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q-CONCAVITY AND q-ORLICZ PROPERTY ON

SYMMETRIC SEQUENCE SPACES

Oscar Blasco and Teresa Signes

Abstract. We give a general method for constructing symmetric sequence

spaces that for 1 < q < 2 satisfy a lower q-estimate but fail to be q-concave
and, for 2 ≤ q < ∞, have the q-Orlicz property but fail to be q-concave. In
particular, this gives examples of spaces with the 2-Orlicz property but without
cotype 2.

1. INTRODUCTION

Let 1 ≤ q < ∞. A Banach lattice X is said to be q-concave if there exists a
constant C ≥ 0 such that

( n∑

k=1

‖xk‖q
X

) 1
q ≤ C

∥∥∥
( n∑

k=1

|xk|q
) 1

q
∥∥∥

X

for every choice of elements x1, . . . , xn in X .

A Banach latticeX is said to satisfy a lower q-estimate if there exists a constant
C ≥ 0 so that, for every choice of elements x1, . . . , xn in X , we have

( n∑

k=1

‖xk‖q
X

) 1
q ≤ C

∥∥∥
( n∑

k=1

|xk|
)∥∥∥

X
.

Obviously q-concavity implies lower q-estimate and both notions are the same
when q = 1. On the other hand, there are Banach lattices that satisfy a lower
q-estimate but fail to be q-concave (see [1, Prop. 3.1], [4, Ex. 1.f.19 and 1.f.20]).
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Two related concepts from the theory of Banach spaces are the following:

A Banach space X is said to have cotype q, 2 ≤ q < ∞, if there exists a
constant C ≥ 0 so that

( n∑

k=1

‖xk‖q
X

) 1
q ≤ C

∫ 1

0

∥∥∥
n∑

k=1

rk(t)xk

∥∥∥
X

dt

for every choice of elements x1, . . . , xn in X , where rk stands for the Rademacher

functions.

X is said to have the q-Orlicz property if the identity operator id : X −→ X
is (q, 1)-summing. That is, if there exists a constant C ≥ 0 such that regardless of
the choice of x1, . . . , xn in X we have

( n∑

k=1

‖xk‖q
X

) 1
q ≤ C sup

|εk |=1

∥∥∥
n∑

k=1

εkxk

∥∥∥
X

.

Let us observe that every Banach space with cotype q has the q-Orlicz property,
2 ≤ q < ∞. The converse was an open problem for some time and was solved by
Talagrand in [7] and [8]. Actually, Talagrand showed in [8] that if a Banach space

has the q-Orlicz property for 2 < q < ∞, then it also has cotype q. Also, he proved

in [7] that the situation for q = 2 is a bit different. He constructed an example with
the 2-Orlicz property but without cotype 2.

There are many connections between all these notions. The reader is referred to

[2] or [4] for the following chain of implications.

For 2 < q < ∞, we have that
q-concavity ⇒ cotype q ⇔ q-Orlicz property ⇔ lower q-estimate.

The examples mentioned above show that the converse of the first implication

fails.

For q = 2, we have that
2-concavity ⇔ cotype 2 ⇒ 2-Orlicz property ⇒ lower 2-estimate.
The converse of the two last implications fail. E. M. Semenov and A. M.

Shteinberg [6] showed that the Lorentz space L2,1([0, 1]) satisfies a lower 2-estimate
but fails to have the 2-Orlicz property. As we said before, M. Talagrand in [7]
constructed an example with the 2-Orlicz property but without cotype 2. Moreover,
in [9] he was even able to construct a counterexample in the setting of symmetric

sequence spaces.

The aim of this paper is to continue the study of the relationship between all these

notions and to give a general method, which is inspired by Talagrand’s techniques

in [9], to construct symmetric sequence spaces that satisfy a lower q-estimate but
fail to be q-concave, 1 < q < 2, and that have the q-Orlicz property but fail to be

q-concave for 2 ≤ q.
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Let us recall that a symmetric sequence space (X, ‖ · ‖) is a Banach space of
sequences such that

1. if x ∈ X and |y(i)| ≤ |x(i)| for all i ∈ N, then y ∈ X and ‖y‖ ≤ ‖x‖;
2. if x ∈ X and σ ∈ Π(N), then xσ ∈ X and ‖xσ‖ = ‖x‖.

