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ON HIGHER ORDER EIGENVALUES OF THE SPHERICAL
LAPLACIAN OPERATOR

Chung-Tsun Shieh

Abstract. In this paper, we use the boundary measurements of normalized
eigenfunctions to estimate the variation of the corresponding eigenvalues. With
this form, we can show that some eigenvalues, as functions of domain, possess
monotonicity as the domain varies according some constraints.

1. INTRODUCTION

The study of eigenvalues for Laplacian operator is a quite interested and classical
subject. Many mathematicians studied this problem using rearrangement methods,
variational principle and integral inequalities, but these techniques are not efficient
for the investigation for higher order eigenvalues. Instead of these techniques, we
use the technique of shape derivatives (please refer [3] for details) to study some
eigenvalue problems of spherical Laplacian operator. Let S2 denote the unit sphere
in R

3, and

X(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ), 0 ≤ φ ≤ π, 0 ≤ θ < 2π,

the Euler coordinate for S2 and

C(φ0) = {X(θ, φ)|0 ≤ φ ≤ φ0, 0 ≤ θ ≤ 2π},

for 0 < φ0 < π, a spherical cap. For 0 < φ0 < φ1, we denote the spherical band

B(φ0, φ1) = theclosureof{C(φ1) \ C(φ0)}.

We will concentrate on the study of the following eigenvalue value problem

(1.1)

{
�S2u + λu = 0 in Ω,

u|∂Ω = 0.
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where Ω = B(φ0, φ1). In particular, we want to investigate the behaviors of eigen-
values when the domain B(φ0, φ1) varies under some constraints.

Note that the Laplace operator ∆S2 on S2 can be written as

(1.2) ∆S2u (φ, θ) =
1

sinφ

[
∂

∂φ
(sin φuφ) +

∂

∂θ

(
(

uθ

sinφ

)]
.

For the case Ω = B(φ0, φ1), with the separation of variables, we know the eigen-
values {λn(B(φ0, φ1))}∞n=1 of (1.1) corresponding to Ω = B(φ0, φ1) consists of
all the union ∪∞

k=0{λk
n(φ0, φ1)}∞n=1 of the eigenvalues

(1.3) v′′(φ) + cotφv′(φ) +
(

λ − k2

sin2 φ

)
v(φ) = 0, v(φ0) = v(φ1) = 0.

In [2], the author showed that

Theorem 1.1. The second eigenvalue λ2(B(φ0, φ1)) of (1.1) corresponding to
Ω = B(φ0, φ1) is equal to the first eigenvalue λ 1

1(φ0, φ1) of (1.3) corresponding
to k = 1.

This theorem implies that

Corollary 1.2. The second eigenvalue λ2(B(φ0, φ1)) of (1.1) is equal to the
first eigenvalue of the following boundary value problem

(1.4)

{ �S2 + λ u = 0 in BH (φ0, φ1)

u = 0 on ∂BH(φ0, φ1)

where BH (φ0, φ1) = {X(θ, φ)|0 ≤ θ ≤ π, φ0 ≤ φ ≤ φ1}.

Moreover, the author also proved

Theorem 1.3. For 0 < A < 1, let B0 be the spherical band symmetric to the
equator and with area 2πA. Then,for a spherical bands B with given area 2πA,
we have λ2(B0) ≥ λ2(B). “=“ holds if and only if B = B0.

However, the restriction “0 < A < 1“ is added because of the technical rea-
sons, which is not natural. In section 2, we will generalize the theorem for higher
order eigenvalues under some different constraints, in the case, we can drop the
area restriction and obtain a monotonicity property of the second eigenvalue ( as a
function of domains), moreover, we provide an evidence to show that the restriction
0 < A < 1 in theorem 1.3 can be also dropped and some improvements can be
made.
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2. EXTREMAL PROBLEMS FOR EIGENVALUES AMONG SPHERICAL BANDS

In this section, we will use the technique of shape derivatives to study the
extremal problems of eigenvalues among spherical bands with fixed area. For 0 <
A < 2, 0 < ξ < f(ξ) = cos−1(cos ξ − A) < π, denote the band B(ξ, f(ξ))
by B(ξ; A), then B(ξ; A) has area 2πA. In [1], the authors used the variational
principle and some integral inequalities to show that

Theorem 2.1. (Theorem 1, [1]) For 0 < A < 2, let Ω = B(ξ; A) in (??)
and λ1(ξ), defined on (0, π− cos−1(1−A)), the corresponding first eigenvalue on
B(ξ, f(ξ)). Then λ1(ξ) is increasing on (0, cos−1(A/2)) and attains its maximum
when B(ξ; A) is symmetric to the equator, i.e., ξ = cos−1(A/2).

