TAIWANESE JOURNAL OF MATHEMATICS
Vol. 5, No. 2, pp. 331-352, June 2001
This paper is available online at http://www.math.nthu.edu.tw/tjm/

q-CONCAVITY AND q-ORLICZ PROPERTY ON SYMMETRIC SEQUENCE SPACES

Oscar Blasco and Teresa Signes

Abstract

We give a general method for constructing symmetric sequence spaces that for $1<q<2$ satisfy a lower q-estimate but fail to be q-concave and, for $2 \leq q<\infty$, have the q-Orlicz property but fail to be q-concave. In particular, this gives examples of spaces with the 2-Orlicz property but without cotype 2.

1. Introduction

Let $1 \leq q<\infty$. A Banach lattice X is said to be q-concave if there exists a constant $C \geq 0$ such that

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{X}^{q}\right)^{\frac{1}{q}} \leq C\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{q}\right)^{\frac{1}{q}}\right\|_{X}
$$

for every choice of elements x_{1}, \ldots, x_{n} in X.
A Banach lattice X is said to satisfy a lower q-estimate if there exists a constant $C \geq 0$ so that, for every choice of elements x_{1}, \ldots, x_{n} in X, we have

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{X}^{q}\right)^{\frac{1}{q}} \leq C\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|\right)\right\|_{X}
$$

Obviously q-concavity implies lower q-estimate and both notions are the same when $q=1$. On the other hand, there are Banach lattices that satisfy a lower q-estimate but fail to be q-concave (see [1, Prop. 3.1], [4, Ex. 1.f. 19 and 1.f.20]).

[^0]Two related concepts from the theory of Banach spaces are the following:
A Banach space X is said to have cotype $q, 2 \leq q<\infty$, if there exists a constant $C \geq 0$ so that

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{X}^{q}\right)^{\frac{1}{q}} \leq C \int_{0}^{1}\left\|\sum_{k=1}^{n} r_{k}(t) x_{k}\right\|_{X} d t
$$

for every choice of elements x_{1}, \ldots, x_{n} in X, where r_{k} stands for the Rademacher functions.
X is said to have the q-Orlicz property if the identity operator $i d: X \longrightarrow X$ is $(q, 1)$-summing. That is, if there exists a constant $C \geq 0$ such that regardless of the choice of x_{1}, \ldots, x_{n} in X we have

$$
\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{X}^{q}\right)^{\frac{1}{q}} \leq C \sup _{\left|\epsilon_{k}\right|=1}\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\|_{X}
$$

Let us observe that every Banach space with cotype q has the q-Orlicz property, $2 \leq q<\infty$. The converse was an open problem for some time and was solved by Talagrand in [7] and [8]. Actually, Talagrand showed in [8] that if a Banach space has the q-Orlicz property for $2<q<\infty$, then it also has cotype q. Also, he proved in [7] that the situation for $q=2$ is a bit different. He constructed an example with the 2 -Orlicz property but without cotype 2 .

There are many connections between all these notions. The reader is referred to [2] or [4] for the following chain of implications.

For $2<q<\infty$, we have that
q-concavity \Rightarrow cotype $q \Leftrightarrow q$-Orlicz property \Leftrightarrow lower q-estimate.
The examples mentioned above show that the converse of the first implication fails.

For $q=2$, we have that
2 -concavity \Leftrightarrow cotype $2 \Rightarrow 2$-Orlicz property \Rightarrow lower 2-estimate.
The converse of the two last implications fail. E. M. Semenov and A. M. Shteinberg [6] showed that the Lorentz space $L_{2,1}([0,1])$ satisfies a lower 2-estimate but fails to have the 2 -Orlicz property. As we said before, M. Talagrand in [7] constructed an example with the 2 -Orlicz property but without cotype 2. Moreover, in [9] he was even able to construct a counterexample in the setting of symmetric sequence spaces.

The aim of this paper is to continue the study of the relationship between all these notions and to give a general method, which is inspired by Talagrand's techniques in [9], to construct symmetric sequence spaces that satisfy a lower q-estimate but fail to be q-concave, $1<q<2$, and that have the q-Orlicz property but fail to be q-concave for $2 \leq q$.

Let us recall that a symmetric sequence space $(X,\|\cdot\|)$ is a Banach space of sequences such that

1. if $x \in X$ and $|y(i)| \leq|x(i)|$ for all $i \in \mathbb{N}$, then $y \in X$ and $\|y\| \leq\|x\|$;
2. if $x \in X$ and $\sigma \in \Pi(\mathbb{N})$, then $x \sigma \in X$ and $\|x \sigma\|=\|x\|$.

We shall consider the following method to construct symmetric sequence spaces generated by a family of sequences.

Let \mathcal{F} be a family sequences in ℓ_{∞} with the following properties:
(i) (Solid) If $f \in \mathcal{F}$ and $|g(i)| \leq|f(i)|$ for all $i \in \mathbb{N}$, then $g \in \mathcal{F}$.
(ii) (Symmetric) If $f \in \mathcal{F}$ and $\sigma \in \Pi(\mathbb{N})$, then $f \sigma \in \mathcal{F}$.
(iii) (Bounded) There exists a constant $C \geq 0$ such that

$$
\sup _{f \in \mathcal{F}}\|f\|_{\ell_{\infty}} \leq C
$$

In this case, \mathcal{F} will be called a generating family.
Given $1<q<\infty$, we consider $X_{q}(\mathcal{F})$ the space of sequences such that

$$
\|x\|_{X_{q}(\mathcal{F})}=\sup _{f \in \mathcal{F}}\langle | x\left|,|f|^{\frac{1}{q^{\prime}}}\right\rangle<\infty
$$

where $\langle x, f\rangle$ means $\sum_{i=1}^{\infty} x(i) f(i)$.
It is easy to see that $X_{q}(\mathcal{F})$ is a symmetric sequence space and

$$
\ell_{1} \hookrightarrow X_{q}(\mathcal{F}) \hookrightarrow \ell_{\infty}
$$

with

$$
\|x\|_{\ell_{\infty}}\left(\sup _{f \in \mathcal{F}}\|f\|_{\ell_{\infty}}\right)^{1 / q^{\prime}} \leq\|x\| \leq\|x\|_{\ell_{1}} \sup _{f \in \mathcal{F}}\|f\|_{\ell_{\infty}}^{1 / q^{\prime}} .
$$

Our main theorem can now be stated as follows.
Theorem 1.1. Let $1<q<\infty$. There exists a generating family \mathcal{F} such that $X_{q}(\mathcal{F})$ satisfies a lower q-estimate but is not q-concave.

As a corollary, we have that $X_{q}(\mathcal{F})$, for $2<q<\infty$, are examples of spaces of cotype q which are not q-concave and $X_{2}(\mathcal{F})$ satisfies the 2-Orlicz property but is not of cotype 2 .

2. Families Generated by a Function

In this section, we give the main construction for our families.
Let $\left(k_{s}\right)_{s=0}^{\infty}$ be a strictly increasing sequence of natural numbers with $k_{0}=$ $k_{1}:=1$, and let $\left(\alpha_{s}\right)_{s=0}^{\infty}$ be a sequence in \mathbb{R}^{+}with $\alpha_{0}=\alpha_{1}$, such that the sequence $\left(\alpha_{s} / k_{s}\right)_{s=1}^{\infty}$ is decreasing and

$$
\begin{equation*}
\lim _{s \rightarrow \infty} \frac{\alpha_{s}}{k_{s}}=0 \tag{1}
\end{equation*}
$$

Step 1.

We start with a single function on \mathbb{N},

$$
h=\sum_{s=2}^{\infty} \frac{\alpha_{s}}{k_{s}} \chi_{\left[k_{s-1}, k_{s}\right)}
$$

and the set of functions

$$
\mathcal{H}=\{h \sigma: \sigma \in \Pi(\mathbb{N})\}
$$

By (1), we know that $h \in c_{o}(\mathbb{N})$ and so $\mathcal{H} \subseteq c_{o}(\mathbb{N})$. Observe also that \mathcal{H} is symmetric and bounded by α_{2} / k_{2}.

Proposition 2.1. The following properties hold:

1. $\sum_{i \leq k_{s}} h(i) \leq \sum_{\ell=2}^{s} \alpha_{\ell}$ for $s \geq 2$.
2. If $h^{\prime} \in \mathcal{H}$ and $A \subseteq \mathbb{N}$ with $\operatorname{card}(A) \leq k_{s}, s \geq 2$, then

$$
\sum_{i \in A} h^{\prime}(i) \leq \sum_{\ell=2}^{s} \alpha_{\ell}
$$

3. Let $h^{\prime} \in \mathcal{H}$ and $s \geq 0$. Then, there exists $A \subseteq \mathbb{N}$ such that $\operatorname{card}(A)=k_{s}$ and $\left\|h^{\prime} \chi_{A^{c}}\right\|_{\ell_{\infty}} \leq \alpha_{s+1} / k_{s+1}$.
4. Let $h^{\prime} \in \mathcal{H}$ and $s \geq 0$. Then, there exist h_{1}^{\prime} and h_{2}^{\prime}, functions on \mathbb{N}, such that

$$
h^{\prime}=h_{1}^{\prime}+h_{2}^{\prime} \text { with }\left\{\begin{array}{l}
\operatorname{card}\left(\operatorname{supp} h_{1}^{\prime}\right)=k_{s} \\
\left\|h_{2}^{\prime}\right\|_{\ell_{\infty}} \leq \frac{\alpha_{s+1}}{k_{s+1}}
\end{array}\right.
$$

Proof. 1) Let $s \geq 2$. Then

$$
\sum_{i \leq k_{s}} h(i) \leq \sum_{\ell=2}^{s} \frac{\alpha_{\ell}}{k_{\ell}}\left(k_{\ell}-k_{\ell-1}\right)+\frac{\alpha_{s+1}}{k_{s+1}} \leq \sum_{\ell=2}^{s-1} \frac{\alpha_{\ell}}{k_{\ell}} k_{\ell}+\frac{\alpha_{s}}{k_{s}}\left(k_{s}-k_{s-1}+1\right) \leq \sum_{\ell=2}^{s} \alpha_{\ell}
$$

3) Suppose that $h^{\prime}=h \sigma, \sigma \in \Pi(\mathbb{N})$, and let $A=\sigma^{-1}\left(\left[1, k_{s}\right]\right)$. If $i \notin A$, then $h^{\prime}(i)=h(j)$ with $j>k_{s}(j=\sigma(i))$, and hence $h^{\prime}(i)=h(j) \leq \alpha_{s+1} / k_{s+1}$.