We shall consider the following method to construct symmetric sequence spaces

generated by a family of sequences.

Let F be a family sequences in `∞ with the following properties:

( i ) (Solid) If f ∈ F and |g(i)| ≤ |f(i)| for all i ∈ N, then g ∈ F .

( ii ) (Symmetric) If f ∈ F and σ ∈ Π(N), then fσ ∈ F .

(iii) (Bounded) There exists a constant C ≥ 0 such that

sup
f∈F

‖f‖`∞ ≤ C.

In this case, F will be called a generating family.

Given 1 < q < ∞, we consider Xq(F) the space of sequences such that

‖x‖Xq(F) = sup
f∈F

〈|x|, |f |
1
q′ 〉 < ∞,

where 〈x, f〉 means
∑∞

i=1 x(i)f(i).
It is easy to see that Xq(F) is a symmetric sequence space and

`1 ↪→ Xq(F) ↪→ `∞

with

‖x‖`∞(sup
f∈F

‖f‖`∞)1/q′ ≤ ‖x‖ ≤ ‖x‖`1 sup
f∈F

‖f‖1/q′

`∞
.

Our main theorem can now be stated as follows.

Theorem 1.1. Let 1 < q < ∞. There exists a generating family F such that

Xq(F) satisfies a lower q-estimate but is not q-concave.

As a corollary, we have that Xq(F), for 2 < q < ∞, are examples of spaces of
cotype q which are not q-concave and X2(F) satisfies the 2-Orlicz property but is
not of cotype 2.
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2. FAMILIES GENERATED BY A FUNCTION

In this section, we give the main construction for our families.

Let (ks)∞s=0 be a strictly increasing sequence of natural numbers with k0 =
k1 := 1, and let (αs)∞s=0 be a sequence in R+ with α0 = α1, such that the sequence

(αs/ks)∞s=1 is decreasing and

lim
s→∞

αs

ks
= 0.(1)

Step 1.

We start with a single function on N,

h =
∞∑

s=2

αs

ks
χ[ks−1,ks),

and the set of functions

H = {hσ : σ ∈ Π(N)}.

By (1), we know that h ∈ co(N) and so H ⊆ co(N). Observe also that H is

symmetric and bounded by α2/k2.

Proposition 2.1. The following properties hold:

1.
∑

i≤ks
h(i) ≤

∑s
`=2 α` for s ≥ 2.

2. If h′ ∈ H and A ⊆ N with card(A) ≤ ks, s ≥ 2, then

∑

i∈A

h′(i) ≤
s∑

`=2

α`.

3. Let h′ ∈ H and s ≥ 0. Then, there exists A ⊆ N such that card(A) = ks

and ‖h′χAc‖`∞ ≤ αs+1/ks+1.

4. Let h′ ∈ H and s ≥ 0. Then, there exist h′
1 and h′

2, functions on N, such
that

h′ = h′
1 + h′

2 with





card (supp h′
1) = ks,

‖h′
2‖`∞ ≤ αs+1

ks+1
.

Proof. 1) Let s ≥ 2. Then

∑

i≤ks

h(i) ≤
s∑

`=2

α`

k`
(k` − k`−1) +

αs+1

ks+1
≤

s−1∑

`=2

α`

k`
k` +

αs

ks
(ks − ks−1 + 1) ≤

s∑

`=2

α`.
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3) Suppose that h′ = hσ, σ ∈ Π(N), and let A = σ−1([1, ks]). If i 6∈ A, then

h′(i) = h(j) with j > ks (j = σ(i)), and hence h′(i) = h(j) ≤ αs+1/ks+1.

2) and 4) follow from 1) and 3), respectively.

Step 2.

For each m ∈ N, we consider the family:

com(H) =
{ m∑

j=1

ζjhj : hj ∈ H , ζj ∈ R+,

m∑

j=1

ζj = 1
}
.

The family com(H) is symmetric, bounded by α2/k2.

Let (mr)∞r=1 be a strictly increasing sequence of natural numbers, m1 ≥ 2.
Then, for r ∈ N, we define

Gr =
{

f : N −→ R+ : f ≤
∞∑

`=0

2−`f` with f` ∈ com`
r
(H)

}
.

Again, Gr ⊆ co(N) and H ⊆ G1 ⊆ G2 ⊆ . . . ⊆ Gr ⊆ Gr+1 ⊆ . . . .