Now we are going to reprove this fact as an example to show how the technique
of shape derivatives works for our problems. To prove this we need the following
lemma and corollaries.

Lemma 2.2. Let p(x) be a continuous function defined on [−1, 1] and p(x) ≥
p(−x) for −1 < x < 0. Denote y(x) a nontrivial and nonnegative solution ( if
such a solution exists) of the differential equation

(2.1) y
′′
(x) + p(x)y(x) = 0, y(−1) = y(1) = 0.

Then |y′
(1)|2 ≤ |y′

(−1)|2.

Proof. Denote w(x) = y(−x), then we have

(2.2)

{
y
′′
(x) + p(x)y(x) = 0,

w
′′
(x) + p(−x)w(x) = 0,

for −1 < x < 1. From (2.2), we have

w
′
y − wy

′ |x−1 =
∫ x

−1
[p(t)− p(−t)]y(t)w(t) dt,

for −1 < x < 0, i.e.,

[w
′
(x)y(x)− w(x)y

′
(x)] =

∫ x

−1
[p(t) − p(−t)]y(t)w(t) dt ≥ 0,

hence

w
′
(x)y(x)− w(x)y

′
(x)

y2(x)
=
(

w(x)
y(x)

)′

≥ 0, for − 1 < x ≤ x0 → 0.
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This implies limx→−1
w(x)
y(x) = w

′
(−1)

y
′
(−1)

≤ w(0)
y(0) ≤ 1, therefore

|w′
(−1)|2 = |y′

(1)|2 ≤ |y′
(−1)|2.

Note the equality holds only if p(x) ≡ p(−x).

Lemma 2.3. Suppose that 0 < φ0 < φ < φ1 < π. Then the following
eigenvalue problem

(2.3)


 (sinφy

′
(φ))

′
+
(

λ sinφ − k2

sinφ

)
y(φ) = 0, φ0 < φ < φ1,

y(φ0) = y(φ1) = 0,

is equivalent to the following eigenvalue problem

(2.4)




u
′′
(φ) +

(
λ +

1
4
−

k2 − 1
4

sin2(φ)

)
u(φ) = 0,

u(φ0) = u(φ1) = 0,

where u(φ) = (sin φ)1/2y(φ).

Proof. Apply the Liouville transformation on (2.3), we can directly derive (2.4),
and this can be done easily by Mathematica or Maple, we omit the details here.

Corollary 2.4. 0 < φ0 < φ1 ≤ π−φ0. Let y1(x) denote the first eigenfunction
corresponding to the first eigenvalue λ 1 of

(2.5)




(sin(φ)y
′
(φ))

′
+ λ sin(φ)y(φ) = 0, φ0 < φ < φ1

y(φ0) = y(φ1) = 0.

Then (sinφ0)(y
′
1(φ0))2 ≥ sin(φ1)(y

′
1(φ1))2, equality holds if and only if φ 1 =

π − φ0.

Proof. Let z(φ) = (sin(φ))1/2y1(φ), then apply corollary 2.3, (2.5) can be
transformed to

(2.6)


 z

′′
+ (λ1 +

1
2

+
1
4
(cot(φ))2)z(φ) = 0, φ0 < φ < φ1

z(φ0) = z(φ1) = 0.

Since φ0 < π−φ1, we have λ+ 1
2 + 1

4(cot(φ))2 > λ+ 1
2 + 1

4 (cot(φ1+φ0−φ))2, for
φ0 ≤ φ ≤ (φ0 +φ1)/2. Take z(φ) the first eigenfunction of (2.6) and apply Lemma
(2.2), we have (z

′
φ0)2 ≥ (z

′
(φ1))2, i.e., (sinφ0)(y

′
1(φ0))2 ≥ sin(φ1)(y

′
1(φ1))2.
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Corollary 2.5. 0 < φ0 < φ1 < π − φ0, k ≥ 1. Let y1(x) denote the first
eigenfunction corresponding to the first eigenvalue λ 1of

(2.7)


 (sin(φ)y

′
(φ))

′
+
(

λ sin(φ) − k2

sinφ

)
y(φ) = 0, φ0 < φ < φ1

y(φ0) = y(φ1) = 0.