2) and 4) follow from 1) and 3), respectively.

Step 2.

For each $m \in \mathbb{N}$, we consider the family:

$$
c o_{m}(\mathcal{H})=\left\{\sum_{j=1}^{m} \zeta_{j} h_{j}: h_{j} \in \mathcal{H}, \zeta_{j} \in \mathbb{R}^{+}, \sum_{j=1}^{m} \zeta_{j}=1\right\} .
$$

The family $c o_{m}(\mathcal{H})$ is symmetric, bounded by α_{2} / k_{2}.
Let $\left(m_{r}\right)_{r=1}^{\infty}$ be a strictly increasing sequence of natural numbers, $m_{1} \geq 2$. Then, for $r \in \mathbb{N}$, we define

$$
\mathcal{G}_{r}=\left\{f: \mathbb{N} \longrightarrow \mathbb{R}^{+}: f \leq \sum_{\ell=0}^{\infty} 2^{-\ell} f_{\ell} \text { with } f_{\ell} \in c_{m_{r}^{\ell}}(\mathcal{H})\right\} .
$$

Again, $\mathcal{G}_{r} \subseteq c_{o}(\mathbb{N})$ and $\mathcal{H} \subseteq \mathcal{G}_{1} \subseteq \mathcal{G}_{2} \subseteq \ldots \subseteq \mathcal{G}_{r} \subseteq \mathcal{G}_{r+1} \subseteq \ldots$.

Proposition 2.2. Let $r \in \mathbb{N}, f \in \mathcal{G}_{r}$ and $s \geq 2$. Then

1. $\sum_{i \in A} f(i) \leq \sum_{\ell=2}^{s} \alpha_{\ell}$ for every $A \subseteq \mathbb{N}$ with $\operatorname{card}(A) \leq k_{s}$.
2. There exists $A \subseteq \mathbb{N}$ such that $\operatorname{card}(A)=k_{s}$ and

$$
\left\|f \chi_{A^{c}}\right\|_{\ell \infty} \leq \frac{\sum_{\ell=2}^{s} \alpha_{\ell}}{k_{s}}
$$

3. There exist f_{1} and f_{2}, functions on \mathbb{N}, such that

$$
f=f_{1}+f_{2} \text { with }\left\{\begin{array}{l}
\operatorname{card}\left(\operatorname{supp} f_{1}\right)=k_{s} \\
\left\|f_{2}\right\|_{\ell_{\infty}} \leq \frac{\sum_{\ell=2}^{s} \alpha_{\ell}}{k_{s}}
\end{array}\right.
$$

Proof. It suffices to show the result for functions in $\operatorname{co}_{m}(\mathcal{H})$ for a fixed $m \in \mathbb{N}$.
1)is immediate. To prove 2), let $f \in c o_{m}(\mathcal{H}) \subseteq c_{o}(\mathbb{N})$. Then there exists $i_{1} \in \mathbb{N}$ such that $f\left(i_{1}\right) \geq f(i)$ for all $i \in \mathbb{N}$. We consider now $N_{1}=\mathbb{N} \backslash\left\{i_{1}\right\}$. Since $f \in c_{o}\left(N_{1}\right)$, there exists $i_{2} \in N_{1}$ such that $f\left(i_{2}\right) \geq f(i)$ for all $i \in N_{1}$. Hence we can find $A=\left\{i_{1}, \ldots, i_{k_{s}}\right\}$ such that $f(j) \leq f(i)$ if $i \in A$ and $j \notin A$. Therefore,

$$
k_{s} \sup _{j \notin A} f(j) \leq \sum_{i \in A} f(i) \leq \sum_{\ell=2}^{s} \alpha_{\ell} .
$$

3) follows from 2).

The family \mathcal{G}_{r} is a generating family which is almost convex.
Lemma 2.3. Let $r \in \mathbb{N}$ and let $\left(f_{j}\right)_{j \leq m_{r}}$ be functions in \mathcal{G}_{r}. Let $\xi_{j} \in \mathbb{R}^{+}$, $j=1, \ldots, m_{r}$, such that $\sum_{j \leq m_{r}} \xi_{j}=1$. Then

$$
\frac{1}{2} \sum_{j \leq m_{r}} \xi_{j} f_{j} \in \mathcal{G}_{r}
$$

Proof. Since $f_{j} \in \mathcal{G}_{r}$, we have

$$
f_{j} \leq \sum_{\ell=0}^{\infty} 2^{-\ell} \sum_{s \leq m_{r}^{\ell}} \gamma_{\ell, s, j} h_{\ell, s, j}
$$

with $h_{\ell, s, j} \in \mathcal{H}, \gamma_{\ell, s, j} \geq 0$ and $\sum_{s \leq m_{r}^{\ell}} \gamma_{\ell, s, j}=1$ for all ℓ, j. Hence

$$
\frac{1}{2} \sum_{j \leq m_{r}} \xi_{j} f_{j} \leq \sum_{\ell=0}^{\infty} 2^{-(\ell+1)} \sum_{\substack{s \leq m_{r}^{\ell} \\ j \leq m_{r}}} \xi_{j} \gamma_{\ell, s, j} h_{\ell, s, j}
$$

and the point is that there are at most $m_{r}^{\ell+1}$ terms in the last summation.
Finally, we glue the families \mathcal{G}_{r} as follows:

$$
\mathcal{G}=\left\{0 \leq f \leq \sum_{r=1}^{\infty} \gamma_{r} f_{r}: f_{r} \in \mathcal{G}_{r}, \gamma_{r} \geq 0, \sum_{r=1}^{\infty} \gamma_{r}=1\right\}
$$

The family \mathcal{G} is again a generating family with the following convexity property.
Lemma 2.4. Let $\left(g_{\ell}\right)_{\ell \leq N}$ be a finite collection of functions in \mathcal{G} and let $\xi_{\ell} \in \mathbb{R}^{+}$, $\ell=1, \ldots, N$, such that $\sum_{\ell \leq N} \xi_{\ell}=1$. Then

$$
\frac{1}{8} \sum_{\ell=1}^{N} \xi_{\ell} g_{\ell} \in \mathcal{G}
$$

Proof. Let us write $g_{\ell}=\sum_{r=1}^{\infty} \gamma_{\ell, r} f_{\ell, r}$ with $f_{\ell, r} \in \mathcal{G}_{r}, \gamma_{\ell, r} \in \mathbb{R}^{+}$and $\sum_{r=1}^{\infty} \gamma_{\ell, r}=1$ for all $\ell \leq N$. We let $I_{N}=[1, N] \cap \mathbb{N}$ and for each $r \geq 1$ we set

$$
g_{r}^{\prime}=\sum_{\ell \in\left[1, m_{r}\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, r} f_{\ell, r} \quad \text { and } \quad \nu_{r}=\sum_{\ell \in\left[1, m_{r}\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, r} .
$$

By Lemma 2.3, we have that $g_{r}^{\prime} \in 2 \nu_{r} \mathcal{G}_{r}$. On the other hand, if we fix r and take $s \leq r$, we can show that

$$
\begin{equation*}
\sum_{\ell \in\left(m_{r}, m_{r+1}\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, s} f_{\ell, s} \in 2 w_{s} \mathcal{G}_{r+1} \tag{2}
\end{equation*}
$$

where $w_{s}=\sum_{\ell \in\left(m_{r}, m_{r+1}\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, s}$. Indeed, for all $s \leq r, f_{\ell, s} \in \mathcal{G}_{s}$ and $\mathcal{G}_{s} \subseteq \mathcal{G}_{r}$ so that $f_{\ell, s} \in \mathcal{G}_{r+1}$; by Lemma 2.3, we get (2). We take now

$$
g_{r}^{\prime \prime}=\sum_{s \leq r} \sum_{\ell \in\left(m_{r}, m_{r+1}\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, s} f_{\ell, s} \quad \text { and } \quad \delta_{r}=\sum_{s \leq r} w_{s}
$$

Then by Lemma 2.3, we have that $g_{r}^{\prime \prime} \in 4 \delta_{r} \mathcal{G}_{r+1}$, since $r \leq m_{r}$. Now observe that

$$
\sum_{r=1}^{\infty}\left(\nu_{r}+\delta_{r}\right)=\sum_{r=1}^{\infty} \sum_{\ell=1}^{N} \xi_{\ell} \gamma_{\ell, r}=1
$$

because

$$
\begin{aligned}
\sum_{r=1}^{\infty} \delta_{r} & =\sum_{r=1}^{\infty} \sum_{s \leq r} \sum_{\ell \in\left(m_{r}, m_{r+1}\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, s}=\sum_{r=1}^{\infty} \sum_{\ell \in\left(m_{r}, m_{r+1}\right] \cap I_{N}} \sum_{s \leq r} \xi_{\ell} \gamma_{\ell, s} \\
& =\sum_{r=1}^{\infty} \sum_{\ell \in\left(m_{r}, N\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, r} .
\end{aligned}
$$

