. Hence ¢ is a homeomorphism.

Theorem 3. Let X andY be compact Hausdorff spaces. Then every separating
linear bijection T : C(X) — C(Y') is a weighted composition operator

Tfy)=hy)f(ely), VfeCX)VyeY.

Here ¢ is a homeomorphism from Y onto X and h is a nonvanishing continuous
scalar function on'Y. In particular, T is automatically continuous.

Proof. By Theorem 2, we have a homeomorphism ¢ from Y onto X such tha
T(I;) = I, where p(y) = z. We daim that T M, C M,. If this is true then
ker 6, C kerd, oT'. Consequently, there is a scalar h(y) suchthat 6, 0T = h(y)dy.
Equivalently, T'f (y) = h(y) f(¢(y)) for al fin C(X)andy inY. Sinceh =T1
and T is onto, h is continuous and non-vanishing.

To verify the daim, suppose on contrary f € M, but T'f(y) # 0. If « bdongs
to the interior of f=1(0), then f € I, and thus T'f(y) = 0. Therefore, we may
assume thereis anet {x»} in X converging to x and f(x)) iSnever zero. Let y)
inY such that ¢(yx) = z\. Clearly, y\ converges to y and we may assume there
isa constant € such that |T'f(yx)| >e>0foral \. Forn=1,2,..., s&

1 1
i=frexspts el o)

1 1
Wn:{zeX:% 1£(2)] zn—1}'

Then a leag one of theunionsV =2, V, and W = | J;2; W,, contains a subnet
of {z)}. Without loss of generdity, we assume that dl =) beongto V. Let V,, be
an open set containing V;, suchthat V;, NV,, = 0 if n # m. Let g, inC(X) be
of norm a most 1/2n such tha g, agrees with f on V,, and vanishes outside V};
for each n. Then gngm =0 fordl m #n. Let g = > 02, 2ng, € C(X). Note
that g agrees with 2n f on each V;,. Moreover, each ), beongs to a unique V;, and
n — oo as A — oco. Therefore, g — 2nf € I,,. ThisimpliesT(g — 2nf) € I,
and thus T'g(yx) = 2nT'f(yx) — oo as A — oo. But the limit should be T'g(y), a
contradiction. This completes the proof. [ ]
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