Then (sinφ0)(y
′
1(φ0))2 ≤ sin(φ1)(y

′
1(φ1))2. Equality holds if and only if φ 1 =

π − φ0.

Proof. The situation of this corollary is different from Corollary 2.4, but the
proof is the same. Take u(φ) = sin1/2 φy1(φ), then, by Lemma 2.3, we have

(2.6)




u
′′
(φ) +

(
λ1 +

1
4
−

k2 − 1
4

sin2(φ)

)
u(φ) = 0,

u(φ0) = u(φ1) = 0.

Note that

λ1 +
1
4
−

k2 − 1
4

sin2(φ)
≤ λ1 +

1
4
−

k2 − 1
4

sin2(φ1 − φ)

for φ0 ≤ φ ≤ φ1. Hence we can apply Lemma 2.2 to conclude our assertion.

Alternative Proof of Theorem 2.1. For 0 < φ0 < φ1 < π, let w1(θ, φ; s) denote
the positive normalized eigenfunction (actually w1(θ, φ; s) = w1(φ) is independent
of θ ) corresponding to the first eigenvalue ν1(s) of

(2.8)

{
�S2w1 + ν1(s)w = 0, in B(φ0 + s, φ1 + s),

w |∂B(φ0+s,φ1+s) = 0,

for 0 < s < π − φ1. Hence

(2.9)

{
�S2w1 + ν1w = 0, in B(φ0 + s, φ1 + s),

w1 |∂B(φ0+s,φ1+s) = 0,

If we differentiate (2.9) and the boundary conditions w1(θ, φi + s, s) = 0, for
i = 1 and 2, with respect to s, we obtain

(2.10)




�S2w1s + ν1(s)w1s = −ν̇(s) w1, in B(φ0 + s, φ1 + s),

−w1n + w1s = 0, for φ = φ0 + s,

w1n + w1s = 0, for φ = φ1 + s,
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Combine (2.9), (2.12) and (2.10), we have

(2.11)

ν̇1(s) =
∫∫

B(φ0+s,φ1+s)
[w1�w1s − w1s�w1] dA

=
∫

∂B(φ0+s,φ1+s)
−w1s

∂w1

∂n
ds

=
∫

∂C(φ1+s)

(
∂w1

∂n

)2

ds −
∫

∂C(φ0+s)

(
∂w1

∂n

)2

ds,

= π sin(φ0+s)(w1φ(φ0+s))2−π sin(φ1+s)(w1φ(φ1+s))2,

since

(2.12)




w1φ = −∂w1

∂n
for φ = φ0 + s,

w1φ =
∂w1

∂n
for φ = φ1 + s.

Note the w1(φ) is also the first eigenfunction of

(2.13)




(sin(φ)y
′
(φ))

′
+ λ sin(φ)y(φ) = 0, φ0 < φ < φ1,

y(φ0) = y(φ1) = 0.

By Corollary 2.4, ν1(s) is increasing. Now take φ0 = ξ and φ1 = f(ξ). We only
treat the case 0 < ξ < cos−1(A/2) since for ξ > cos−1(A/2) we can apply the
property of symmetry. For

0 < ξ < f(ξ) + s < cos−1(A/2),

we can easily see that f(ξ + s) < f(ξ) + s, this means

B(ξ + s; A) ⊂ B(ξ + s, f(ξ) + s).

Hence

λ1(ξ) = ν1(0) < ν1(s) < λ1(ξ + s), if f(ξ) + s < cos−1(A/2).

This completes the proof.