Therefore, using Lemma 2.3, one more time we know that the function $g=$ $\sum_{r \geq 1} g_{r}^{\prime}+g_{r}^{\prime \prime}$ belongs to $8 \mathcal{G}$. Now we are going to see that $g=\sum_{\ell=1}^{N} \xi_{\ell} g_{\ell}$, so that $\sum_{\ell=1}^{N} \xi_{\ell} g_{\ell} \in 8 \mathcal{G}$. Indeed,

$$
\begin{aligned}
\sum_{\ell=1}^{N} \xi_{\ell} g_{\ell} & =\sum_{r=1}^{\infty} \sum_{\ell=1}^{N} \xi_{\ell} \gamma_{\ell, r} f_{\ell, r}=\sum_{r=1}^{\infty}\left(\sum_{\ell \in\left[1, m_{r}\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, r} f_{\ell, r}+\sum_{\ell \in\left(m_{r}, N\right] \cap I_{N}} \xi_{\ell \gamma_{\ell, r}} f_{\ell, r}\right) \\
& =\sum_{r=1}^{\infty}\left(g_{r}^{\prime}+\sum_{\ell \in\left(m_{r}, N\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, r} f_{\ell, r}\right) .
\end{aligned}
$$

But

$$
\sum_{r=1}^{\infty} \sum_{\ell \in\left(m_{r}, N\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, r} f_{\ell, r}=\sum_{r=1}^{\infty} \sum_{\ell \in\left(m_{r}, m_{r+1}\right] \cap I_{N}} \sum_{s \leq r} \xi_{\ell} \gamma_{\ell, s} f_{\ell, s}=\sum_{r=1}^{\infty} g_{r}^{\prime \prime}
$$

Therefore,

$$
\sum_{\ell=1}^{N} \xi_{\ell} g_{\ell}=\sum_{r=1}^{\infty} g_{r}^{\prime}+g_{r}^{\prime \prime}
$$

Our first result about concavity of these spaces is the following.
Theorem 2.5. Let $1<q<\infty$. Then the space $X_{q}(\mathcal{G})$ is q-concave.
Proof. Let x_{1}, \ldots, x_{N} be a finite number of elements in $X_{q}(\mathcal{G})$. We set $S^{q}=\sum_{\ell=1}^{N}\left\|x_{\ell}\right\|^{q}$ and $\xi_{\ell}=\left\|x_{\ell}\right\|^{q} / S^{q}$. Then $\sum_{\ell=1}^{N} \xi_{\ell}=1$.

For each ℓ, take $f_{\ell} \in \mathcal{G}$ such that

$$
\left\|x_{\ell}\right\| \leq \frac{4}{3}\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{\left|f_{\ell}\right|}\right\rangle
$$

Hence,

$$
\begin{aligned}
S^{q} & \leq \frac{4}{3} \sum_{\ell=1}^{N} \|\left. x_{\ell}\right|^{(q-1)}\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{\left|f_{\ell}\right|}\right\rangle=\frac{4}{3} \sum_{\ell=1}^{N} S^{q / q^{\prime}} \sqrt[q^{\prime}]{\xi_{\ell}}\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{\left|f_{\ell}\right|}\right\rangle \\
& =\frac{4}{3} S^{q-1} \sum_{\ell=1}^{N} \sum_{i=1}^{\infty}\left|x_{\ell}(i)\right| \sqrt[q^{\prime}]{\left|\xi_{\ell} f_{\ell}(i)\right|}
\end{aligned}
$$

Using Hölder's inequality and Lemma 2.4, we have that $\sum_{\ell \leq N}\left|\xi_{\ell} f_{\ell}\right| \in 8 \mathcal{G}$. Now

$$
S^{q} \leq \frac{4}{3} S^{q-1} \sum_{i=1}^{\infty}\left(\sum_{\ell=1}^{N}\left|x_{\ell}(i)\right|^{q}\right)^{\frac{1}{q}}\left(\sum_{\ell=1}^{N}\left|\xi_{\ell} f_{\ell}(i)\right|\right)^{\frac{1}{q^{\prime}}} \leq \frac{1}{6} S^{q-1}\left\|\left(\sum_{\ell=1}^{N}\left|x_{\ell}\right|^{q}\right)^{\frac{1}{q}}\right\|
$$

This implies

$$
\left(\sum_{\ell=1}^{N}\left\|x_{\ell}\right\|^{q}\right)^{\frac{1}{q}} \leq \frac{1}{6}\left\|\left(\sum_{\ell=1}^{N}\left|x_{\ell}\right|^{q}\right)^{\frac{1}{q}}\right\|
$$

and the proof is complete.
Step 3. For each $r \geq 1$, we write

$$
\mathcal{F}_{r}=\left\{f \in \mathcal{G}_{r}:\|f\|_{\ell_{\infty}} \leq \frac{\alpha_{r-1}}{k_{r-1}}\right\}
$$

Again, $\mathcal{F}_{r} \subseteq c_{o}(\mathbb{N})$ and \mathcal{F}_{r} are generating families with $\mathcal{F}_{1} \subseteq \mathcal{F}_{2}$ but now, for $r \geq 2, \mathcal{F}_{r} \not \subset \mathcal{F}_{r+1}$.

Finally, we define the generating family

$$
\mathfrak{F}=\left\{0 \leq f \leq \sum_{r=1}^{\infty} \gamma_{r} f_{r}: f_{r} \in \mathcal{F}_{r}, \gamma_{r} \geq 0, \sum_{r=1}^{\infty} \gamma_{r}=1\right\}
$$

We have to observe that the family \mathfrak{F} depends on the sequences $\left(k_{s}\right)_{s=0}^{\infty},\left(\alpha_{s}\right)_{s=0}^{\infty}$ and $\left(m_{r}\right)_{r=1}^{\infty}$.

3. q-Orlicz Property and Lower q-Estimate

In this section we prove under suitable conditions on \mathfrak{F} that the space $X_{q}(\mathfrak{F})$ satisfies a lower q-estimate for $1<q<\infty$ and has the q-Orlicz property for $2 \leq q<\infty$ (the reader should notice that this is stronger only for $q=2$).

We begin with some lemmas to be used in the sequel. The first one follows from Lemma 2.3.

Lemma 3.1. Let $r \in \mathbb{N}$, let $\left(f_{j}\right)_{j \leq m_{r}}$ be functions in \mathcal{F}_{r} and let $\xi_{j} \in \mathbb{R}^{+}$, $j=1, \ldots, m_{r}$, be such that $\sum_{j \leq m_{r}} \xi_{j}=1$. Then

$$
\frac{1}{2} \sum_{j \leq m_{r}} \xi_{j} f_{j} \in \mathcal{F}_{r}
$$

From here on we will assume another property on the sequence $\left(\alpha_{s}\right)_{s=0}^{\infty}$:
(*) There exists a constant $C \geq 1$ such that $\sum_{\ell=2}^{s} \alpha_{\ell} \leq C \alpha_{s}$ for all $s \geq 2$.
Lemma 3.2. Let $s, r \in \mathbb{N}$ with $s \leq r$, let $\left(f_{j}\right)_{j \leq m_{r+1}}$ be a collection of functions in \mathcal{F}_{s} and let $\xi_{j} \in \mathbb{R}^{+}, j=1, \ldots, m_{r+1}$, such that $\sum_{j \leq m_{r+1}} \xi_{j}=1$. If the sequence $\left(\alpha_{s}\right)_{s=0}^{\infty}$ satisfies $(*)$, then there exists $A_{s, r} \subseteq \mathbb{N}$ with $\operatorname{card}\left(A_{s, r}\right)=k_{r}$ such that

$$
\chi_{A_{s, r}^{c}} \frac{1}{2 C} \sum_{j \leq m_{r+1}} \xi_{j} f_{j} \in \mathcal{F}_{r+1}
$$

Proof. If $r=s=1$, we only have to notice that $\mathcal{F}_{1} \subseteq \mathcal{F}_{2}$. Assume that $r \geq 2$. We define $g=(1 / 2) \sum_{j \leq m_{r+1}} \xi_{j} f_{j}$. If we show that $g \in \mathcal{G}_{r+1}$ and that $\left\|\frac{1}{C} g \chi_{A_{s, r}^{c}}\right\|_{\ell_{\infty}} \leq \alpha_{r} / k_{r}$ for a set $A_{s, r}$ of integers, then the proof will be finished.

By hypothesis, $f_{j} \in \mathcal{G}_{s} \subseteq \mathcal{G}_{r} \subseteq \mathcal{G}_{r+1}$ for all $j \leq m_{r+1}$, so by Lemma 2.3, $g \in \mathcal{G}_{r+1}$. On the other hand, by Proposition 2.2 (2) and $(*)$ we can find $A_{s, r} \subseteq \mathbb{N}$ with $\operatorname{card}\left(A_{s, r}\right)=k_{r}$ such that

$$
\left\|\frac{1}{C} g \chi_{A_{s, r}^{c}}\right\|_{\ell_{\infty}} \leq \frac{\sum_{\ell=2}^{r} \alpha_{\ell}}{C k_{r}} \leq \frac{\alpha_{r}}{k_{r}}
$$

Our next result shows a convexity property of the family \mathfrak{F}.
Theorem 3.3. Let $\left(g_{\ell}\right)_{\ell \leq N}$ be a finite collection of functions in \mathfrak{F} given by

$$
g_{\ell} \leq \sum_{r=1}^{\infty} \gamma_{\ell, r} f_{\ell, r}
$$

where $f_{\ell, r} \in \mathcal{F}_{r}, \gamma_{\ell, r} \in \mathbb{R}^{+}$and $\sum_{r=1}^{\infty} \gamma_{\ell, r}=1$ for all $\ell \leq N$. Let $\xi_{\ell} \in \mathbb{R}^{+}$be such that $\sum_{\ell \leq N} \xi_{\ell}=1$ and assume that the sequence $\left(\alpha_{s}\right)_{s=0}^{\infty}$ satisfies $(*)$. Then there exists $B_{r} \subseteq \mathbb{N}$ with $\operatorname{card}\left(B_{r}\right) \leq r k_{r}, r \geq 1$, such that the functions defined by

$$
f_{\ell}^{\prime}=\chi_{B_{r(\ell)}^{c}} \sum_{r=1}^{r(\ell)} \gamma_{\ell, r} f_{\ell, r}+\sum_{r=r(\ell)+1}^{\infty} \gamma_{\ell, r} f_{\ell, r}
$$

satisfy

$$
\frac{1}{8 C} \sum_{\ell=1}^{N} \xi_{\ell} f_{\ell}^{\prime} \in \mathfrak{F}
$$

where $r(\ell)$ is chosen so that $m_{r(\ell)}<\ell \leq m_{r(\ell)+1}$.
Proof. Write $I_{N}=[1, N] \cap \mathbb{N}$ and set

$$
g_{r}^{\prime}=\sum_{\ell \in\left[1, m_{r}\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, r} f_{\ell, r} \text { and } \nu_{r}=\sum_{\ell \in\left[1, m_{r}\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, r}
$$