Remark. The equation (2.11) can be also derived directly from (2.13).
With the same arguments above, we may easily generalize Theorem 3.1 of [2]

for higher eigenvalues as follows

Theorem 2.6. 0 < φ0 < φ1 < π − φ0. Let B(s) = B(φ0 + s, φ1 + s)
for 0 ≤ s ≤ π − φ1, where B(a, b) is as that defined in section 1. Let ν2(s)
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denote the second eigenvalue of (1.1) with Ω = B(s). Then ν2(s) is decreasing in
(0, (φ1−φ0)/2)) and attains its minimum when the band B(s) is symmetric to the
equator.

Proof. By Corollary 1.2, we know that ν2(s) is equal to the first eigenvalue of

(2.14)

{
�S2z + µz = 0, in BH(s),

z|∂BH(s) = 0,

where BH(s) = BH(φ0 + s, φ1 + s) which is defined in Section 1. What remains
is to repeat the arguments in the alternative proof for Theorem 2.1. Let z1(θ, φ; s)
denote the positive normalized eigenfunction corresponding to the first eigenvalues
µ1(s) of

(2.15)

{
�S2z1 + µ1z1 = 0, in BH(s),

z1|∂BH(s) = 0.

Denote
T0 = {X(θ, φ0 + s)|0 ≤ θ ≤ π}

and
T1 = {X(θ, φ1 + s)|0 ≤ θ ≤ π},

then

(2.16)

{
z1φ = −z1n on T0,

z1φ = z1n on T1.

Moreover if we differentiate (2.15), we obtain

(2.17)




�S2z1s + µ1(s)z1s = −µ̇1(s)z1s,

z1s = z1n on T0,

z1s = −z1n on T1,

z1s = 0 on S0 ∪ S1,

where
S0 = {X(0, φ)|φ0 + s ≤ φ ≤ φ1 + s}

and
S1 = {X(π, φ)|φ0 + s ≤ φ ≤ φ1 + s}.

Combine (2.15) and (2.17), we have, as that in (2.11),
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(2.18)

ν̇1(s) =
∫∫

BH(s)
[z1�z1s − z1s�z1] dA

=
∫
T0

(
∂z1

∂n
)2 ds −

∫
T1

(
∂z1

∂n
)2 ds,

=
π

2
sin(φ0 + s)(y1φ(φ0+s))2−π

2
sin(φ1+s)(y1φ(φ1+s))2,

where we can take z1(θ, φ) = C sin θy1(φ) and y1(φ) is the normalized first eigen-
function of

(2.19)


 (sinφy

′
(φ))

′
+
(

λ sinφ− 1
sinφ

)
y(φ)=0, φ ∈ (φ0+s, φ1+s),

y(φ0 + s) = y(φ1 + s) = 0.

Then apply Corollary 2.5, we have ν̇2(s) = µ̇1(s) < 0, for 0 < s < (φ1 − φ0)/2.

This shows that ν2(s) is decreasing in (0, φ1−φ0
2 ), and by the symmetry, ν2(s) attains

minimum when the B(s) is symmetric about the equator.
Since we know the eigenvalues {λn(B(φ0, φ1))}∞n=1 of (1.1) with Ω = B(φ0, φ1)

consist of the eigenvalues ∪∞
k=0{λk

n(φ0, φ1)}∞n=1 of (1.3), we can easily conclude
that

Corollary 2.7. 0 < φ0 < φ1 < π. Let νn(s) be an eigenvalue of (1.1)
with Ω = B(s) = B(φ0 + s, φ1 + s), which is of the form λk

1(φ0 + s, φ1 + s),
k = 1, 2, 3, .... Then νn(s) is decreasing in 0 < s ≤ (φ1 − φ0)/2 and attains its
minimum when B(s) is symmetric about the equator.

In the rest of this section, we want to investigate the behavior of higher order
eigenvalues of the spherical bands with fixed area. This problems is more sophis-
ticated. We use the same techniques as above. For 0 < A < 2 and 0 < ξ, let f(ξ)
and B(ξ; A) be as that defined in the beginning of this section. Denote λn(ξ) be
the nth eigenvalue of (1.1) with Ω = B(ξ; A). Note that if λn(ξ) is of the type
λk

1(ξ, f(ξ)), Then λn(ξ) is the first eigenvalue λk
1(ξ, f(ξ)) of the boundary value

problem

(2.20)


 (sinφy

′
(φ))