Then by Lemma 3.1, we have that $g_{r}^{\prime} \in 2 \nu_{r} \mathcal{F}_{r}$.
Fix $r \in \mathbb{N}$ and let $s \leq r$. We consider the functions $\left(f_{\ell, s}\right)_{\ell \in\left(m_{r}, m_{r+1}\right] \cap I_{N}} \subseteq \mathcal{F}_{s}$. Then, by Lemma 3.2, we know that there exists $A_{s, r} \subseteq \mathbb{N}$ with $\operatorname{card}\left(A_{s, r}\right)=k_{r}$ such that

$$
\chi_{A_{s, r}^{c}} \sum_{\ell \in\left(m_{r}, m_{r+1}\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, s} f_{\ell, s} \in 2 C w_{s} \mathcal{F}_{r+1}
$$

where $w_{s}=\sum_{\ell \in\left(m_{r}, m_{r+1}\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, s}$. Set $B_{r}=\cup_{s=1}^{r} A_{s, r}$, and note that $\operatorname{card}\left(B_{r}\right)$ $\leq r k_{r}$. Since $r \leq m_{r}$, Lemma 3.1, gives that the function

$$
g_{r}^{\prime \prime}=\chi_{B_{r}^{c}} \sum_{s \leq r} \sum_{\ell \in\left(m_{r}, m_{r+1}\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, s} f_{\ell, s} \leq \sum_{s \leq r} \chi_{A_{s, r}^{c}} \sum_{\ell \in\left(m_{r}, m_{r+1}\right] \cap I_{N}} \xi_{\ell} \gamma_{\ell, s} f_{\ell, s}
$$

belongs to $4 C \delta_{r} \mathcal{F}_{r+1}$, where $\delta_{r}=\sum_{s \leq r} w_{s}$. Therefore, applying Lemma 3.1 again we see that the function

$$
g=\sum_{r=1}^{\infty} g_{r}^{\prime}+g_{r}^{\prime \prime}
$$

belongs to $8 C \mathfrak{F}$. Observe also that $\sum_{r=1}^{\infty} \nu_{r}+\delta_{r}=1$.
Now we are going to define functions f_{ℓ}^{\prime} such that $\sum_{\ell \leq N} \xi_{\ell} f_{\ell}^{\prime}=g$. Let us fix $\ell \in\left\{m_{1}, \ldots, N\right\}$. Then there exists a unique r such that $m_{r}<\ell \leq m_{r+1}$. We denote by $r(\ell)$ this unique r and define the function

$$
f_{\ell}^{\prime}=\chi_{B_{r(\ell)}^{c}} \sum_{r=1}^{r(\ell)} \gamma_{\ell, r} f_{\ell, r}+\sum_{r=r(\ell)+1}^{\infty} \gamma_{\ell, r} f_{\ell, r}
$$

For $\ell \in\left\{1, \ldots, m_{1}\right\}$, we define (corresponding to $r(\ell)=0$) the function $f_{\ell}^{\prime}=$ $\sum_{r=1}^{\infty} \gamma_{\ell, r} f_{\ell, r}$. Thus f_{ℓ}^{\prime} can also be expressed as

$$
f_{\ell}^{\prime}=\sum_{r=1}^{\infty} \gamma_{\ell, r} f_{\ell, r} h_{\ell, r}
$$

where $h_{\ell, r}=1$ if $\ell \leq m_{r}$ and $h_{\ell, r}=\chi_{B_{r(\ell)}^{c}}$ if $m_{r}<\ell$. The same proof as in Lemma 2.4, gives that $\sum_{\ell=1}^{N} \xi_{\ell} f_{\ell}^{\prime}=g \in 8 C \mathfrak{F}$.

We need also some general lemmas.
Lemma 3.4. Let \mathcal{F} be a generating family and let $1<q<\infty$. Assume that $\left(x_{\ell}\right)_{\ell \leq N}$ is a finite collection of elements in $X_{q}(\mathcal{F})$ and $B \subseteq \mathbb{N}$. Then

$$
\sum_{\ell=1}^{N}\left\|x_{\ell} \chi_{B}\right\| \leq \operatorname{card}(B) \sup _{\left|\epsilon_{\ell}\right|=1}\left\|\sum_{\ell=1}^{N} \epsilon_{\ell} x_{\ell}\right\|
$$

Proof. Set $c=\sup _{f \in \mathcal{F}}\|f\|_{\ell_{\infty}}$. Since $c^{1 / q^{\prime}}\|x\|_{\ell_{\infty}} \leq\|x\| \leq c^{1 / q^{\prime}}\|x\|_{\ell_{1}}$, we have

$$
\begin{aligned}
\sum_{\ell=1}^{N}\left\|x_{\ell} \chi_{B}\right\| & \leq \sum_{\ell=1}^{N} \sum_{i \in B}\left|x_{\ell}(i)\right| C^{1 / q^{\prime}}=\sum_{i \in B} \sum_{\ell=1}^{N}\left|x_{\ell}(i)\right| C^{1 / q^{\prime}} \\
& \leq \operatorname{card}(B) \sup _{\left|\epsilon_{\ell}\right|=1}\left\|\sum_{\ell=1}^{N} \epsilon_{\ell} x_{\ell}\right\|_{\ell_{\infty}} C^{1 / q^{\prime}} \leq \operatorname{card}(B) \sup _{\left|\epsilon_{\ell}\right|=1}\left\|\sum_{\ell=1}^{N} \epsilon_{\ell} x_{\ell}\right\|
\end{aligned}
$$

which yields the result.
Lemma 3.5. Let \mathcal{F} be a generating family, $\xi_{\ell} \in \mathbb{R}^{+}, \ell=1, \ldots, N$, and let $\left(f_{\ell}\right)_{\ell \leq N}$ be a finite collection of functions in \mathcal{F} such that $\sum_{\ell \leq N} \xi_{\ell} f_{\ell} \in \mathcal{F}$.
a) If $1<q<\infty$, then

$$
\sum_{\ell=1}^{N}\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{\xi_{\ell} f_{\ell}}\right\rangle \leq\left\|\sum_{\ell=1}^{N}\left|x_{\ell}\right|\right\|
$$

b) If $2 \leq q<\infty$, then

$$
\sum_{\ell=1}^{N}\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{\xi_{\ell} f_{\ell}}\right\rangle \leq \sqrt{2} \sup _{\left|\epsilon_{\ell}\right|=1}\left\|\sum_{\ell=1}^{N} \epsilon_{\ell} x_{\ell}\right\|
$$

Proof. Since $\sum_{\ell \leq N} \xi_{\ell} f_{\ell} \in \mathcal{F}$, by Hölder's inequality we get

$$
\sum_{\ell=1}^{N}\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{\xi_{\ell} f_{\ell}}\right\rangle \leq\left\langle\left(\sum_{\ell=1}^{N}\left|x_{\ell}\right|^{q}\right)^{\frac{1}{q}}, \sqrt[q^{\prime}]{\sum_{\ell=1}^{N} \xi_{\ell} f_{\ell}}\right\rangle \leq\left\|\left(\sum_{\ell=1}^{N}\left|x_{\ell}\right|^{q}\right)^{\frac{1}{q}}\right\|
$$

If $1<q<\infty$, then

$$
\left\|\left(\sum_{\ell=1}^{N}\left|x_{\ell}\right|^{q}\right)^{\frac{1}{q}}\right\| \leq\left\|\sum_{\ell=1}^{N}\left|x_{\ell}\right|\right\| .
$$

Hence a) is true. If $q \geq 2$, by Kintchine's inequality (see $[2,1.10]$) there exists a constant $B_{1}=\sqrt{2}$ such that for all $i \in \mathbb{N}$,

$$
\left(\sum_{\ell=1}^{N}\left|x_{\ell}(i)\right|^{q}\right)^{\frac{1}{q}} \leq\left(\sum_{\ell=1}^{N}\left|x_{\ell}(i)\right|^{2}\right)^{\frac{1}{2}} \leq B_{1} \int_{0}^{1}\left|\sum_{\ell=1}^{N} r_{\ell}(t) x_{\ell}(i)\right| d t .
$$

Therefore,

$$
\sum_{\ell=1}^{N}\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{\xi_{\ell} f_{\ell}}\right\rangle \leq \sqrt{2} \int_{0}^{1}\left\|\sum_{\ell=1}^{N} r_{\ell}(t) x_{\ell}(i)\right\| d t \leq \sqrt{2} \sup _{t \in[0,1]}\left\|\sum_{\ell=1}^{N} r_{\ell}(t) x_{\ell}\right\|
$$

From this we get b) and the proof is complete.
Lemma 3.6. Let \mathcal{F} be a generating family and let $1<q<\infty$. Suppose that $\left(\eta_{r}\right)_{r=1}^{\infty}$ is an increasing sequence of real numbers and that $\left\{x_{1}, \ldots, x_{N}\right\}$ is a finite collection of elements in $X_{q}(\mathcal{F})$ such that the sequence $\left(\left\|x_{\ell}\right\|\right)_{\ell \leq N}$ is decreasing. Let $\left(C_{r}\right)_{r \geq 1}$ be subsets of \mathbb{N}. Consider, for $r \geq 1$, the subsets of \mathbb{N},

$$
H_{r}=\left\{\ell: 1 \leq \ell \leq N, m_{r}<\ell \leq m_{r+1} \text { and }\left\|x_{\ell}\right\| \leq \eta_{r}\left\|x_{\ell} \chi_{C_{r}}\right\|\right\},
$$

and let $H=\cup_{r \geq 1} H_{r}$. Then,

$$
\sum_{\ell \in H}\left\|x_{\ell}\right\|^{q} \leq\left(\sum_{\ell=1}^{N}\left\|x_{\ell}\right\|^{q}\right)^{\frac{1}{q^{\prime}}} \sup _{\left|\epsilon_{\ell}\right|=1}\left\|\sum_{\ell=1}^{N} \epsilon_{\ell} x_{\ell}\right\|\left(\sum_{r=1}^{\infty} \frac{\eta_{r} \operatorname{card}\left(C_{r}\right)}{\sqrt[q^{\prime}]{m_{r}}}\right)
$$

Proof. We assume that $\sup _{\left|\epsilon_{\ell}\right|=1}\left\|\sum_{\ell=1}^{N} \epsilon_{\ell} x_{\ell}\right\|=1$. By Lemma 3.4 and the definition of H_{r}, we know that

$$
\sum_{\ell \in H_{r}}\left\|x_{\ell}\right\| \leq \eta_{r} \sum_{\ell \in H_{r}}\left\|x_{\ell} \chi_{C_{r}}\right\| \leq \eta_{r} \operatorname{card}\left(C_{r}\right) .
$$

Thus

$$
\sum_{\ell \in H_{r}}\left\|x_{\ell}\right\|^{q} \leq\left(\max _{\ell \in H_{r}}\left\|x_{\ell}\right\|^{q-1}\right)\left(\sum_{\ell \in H_{r}}\left\|x_{\ell}\right\|\right) \leq\left(\max _{\ell \in H_{r}}\left\|x_{\ell}\right\|^{q-1}\right) \eta_{r} \operatorname{card}\left(C_{r}\right) .
$$

On the other hand, since $\left(\left\|x_{\ell}\right\|\right)_{\ell \leq N}$ is decreasing we get

$$
\left\|x_{\ell}\right\|^{q} \leq \frac{\sum_{\ell=1}^{N}\left\|x_{\ell}\right\|^{q}}{\ell} \leq \frac{\sum_{\ell=1}^{N}\left\|x_{\ell}\right\|^{q}}{m_{r}}
$$

if $\ell \in H_{r}$ and so $\left\|x_{\ell}\right\|^{q-1} \leq \frac{\left(\sum_{\ell=1}^{N}\left\|x_{\ell}\right\|^{q}\right)^{\frac{1}{q^{\prime}}}}{\sqrt[q^{\prime}]{m_{r}}}$. Whence we conclude that

$$
\sum_{\ell \in H}\left\|x_{\ell}\right\|^{q} \leq\left(\sum_{\ell=1}^{N}\left\|x_{\ell}\right\|^{q}\right)^{\frac{1}{q^{\prime}}}\left(\sum_{r=1}^{\infty} \frac{\eta_{r} \operatorname{card}\left(C_{r}\right)}{\sqrt[q^{\prime}]{m_{r}}}\right)
$$

We are now ready to study the q-Orlicz property and a lower q-estimate of the space $X_{q}(\mathfrak{F})$.

Theorem 3.7. Let $\left(\eta_{r}\right)_{r=1}^{\infty}$ be an increasing sequence of real numbers with $\eta_{r} \geq 2$. Assume that the sequence $\left(\alpha_{s}\right)_{s=0}^{\infty}$ satisfies ($*$) and that the sequences $\left(\eta_{r}\right)_{r=1}^{\infty},\left(k_{r}\right)_{r=1}^{\infty}$ and $\left(m_{r}\right)_{r=1}^{\infty}$ satisfy

$$
\begin{equation*}
\sum_{r=1}^{\infty} \frac{r \eta_{r} k_{r}}{q^{\prime}}{ }_{m_{r}} \tag{3}
\end{equation*}
$$

Then if $1<q<\infty$ the space $X_{q}(\mathfrak{F})$ satisfies a lower q-estimate. Furthermore, if $2 \leq q<\infty$ the space $X_{q}(\mathfrak{F})$ has the q-Orlicz property.

Proof. Let $N \in \mathbb{N}$ and let $\left(x_{\ell}\right)_{\ell \leq N}$ a collection of elements in $X_{q}(\mathfrak{F})$. We assume that the sequence $\left(\left\|x_{\ell}\right\|\right)_{\ell \leq N}$ is decreasing. We set $S^{q}=\sum_{\ell=1}^{N}\left\|x_{\ell}\right\|^{q}$ and $\xi_{\ell}=\frac{\left\|x_{\ell}\right\|^{q}}{S^{q}}$. Hence $\sum_{\ell=1}^{N} \xi_{\ell}=1$.

By definition of the norm in $X_{q}(\mathfrak{F})$, for each ℓ there exists a function $g_{\ell} \in \mathfrak{F}$ such that

$$
\begin{equation*}
\left\|x_{\ell}\right\| \leq \frac{4}{3}\langle | x_{\ell}\left|, g_{\ell}{ }^{1 / q^{\prime}}\right\rangle \tag{4}
\end{equation*}
$$

If we apply Theorem 3.3 to the functions g_{ℓ} and the numbers $\xi_{\ell}=\frac{\left\|x_{\ell}\right\|^{q}}{S^{q}}$, then we can find functions f_{ℓ}^{\prime} so that $\sum_{\ell=1}^{N} \xi_{\ell} f_{\ell}^{\prime} \in 8 C \mathfrak{F}$ and subsets $B_{r} \subseteq \mathbb{N}$ with $\operatorname{card}\left(B_{r}\right) \leq r k_{r}$.

In order to estimate S^{q}, we split it as

$$
S^{q}=\sum_{\ell=1}^{N}\left\|x_{\ell}\right\|^{q}=\sum_{\ell=1}^{m_{1}}\left\|x_{\ell}\right\|^{q}+\sum_{\ell \in H}\left\|x_{\ell}\right\|^{q}+\sum_{\ell \notin H \cup\left\{1, \ldots, m_{1}\right\}}\left\|x_{\ell}\right\|^{q},
$$

where $H=\cup_{r \geq 1} H_{r}$ and

$$
H_{r}=\left\{\ell: 1 \leq \ell \leq N, m_{r}<\ell \leq m_{r+1} \text { and }\left\|x_{\ell}\right\| \leq \eta_{r}\left\|x_{\ell} \chi_{B_{r}}\right\|\right\}
$$

If $\ell \in H$, then by Lemma 3.6 we have

$$
\sum_{\ell \in H}\left\|x_{\ell}\right\|^{q} \leq S^{q / q^{\prime}} \sup _{\left|\epsilon_{\ell}\right|=1}\left\|\sum_{\ell=1}^{N} \epsilon_{\ell} x_{\ell}\right\|\left(\sum_{r=1}^{\infty} \frac{\eta_{r} r k_{r}}{q^{\prime}}\right) \leq T S^{q-1} \sup _{\left|\epsilon_{\ell}\right|=1}\left\|\sum_{\ell=1}^{N} \epsilon_{\ell} x_{\ell}\right\|
$$

where $T:=\sum_{r=1}^{\infty} r \eta_{r} k_{r} / \sqrt[q^{\prime}]{m_{r}}$. On the other hand, if $\ell \in\left\{1, \ldots, m_{1}\right\}$, then $g_{\ell} \leq f_{\ell}^{\prime}$ and hence

$$
\sum_{\ell=1}^{m_{1}}\left\|x_{\ell}\right\|^{q} \leq \frac{4}{3} \sum_{\ell=1}^{m_{1}}\left\|x_{\ell}\right\|^{q-1}\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{g_{\ell}}\right\rangle \leq \frac{4}{3} \sum_{\ell=1}^{N}\left\|x_{\ell}\right\|^{q-1}\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{f_{\ell}^{\prime}}\right\rangle
$$

Finally, if we assume that $\ell \notin H \cup\left\{1, \ldots, m_{1}\right\}$, then there exists a number $r(\ell) \geq 1$ such that $m_{r(\ell)}<\ell \leq m_{r(\ell)+1}$ and by the definition of H_{r} we have for $\eta_{r} \geq 2$,

$$
\left\|x_{\ell} \chi_{B_{r(\ell)}}\right\| \leq \frac{\left\|x_{\ell}\right\|}{\eta_{r(\ell)}} \leq \frac{\left\|x_{\ell}\right\|}{2}
$$

Whence by (4) we have

$$
\begin{aligned}
\frac{1}{4}\left\|x_{\ell}\right\| & \left.=\frac{3}{4}\left\|x_{\ell}\right\|-\frac{1}{2}\left\|x_{\ell}\right\| \leq\langle | x_{\ell} \right\rvert\,, q^{\prime} \\
& \leq\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{g_{\ell}}\right\rangle-\langle | x_{\ell} \chi_{B_{r(\ell)}} \mid, q_{\ell} \chi_{B_{r(\ell)}} \| \\
& =\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{g_{\ell}}\right\rangle \leq\langle | x_{\ell \chi_{B_{B_{r(\ell)}}^{c}}}^{\chi_{r(\ell)}}\left|, \sqrt[q^{\prime}]{g_{\ell}}\right\rangle \\
& =\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{f_{\ell}^{\prime}}\right\rangle
\end{aligned}
$$

where we have used the fact that $f_{\ell}^{\prime}(i) \geq g_{\ell} \chi_{B_{r(\ell)}^{c}}(i)$ if $i \in B_{r(\ell)}^{c}$ and $f_{\ell}^{\prime}(i)=$ $\sum_{r=r(\ell)+1}^{\infty} \gamma_{\ell, r} f_{\ell, r} \geq 0$ if $i \in B_{r(\ell)}$. It follows from these relations that

$$
\begin{aligned}
\sum_{\ell \notin H \cup\left\{1, \ldots, m_{1}\right\}}\left\|x_{\ell}\right\|^{q} & \leq 4 \sum_{\ell \notin H \cup\left\{1, \ldots, m_{1}\right\}}\left\|x_{\ell}\right\|^{q-1}\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{f_{\ell}^{\prime}}\right\rangle \\
& \leq 4 \sum_{\ell=1}^{N}\left\|x_{\ell}\right\|^{q-1}\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{f_{\ell}^{\prime}}\right\rangle
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{\ell=1}^{m_{1}}\left\|x_{\ell}\right\|^{q}+\sum_{\ell \notin H \cup\left\{1, \ldots, m_{1}\right\}}\left\|x_{\ell}\right\|^{q} & \left.\leq\left(\frac{4}{3}+4\right) \sum_{\ell=1}^{N}\left\|x_{\ell}\right\|^{q-1}\langle | x_{\ell} \right\rvert\,, \sqrt[q^{\prime}]{\left.f_{\ell}^{\prime}\right\rangle} \\
& =\frac{16}{3} \sum_{\ell=1}^{N} S^{q-1} \sqrt[q^{\prime}]{\xi_{\ell}}\langle | x_{\ell}\left|, \sqrt[,]{f_{\ell}^{\prime}}\right\rangle \\
& =\frac{16}{3} S^{q-1} \sum_{\ell=1}^{N}\langle | x_{\ell}\left|, \sqrt[q^{\prime}]{\xi_{\ell} f_{\ell}^{\prime}}\right\rangle .
\end{aligned}
$$