′
+
(

λ sinφ − k2

sinφ

)
y(φ) = 0, ξ < φ < f(ξ),

y(ξ) = y(f(ξ)) = 0,

k = 1, 2, 3, 4, . . . . For simplicity, we treat the case λ2(ξ) = λ1
1(ξ, f(ξ)) first, for

k ≥ 2, the argument is similar.
Immediately, we have

Lemma 2.8. Let λ2(ξ) be defined as above. Then

(2.21) λ̇2(ξ) = sin ξ[(y)
′
(ξ; ξ))2 − (y

′
(f(ξ); ξ))2],
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where y(φ; ξ) is the normalized positive eigenfunction of (2.20) corresponding to
λ1

1(ξ, f(ξ)), i.e.
∫ f(ξ)
ξ sin φy2(φ; ξ) dφ = 1.

Proof. As we mentioned above that λ2(ξ) = λ1
1(ξ, f(ξ)). Differentiate (2.20)

with k=1, we have

(2.22)




(sinφẏ
′
(φ; ξ))

′
+
(

λ2 sinφ − 1
sinφ

)
ẏ(φ; ξ) = −λ̇ sinφy(φ; ξ),

y
′
(ξ, ξ) + ẏ(ξ, ξ) = 0,

y
′
(f(ξ); ξ)f

′
(ξ) + ẏ(f(ξ); ξ) = 0,

since y(ξ; ξ) = y(f(ξ); ξ) = 0. Also note that cos(ξ) − cos(f(ξ)) = A, Hence

(2.23) f
′
(ξ) = sin ξ/ sin(f(ξ)).

Combine (2.20), (2.22) and (2.23), we obtain

(2.24)
λ̇2(ξ) = sin(f(ξ))y

′
(f(ξ); ξ)ẏ((f(ξ); ξ)− sin ξy

′
(ξ; ξ)ẏ(ξ; ξ)

= sin ξ[(y
′
(ξ, ξ))2 − (y

′
(f(ξ); ξ))2]

Moreover, using the same arguments, we have

Corollary 2.9. Suppose that λn(ξ) is of the type λk
1(ξ, f(ξ)), k ≥ 1, we write

λn(ξ) = λk
1(ξ, f(ξ)). Let yk(φ, ξ) be the normalized first eigenfunction of (2.20)

corresponding to λk
1(ξ, f(ξ)). Then

(2.25) λ̇n(ξ) = sin ξ[(y
′
k(ξ; ξ))

2 − (y
′
k(f(ξ); ξ))2].

The author used to study the behaviors of eigenvalues by variational principle
and integral inequalities, but via this approach, the investigation of the higher-order
eigenvalues will become quite complicated. Instead of variational principle, we
use the boundary measurements of the normalized eigenfunction to represent the
derivative of eigenvalue and this is the main theme of this paper. These method can
be also applied on the same problems on surfaces of revolution.

For one who concerns the behavior of eigenvalues, this method is quite efficient
for numerical estimations. The author got many numerical results ( One can just use
shooting method to estimate (y

′
k(ξ; ξ))

2 − (y
′
k(f(ξ); ξ))2) to support the following

conjecture

Conjecture 1. 0 < φ0 < φ1 < π. Let yk(φ; λ) denote the solution of the initial
value problem

(2.26)


 (sinφy′(φ))′ +

(
λ sinφ − k2

sinφ

)
y(φ) = 0, φ0 < φ < φ1,

y(φ0) = 0, y′(φ0) = 1,
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where λ is a positive parameter which is large enough such that y k(φ) has zeros
in (φ0, π). Denote φ1 be the first zero of yk in (φ0, π). Then (y′k(φ1; λ))2 > 1 if
φ1 > π − φ0 and (y′

k(φ1; λ))2 < 1 if φ1 < π − φ0.

Once this conjectured can be proved, we can obtain, by Corollary (2.9), that

Conjecture 2. 0 < A < 2. B(ξ; A) is as that defined in the beginning of this
section for 0 < ξ < π−cos−1(1−A). Let λn(ξ) denote the nth Dirichlet eigenvalue
which is of the type λk

1(ξ, f(ξ)). Then λn(ξ) is increasing in (0, cos−1(A/2) and
attains its maximum at cos−1(A/2).
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