Assume that $1<q<\infty$. Then, by Lemma 3.5 (a), we get

$$
S^{q} \leq \frac{16 \sqrt[q^{\prime}]{8 C}}{3} S^{q-1}\left\|\sum_{\ell=1}^{N}\left|x_{\ell}\right|\right\|+T S^{q-1} \sup _{\left|\epsilon_{\ell}\right|=1}\left\|\sum_{\ell=1}^{N} \epsilon_{\ell} x_{\ell}\right\|
$$

Therefore,

$$
\left(\sum_{\ell=1}^{N}\left\|x_{\ell}\right\|^{q}\right)^{\frac{1}{q}} \leq\left(\frac{16 \sqrt[q^{\prime}]{8 C}}{3}+T\right)\left\|\sum_{\ell=1}^{N}\left|x_{\ell}\right|\right\|
$$

and the space $X_{q}(\mathcal{F})$ satisfies a lower q-estimate.
If $2 \leq q<\infty$, by (b) in Lemma 3.5 we have

$$
S^{q} \leq\left(\frac{16 \sqrt[q^{\prime}]{8 C}}{3} \sqrt{2}+T\right) S^{q-1} \sup _{\left|\epsilon_{\ell}\right|=1}\left\|\sum_{\ell=1}^{N} \epsilon_{\ell} x_{\ell}\right\|
$$

and hence the space $X_{q}(\mathfrak{F})$ has the q-Orlicz property.

4. q-Concavity

In this section, we show that the space $X_{q}(\mathfrak{F})$ is not q-concave if the family \mathfrak{F} satisfies some further conditions. In order to do this we need to introduce another increasing sequence of natural numbers $\left(n_{s}\right)_{s=1}^{\infty}$ with $n_{1}=1$.

Again we need some lemmas.
Lemma 4.1. Let $s, r \in \mathbb{N}$ with $r \leq s$. Let $\left(n_{s}\right)_{s=1}^{\infty}$ be an increasing sequence of natural numbers, $n_{1}=1$, such that $n_{s} \leq k_{s+1}$ for every $s \geq 1$, and assume that the sequence $\left(\alpha_{s}\right)_{s=0}^{\infty}$ satisfies (*). Then for every function $f \in \mathcal{F}_{r}$ there exists a pair of functions f_{1} and f_{2} such that $f=f_{1}+f_{2}$ with

$$
\operatorname{card}\left(\operatorname{supp} f_{1}\right) \leq 2 m_{r}^{s} k_{s} \text { and } \sum_{i=1}^{n_{s}} f_{2}(i) \leq \alpha_{s+1}\left(\frac{n_{s}}{k_{s+1}}+\frac{C}{2^{s}}\right)
$$

Proof. Since $f \in \mathcal{G}_{r}$, we can assume that

$$
f=\sum_{\ell=0}^{\infty} 2^{-\ell} \sum_{j \leq m_{r}^{\ell}} \zeta_{j, \ell} h_{j, \ell},
$$

where $h_{j, \ell} \in \mathcal{H}, \zeta_{j, \ell} \in \mathbb{R}^{+}$and $\sum_{j \leq m_{r}^{\ell}} \zeta_{j, \ell}=1$ for all ℓ. We know that for each $h_{j, \ell} \in \mathcal{H}$ we can find $h_{j, \ell}^{\prime}$ and $h_{j, \ell}^{\prime \prime}$ such that $h_{j, \ell}=h_{j, \ell}^{\prime}+h_{j, \ell}^{\prime \prime}$, with $\operatorname{card}\left(\operatorname{supp} h_{j, \ell}^{\prime}\right)=k_{s}$ and $\left\|h_{j, \ell}^{\prime \prime}\right\|_{\ell \infty} \leq \alpha_{s+1} / k_{s+1}$. Therefore we can decompose f as $f=f_{1}+f_{2}$, where

$$
f_{1}=\sum_{\ell=0}^{s} 2^{-\ell} \sum_{j \leq m_{r}^{\ell}} \zeta_{j, \ell} h_{j, \ell}^{\prime}
$$

and

$$
f_{2}=\sum_{\ell=0}^{s} 2^{-\ell} \sum_{j \leq m_{r}^{\ell}} \zeta_{j, \ell} h_{j, \ell}^{\prime \prime}+\sum_{\ell=s+1}^{\infty} 2^{-\ell} \sum_{j \leq m_{r}^{\ell}} \zeta_{j, \ell} h_{j, \ell}
$$

Now, the support of f_{1} has at most $2 k_{s} m_{r}^{s}$ points. Indeed, since $m_{1} \geq 2$ and $\left(m_{s}\right)_{s=1}^{\infty}$ is a strictly increasing sequence we have that

$$
\sum_{\ell=0}^{s} m_{r}^{\ell} \leq\left(m_{r}^{s} \sum_{\ell=0}^{\infty}\left(\frac{1}{m_{r}}\right)^{\ell}\right)=m_{r}^{s} \frac{1}{1-\frac{1}{m_{r}}} \leq \frac{m_{r}^{s}}{1-\frac{1}{2}}=2 m_{r}^{s}
$$

Therefore,

$$
\operatorname{card}\left(\operatorname{supp} f_{1}\right) \leq k_{s} \sum_{\ell=0}^{s} m_{r}^{\ell} \leq 2 k_{s} m_{r}^{s} .
$$

On the other hand, by $\sum_{i=1}^{n_{s}} h_{j, \ell}^{\prime \prime}(i) \leq n_{s} \frac{\alpha_{s+1}}{k_{s+1}}, n_{s} \leq k_{s+1}$ and Proposition 2.1 (1),

$$
\sum_{i=1}^{n_{s}} f_{2}(i) \leq n_{s} \frac{\alpha_{s+1}}{k_{s+1}} \sum_{\ell=0}^{s} 2^{-\ell}+\sum_{\ell=s+1}^{\infty} 2^{-\ell}\left(\sum_{j=2}^{s+1} \alpha_{j}\right)
$$

Finally, by (*) we get

$$
\sum_{i=1}^{n_{s}} f_{2}(i) \leq \alpha_{s+1} \frac{n_{s}}{k_{s+1}}+C \alpha_{s+1} 2^{-s}
$$

and conclude the proof of the lemma.
As a consequence, we have:

Lemma 4.2. Let $s, r \in \mathbb{N}$ with $r \leq s$, and let $\left(n_{s}\right)_{s=1}^{\infty}$ be an increasing sequence of natural numbers with $n_{1}=1$, such that $n_{s} \leq k_{s+1}$ for every $s \geq 1$. Finally assume that the sequence $\left(\alpha_{s}\right)_{s=1}^{\infty}$ satisfies $(*)$. If $\left(f_{r}\right)_{r=1}^{s}$ are functions in \mathcal{F}_{r} and $\gamma_{r} \in \mathbb{R}^{+}$so that $\sum_{r \geq 1} \gamma_{r}=1$, then there exist f^{\prime} and $f^{\prime \prime}$ functions of \mathfrak{F}, so that

$$
\sum_{r=1}^{s} \gamma_{r} f_{r}=f^{\prime}+f^{\prime \prime}
$$

with

$$
\operatorname{card}\left(\operatorname{supp} f^{\prime}\right) \leq 2 k_{s}\left(\sum_{r=1}^{s} m_{r}^{s}\right) \quad \text { and } \quad \sum_{i=1}^{n_{s}} f^{\prime \prime}(i) \leq \alpha_{s+1}\left(\frac{n_{s}}{k_{s+1}}+\frac{C}{2^{s}}\right)
$$

The new assumption on the sequence $\left(\alpha_{s}\right)_{s=0}^{\infty}$ that will be needed is the following:
(**) There exists a constant $K \geq 0$ such that $\frac{\alpha_{s+1}}{\alpha_{s}} \leq K$ for all $s \geq 2$.

Proposition 4.3. Let $\left(n_{s}\right)_{s=1}^{\infty}$ be a 2-lacunary sequence of natural numbers, i.e., $2 n_{s} \leq n_{s+1}, n_{1}=1$, such that $k_{s} \leq n_{s} \leq k_{s+1}$ and assume that the sequence $\left(\alpha_{s}\right)_{s=0}^{\infty}$ satisfies $(* *)$. Let $\tau>0$ be a fixed integer, $1<q<\infty$ and let x and y be the vectors belonging to $X_{q}(\mathfrak{F})$ defined by

$$
x=\sum_{s=2}^{\tau} \frac{1}{\sqrt[q^{\prime}]{\alpha_{s}} \sqrt[q]{k_{s}}} \chi_{\left[k_{s-1}, k_{s}\right)} \quad \text { and } \quad y=\sum_{s=2}^{\tau} \frac{1}{\sqrt[q^{\prime}]{\alpha_{s+1}} \sqrt[q]{n_{s}}} \chi_{\left[n_{s-1}, n_{s}\right)}
$$

Then there exists a finite number of permutations of the set $\mathbb{N},\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}$, such that if we set $x_{j}=x \sigma_{j}$ then

$$
\begin{equation*}
\frac{1}{N} \sum_{j=1}^{N} x_{j}^{q}(i) \leq 2\left(2 K^{q-1}+1\right) y^{q}(i), \quad \text { for all } i \in \mathbb{N} \tag{5}
\end{equation*}
$$

Proof. Let $\mathrm{N}=n_{\tau}-n_{\tau-1}$ and let $\sigma \in \Pi(\mathbb{N})$ be defined as

$$
\begin{cases}\sigma\left(n_{s}-1\right)=n_{s-1}, & s \geq 2 \\ \sigma(i)=i+1, & \text { otherwise }\end{cases}
$$

We take $x_{j}=x \sigma^{j}, j=1, \ldots, N$. Then for $i \in\left[n_{s-1}, n_{s}\right), s \geq 2$, we have

$$
\begin{aligned}
\frac{1}{N} \sum_{j=1}^{N} x_{j}^{q}(i) & \leq \frac{1}{N}\left(\sum_{n_{s-1} \leq j<n_{s}} x^{q}(j)\right)\left(E\left[\frac{N}{n_{s}-n_{s-1}}\right]+1\right) \\
& \leq \frac{2}{n_{s}-n_{s-1}}\left(\sum_{n_{s-1} \leq j<k_{s}} x^{q}(j)+\sum_{k_{s} \leq j<n_{s}} x^{q}(j)\right) \\
& =2 \frac{\frac{1}{\alpha_{s}^{q-1} k_{s}}\left(k_{s}-n_{s-1}\right)+\frac{1}{\alpha_{s+1}^{q-1} k_{s+1}}\left(n_{s}-k_{s}\right)}{n_{s}-n_{s-1}} .
\end{aligned}
$$

Let $s \geq 2$ and $i \in\left[n_{s-1}, n_{s}\right)$. Since $k_{s} \leq n_{s} \leq k_{s+1}, n_{s} \geq 1, n_{s}-n_{s-1} \geq \frac{1}{2} n_{s}$ and $\left(\alpha_{s}\right)_{s=0}^{\infty}$ satisfies $(* *)$, we conclude that

$$
\begin{aligned}
\frac{1}{N} \sum_{j=1}^{N} x_{j}^{q}(i) & \leq 2\left(\frac{k_{s}}{\alpha_{s}^{q-1} k_{s}} \frac{1}{\left(n_{s}-n_{s-1}\right)}+\frac{\left(n_{s}-n_{s-1}\right)}{\alpha_{s+1}^{q-1} k_{s+1}} \frac{1}{\left(n_{s}-n_{s-1}\right)}\right) \\
& \leq 2\left(\frac{K^{q-1}}{\alpha_{s+1}^{q-1}\left(n_{s}-n_{s-1}\right)}+\frac{1}{\alpha_{s+1}^{q-1} k_{s+1}}\right) \\
& \leq 2\left(\frac{2 K^{q-1}}{\alpha_{s+1}^{q-1} n_{s}}+\frac{1}{\alpha_{s+1}^{q-1} n_{s}}\right)=2\left(2 K^{q-1}+1\right) y^{q}(i)
\end{aligned}
$$

The main theorem of this section is the following:
Theorem 4.4 Let $1<q<\infty$ and let $\left(n_{s}\right)_{s=1}^{\infty}$ be a sequence of natural numbers with $n_{1}=1$. Assume that the sequence $\left(\alpha_{s}\right)_{s=0}^{\infty}$ satisfies $(*)$ and $(* *)$, and that the sequences $\left(n_{s}\right)_{s=1}^{\infty}$ and $\left(k_{s}\right)_{s=1}^{\infty}$ are 2-lacunary and satisfy $k_{s} \leq n_{s} \leq k_{s+1}$ for all $s \geq 1$. Assume further that the sequences $\left(k_{s}\right)_{s=1}^{\infty},\left(n_{s}\right)_{s=1}^{\infty}$ and $\left(m_{r}\right)_{r=1}^{\infty}$ satisfy

$$
\sum_{s=1}^{\infty} \sqrt[q^{\prime}]{\frac{n_{s}}{k_{s+1}}}<\infty \quad \text { and } \quad \sum_{s=1}^{\infty} \sqrt[q]{\frac{k_{s}\left(\sum_{r=1}^{s} m_{r}^{s}\right)}{n_{s}}}<\infty
$$

Then the space $X_{q}(\mathfrak{F})$ fails to be q-concave.
Proof. Let $\tau>0$ be a fixed integer and let x, y and $x_{j}, j=1, \ldots, N$, be the vectors defined in Proposition 4.3. We know that $X_{q}(\mathfrak{F})$ is a rearrangement invariant space, $h \in \mathfrak{F}$ and $\left(k_{s}\right)_{s=1}^{\infty}$ is a lacunary sequenc. Therefore, $\left\|x_{j}\right\|=\|x\|$ for all $j=1, \ldots, N$ and

$$
\|x\| \geq\langle | x|, \sqrt[q^{\prime}]{h}\rangle=\sum_{s=2}^{\tau} \frac{\left(k_{s}-k_{s-1}\right) \sqrt[q^{\prime}]{\alpha_{s}}}{\sqrt[q^{\prime}]{\alpha_{s}} \sqrt[q]{k_{s}} \sqrt[q^{\prime}]{k_{s}}}=\sum_{s=2}^{\tau} \frac{\left(k_{s}-k_{s-1}\right)}{k_{s}} \geq \frac{1}{2}(\tau-1)
$$

Thus,

$$
\sum_{j=1}^{N}\left\|x_{j}\right\|^{q}=N\|x\|^{q} \geq \frac{N}{2^{q}}(\tau-1)^{q}
$$

In order to show that

$$
\left(\sum_{j=1}^{N}\left\|x_{j}\right\|^{q}\right)^{\frac{1}{q}} /\left\|\left(\sum_{j=1}^{N}\left|x_{j}\right|^{q}\right)^{\frac{1}{q}}\right\|
$$

is arbitrarily large, we are going to find an upper bound for the denominator in the last expression. By Proposition 4.3, we know that $(1 / N) \sum_{j \leq N} x_{j}^{q}(i) \leq 2\left(2 K^{q-1}+\right.$ 1) $y^{q}(i)$ for all $i \in \mathbb{N}$, and hence it is enough to estimate $\|y\|$.

Let $f \in \mathfrak{F}$ and assume that $f \leq \sum_{r \geq 1} \gamma_{r} f_{r}$ with $f_{r} \in \mathcal{F}_{r}, \gamma_{r} \geq 0$ and $\sum_{r \geq 1} \gamma_{r}=1$. Then

$$
\langle | y|, \sqrt[q^{\prime}]{f}\rangle=\sum_{i=1}^{\infty}|y(i)| \sqrt[q^{\prime}]{f(i)} \leq \sum_{s=2}^{\tau} I(s)+I I(s)+I I I(s)
$$

where for $s \geq 2$,

$$
\begin{aligned}
I(s) & =\frac{1}{\sqrt[q^{\prime}]{\alpha_{s+1}} \sqrt[q]{n_{s}}} \sum_{n_{s-1} \leq i<n_{s}} \sqrt[q^{\prime}]{\sum_{r=1}^{s} \gamma_{r} f_{r}(i)} \\
I I(s) & =\frac{1}{\sqrt[q^{\prime}]{\alpha_{s+1}} \sqrt[q]{n_{s}}} \sum_{n_{s-1} \leq i<n_{s}} \sqrt[q^{\prime}]{\gamma_{s+1} f_{s+1}(i)} \\
I I I(s) & =\frac{1}{\sqrt[q^{\prime}]{\alpha_{s+1}} \sqrt[q]{n_{s}}} \sum_{n_{s-1} \leq i<n_{s}} \sqrt[q^{\prime}]{\sum_{r \geq s+2} \gamma_{r} f_{r}(i)}
\end{aligned}
$$

We shall first estimate $I I(s)$. We observe that Hölder's inequality and Proposition 2.2 (1) give us

$$
\begin{aligned}
I I(s) & \leq \frac{1}{\sqrt[q^{\prime}]{\alpha_{s+1}} \sqrt[q]{n_{s}}} \sum_{i=1}^{n_{s}} \sqrt[q^{\prime}]{\gamma_{s+1} f_{s+1}(i)} \leq \frac{1}{\sqrt[q^{\prime}]{\alpha_{s+1}} \sqrt[q]{n_{s}}} \sqrt[q]{n_{s} \gamma_{s+1}^{q / q^{\prime}}} \sqrt[q^{\prime}]{\sum_{i=1}^{n_{s}} f_{s+1}(i)} \\
& \leq \frac{\gamma_{s+1}^{1 / q^{\prime}}}{\sqrt[q^{\prime}]{\alpha_{s+1}}} \sqrt[q^{\prime}]{\sum_{i=1}^{n_{s}} f_{s+1}(i) \leq \frac{\gamma_{s+1}^{1 / q^{\prime}}}{{q^{\prime}}_{\alpha_{s+1}}} \sqrt[q^{\prime}]{\sum_{\ell=1}^{s+1} \alpha_{\ell}}} .
\end{aligned}
$$

And by (*) we have

$$
I I(s) \leq \sqrt[q^{\prime}]{\gamma_{s+1}} \sqrt[q^{\prime}]{\frac{C \alpha_{s+1}}{\alpha_{s+1}}}=\sqrt[q^{\prime}]{\gamma_{s+1}} \sqrt[q^{\prime}]{C}
$$

Thus, again, using Hölder's inequality, we have

$$
\sum_{s=2}^{\tau} I I(s) \leq \sqrt[q^{\prime}]{C} \sum_{s=2}^{\tau} \sqrt[q^{\prime}]{\gamma_{s+1}} \leq \sqrt[q^{\prime}]{C} \sqrt[q]{\tau-1} \sqrt[q^{\prime}]{\sum_{s=2}^{\tau} \gamma_{s+1}} \leq \sqrt[q^{\prime}]{C} \sqrt[q]{\tau-1}
$$

To bound $I I I(s)$, we observe that by Hölder's inequality

$$
I I I(s) \leq \frac{1}{\sqrt[q^{\prime}]{\alpha_{s+1}} \sqrt[q]{n_{s}}} \sqrt[q]{n_{s}} \sqrt[q^{\prime}]{\sum_{i=1}^{n_{s}} \sum_{r \geq s+2} \gamma_{r} f_{r}(i)} \leq \sqrt[q^{\prime}]{\frac{n_{s}}{k_{s+1}}}
$$

where in the last step we used $\left\|f_{r}\right\|_{\ell_{\infty}} \leq \frac{\alpha_{r-1}}{k_{r-1}} \leq \frac{\alpha_{s+1}}{k_{s+1}}$ for $r \geq s+2$.
Finally, we shall estimate $I(s)$. Let us fix $s \geq 2$. By Lemma 4.2, we can find functions f^{\prime} and $f^{\prime \prime}$ such that $\sum_{r=1}^{s} \gamma_{r} f_{r}=f^{\prime}+f^{\prime \prime}$ with

$$
\operatorname{card}\left(\operatorname{supp} f^{\prime}\right) \leq 2 k_{s}\left(\sum_{r=1}^{s} m_{r}^{s}\right) \quad \text { and } \quad \sum_{i=1}^{n_{s}} f^{\prime \prime}(i) \leq \alpha_{s+1}\left(\frac{n_{s}}{k_{s+1}}+\frac{C}{2^{s}}\right)
$$

This allows us to split $I(s)$ as $I(s) \leq I V(s)+V(s)$ for all $s \geq 2$, where

$$
I V(s)=\frac{1}{\sqrt[q^{\prime}]{\alpha_{s+1}} \sqrt[q]{n_{s}}} \sum_{n_{s-1} \leq i<n_{s}} \sqrt[q^{\prime}]{f^{\prime}(i)}
$$

and

$$
V(s)=\frac{1}{\sqrt[q^{\prime}]{\alpha_{s+1}} \sqrt[q]{n_{s}}} \sum_{n_{s-1} \leq i<n_{s}} \sqrt[q^{\prime}]{f^{\prime \prime}(i)}
$$

By Hölder's inequality,

$$
\begin{aligned}
I V(s) & \leq \frac{1}{\sqrt[q^{\prime}]{\alpha_{s+1}} \sqrt[q]{n_{s}}} \sum_{i=1}^{n_{s}} \sqrt[q^{\prime}]{f^{\prime}(i) \chi_{\operatorname{supp} f^{\prime}}(i)} \\
& \leq \frac{1}{\sqrt[q^{\prime}]{\alpha_{s+1}} \sqrt[q]{n_{s}}}\left(\sum_{i=1}^{n_{s}} \chi_{\operatorname{supp} f^{\prime}}(i)\right)^{\frac{1}{q}}\left(\sum_{i=1}^{n_{s}} f^{\prime}(i)\right)^{\frac{1}{q^{\prime}}} \\
& \leq \frac{1}{\sqrt[q^{\prime}]{\alpha_{s+1}} \sqrt[q]{n_{s}}}\left(\operatorname{card}\left(\operatorname{supp} f^{\prime}\right)\right)^{\frac{1}{q}}\left(\sum_{i=1}^{n_{s}} f^{\prime}(i)\right)^{\frac{1}{q^{\prime}}}
\end{aligned}
$$

Since $\operatorname{card}\left(\operatorname{supp} f^{\prime}\right) \leq 2 k_{s}\left(\sum_{r=1}^{s} m_{r}^{s}\right),(*)$, Proposition 2.2 (1) yields

$$
I V(s) \leq \sqrt[q]{\frac{2 k_{s}\left(\sum_{r=1}^{s} m_{r}^{s}\right)}{n_{s}}} \sqrt[q^{\prime}]{\frac{\sum_{\ell=1}^{s+1} \alpha_{\ell}}{\alpha_{s+1}}}=\sqrt[q]{2} \sqrt[q^{\prime}]{C} \sqrt[q]{\frac{k_{s}\left(\sum_{r=1}^{s} m_{r}^{s}\right)}{n_{s}}}
$$

On the other hand, Hölder's inequality and the fact that $\sum_{i=1}^{n_{s}} f^{\prime \prime}(i) \leq \alpha_{s+1}\left(\frac{n_{s}}{k_{s+1}}+\right.$ $\frac{C}{2^{s}}$) imply that

$$
V(s) \leq \frac{1}{\sqrt[q^{\prime}]{\alpha_{s+1}}} \sqrt[q^{\prime}]{\sum_{i=1}^{n_{s}} f^{\prime \prime}(i)} \leq \sqrt[q^{\prime}]{\frac{n_{s}}{k_{s+1}}+C 2^{-s}}
$$

It follows from these relations that

$$
\begin{aligned}
\langle | y|, \sqrt[q^{\prime}]{f}\rangle & \leq \sqrt[q^{\prime}]{C} \sqrt[q^{\prime}]{\tau-1}+2 \sum_{s=2}^{\tau} \sqrt[q^{\prime}]{\frac{n_{s}}{k_{s+1}}}+\sqrt[q^{\prime}]{C} \sum_{s=2}^{\tau} \frac{1}{2^{s / q^{\prime}}} \\
& +\sqrt[q^{\prime}]{C} \sqrt[q]{2} \sum_{s=2}^{\tau} \sqrt[q]{\frac{k_{s}\left(\sum_{r=1}^{s} m_{r}^{s}\right)}{n_{s}}}
\end{aligned}
$$

Since we are assuming that $A=\sum_{s=1}^{\infty} \sqrt[q^{\prime}]{n_{s} / k_{s+1}}$ and $B=\sum_{s=1}^{\infty} \sqrt[q]{k_{s}\left(\sum_{r=1}^{s} m_{r}^{s}\right) / n_{s}}$ are finite, we have

$$
\langle | y|, \sqrt[q^{\prime}]{f}\rangle \leq \sqrt[q^{\prime}]{C} \sqrt[q]{\tau-1}+2 A+\frac{\sqrt[q^{\prime}]{C}}{2^{1 / q^{\prime}}-1}+\sqrt[q]{2} \sqrt[q^{\prime}]{C} B \leq \sqrt[q^{\prime}]{C} \sqrt[q]{\tau-1}+S
$$

where S is a constant independent of τ. Putting this altogether, we have

$$
\begin{aligned}
\frac{\left(\sum_{j=1}^{N}\left\|x_{j}\right\|^{q}\right)^{\frac{1}{q}}}{\left\|\left(\sum_{j=1}^{N}\left|x_{j}\right|^{q}\right)^{\frac{1}{q}}\right\|} & \left.\geq \frac{\frac{1}{2} \sqrt[q]{N}(\tau-1)}{\sqrt[q]{2\left(2 K^{q-1}+1\right)} \sqrt[q]{N}(\sqrt[q^{\prime}]{C} \sqrt[q]{\tau-1}+S}\right) \\
& =\frac{(\tau-1)}{2 \sqrt[q]{2\left(2 K^{q-1}+1\right)}(\sqrt[q^{C}]{C} \sqrt[q]{\tau-1}+S)}
\end{aligned}
$$

This expression goes to infinity as τ goes to infinity.
Proof of the Theorem 1.1. Let $1<q<\infty$ and take $\left(k_{s}\right)_{s=0}^{\infty}$ to be the sequence of natural numbers defined by

$$
\begin{gathered}
k_{0}=k_{1}=1, \\
k_{s+1}=3^{2 s+2 s^{2}\left(E\left[q^{\prime}\right]+1\right)} k_{s}^{1+s\left(E\left[q^{\prime}\right]+1\right)}
\end{gathered}
$$

and the sequences

$$
\alpha_{s}=3^{2 s},\left(\alpha_{0}=9\right), \quad m_{s}=\left(3^{2 s} k_{s}\right)^{E\left[q^{\prime}\right]+1}, \quad \eta_{s}=3^{s}, \quad n_{s}=\frac{k_{s+1}}{3^{s}}
$$

for all $s \geq 1$. These sequences satisfy the assumptions in Theorem 3.7 and in Theorem 4.4; hence $X_{q}(\mathfrak{F})$ satisfies a lower q-estimate and is not q-concave.

References

1. J. Creekmore, Type and cotype in Lorentz $L_{p q}$ spaces, Indag. Math. 43 (1981), 145-152.
2. J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.
3. J. Lindenstrauss, and L. Tzafriri, Classical Banach Spaces I, Lecture Notes in Mathematics, vol. 338, Springer-Verlag, New York, 1973.
4. J. Lindenstrauss, and L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, New York, 1979.
5. B. Maurey, Type et cotype dans les espaces munis de structures locales inconditionelles, Ecole Polyt. Palaiseau, Sém. Maurey-Schwartz 1973/74, Exp. XXIVXXV.
6. E. M. Semenov, and A. M. Shteinberg, The Orlicz property of symmetric spaces, Soviet Math. Dokl. 42 (1991), 679-682.
7. M. Talagrand, Cotype of operators from $C(K)$, Invent. Math. 107 (1992), 1-40.
8. M. Talagrand, Cotype and ($q, 1$)-summing norm in a Banach space, Invent. Math. 110 (1992), 545-556.
9. M. Talagrand, Orlicz property and cotype in symmetric sequences spaces, Israel J. Math. 87 (1994), 181-192.

Oscar Blasco
Departamento de Análisis Matemático
Universidad de Valencia
Doctor Moliner, 50
E-46100 Burjassot (Valencia), Spain
E-mail: Oscar.Blasco@uv.es
Teresa Signes
Departamento de Análisis Matemático
Universidad Complutense de Madrid
28040 Madrid, Spain
E-mail: Teresa_Signes@mat.ucm.es

[^0]: Received March 31, 2000; revised August 9, 2000.
 Communicated by B.-L. Lin.
 2000 Mathematics Subject Classification: 46B45.
 The research was partially supported by the Spanish grant DGESIC PB98-1426, DGES (PB97-0254) and FP-95 of Ministerio de Educación y Ciencia, respectively.
 Key words and phrases: Symmetric sequence spaces, concarity, Orlicz property.