Proposition 2.2. Let r ∈ N, f ∈ Gr and s ≥ 2. Then

1.
∑

i∈A f(i) ≤
∑s

`=2 α` for every A ⊆ N with card(A) ≤ ks.

2. There exists A ⊆ N such that card(A) = ks and

‖fχAc‖`∞ ≤
∑s

`=2 α`

ks
.

3. There exist f1 and f2, functions on N, such that

f = f1 + f2 with





card (supp f1) = ks

‖f2‖`∞ ≤
∑s

`=2 α`

ks
.

Proof. It suffices to show the result for functions in com(H) for a fixedm ∈ N.
1)is immediate. To prove 2), let f ∈ com(H) ⊆ co(N). Then there exists

i1 ∈ N such that f(i1) ≥ f(i) for all i ∈ N. We consider now N1 = N \ {i1}.
Since f ∈ co(N1), there exists i2 ∈ N1 such that f(i2) ≥ f(i) for all i ∈ N1.

Hence we can find A = {i1, . . . , iks} such that f(j) ≤ f(i) if i ∈ A and j 6∈ A.
Therefore,

ks sup
j 6∈A

f(j) ≤
∑

i∈A

f(i) ≤
s∑

`=2

α`.
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3) follows from 2).

The family Gr is a generating family which is almost convex.

Lemma 2.3. Let r ∈ N and let (fj)j≤mr be functions in Gr. Let ξj ∈ R+,

j = 1, . . . , mr, such that
∑

j≤mr
ξj = 1. Then

1
2

∑

j≤mr

ξjfj ∈ Gr.

Proof. Since fj ∈ Gr, we have

fj ≤
∞∑

`=0

2−`
∑

s≤m`
r

γ`,s,jh`,s,j

with h`,s,j ∈ H, γ`,s,j ≥ 0 and
∑

s≤m`
r
γ`,s,j = 1 for all `, j. Hence

1
2

∑

j≤mr

ξjfj ≤
∞∑

`=0

2−(`+1)
∑

s ≤ m`
r

j ≤ mr

ξjγ`,s,jh`,s,j

and the point is that there are at most m`+1
r terms in the last summation.

Finally, we glue the families Gr as follows:

G =
{

0 ≤ f ≤
∞∑

r=1

γrfr : fr ∈ Gr, γr ≥ 0,

∞∑

r=1

γr = 1
}
.

The family G is again a generating family with the following convexity property.

Lemma 2.4. Let (g`)`≤N be a finite collection of functions in G and let ξ` ∈ R+,

` = 1, . . . , N, such that
∑

`≤N ξ` = 1. Then

1
8

N∑

`=1

ξ`g` ∈ G.

Proof. Let us write g` =
∑∞

r=1 γ`,rf`,r with f`,r ∈ Gr, γ`,r ∈ R+ and∑∞
r=1 γ`,r = 1 for all ` ≤ N . We let IN = [1, N ] ∩ N and for each r ≥ 1

we set

g′r =
∑

`∈[1,mr ]∩IN

ξ`γ`,rf`,r and νr =
∑

`∈[1,mr ]∩IN

ξ`γ`,r.
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By Lemma 2.3, we have that g′r ∈ 2νrGr. On the other hand, if we fix r and take

s ≤ r, we can show that
∑

`∈(mr ,mr+1 ]∩IN

ξ`γ`,sf`,s ∈ 2wsGr+1(2)

where ws =
∑

`∈(mr ,mr+1 ]∩IN
ξ`γ`,s. Indeed, for all s ≤ r, f`,s ∈ Gs and Gs ⊆ Gr

so that f`,s ∈ Gr+1; by Lemma 2.3, we get (2). We take now

g′′r =
∑

s≤r

∑

`∈(mr ,mr+1 ]∩IN

ξ`γ`,sf`,s and δr =
∑

s≤r

ws.

Then by Lemma 2.3, we have that g′′r ∈ 4δrGr+1, since r ≤ mr. Now observe that

∞∑

r=1

(νr + δr) =
∞∑

r=1

N∑

`=1

ξ`γ`,r = 1,

because

∞∑

r=1

δr =
∞∑

r=1

∑

s≤r

∑

`∈(mr ,mr+1 ]∩IN

ξ`γ`,s =
∞∑

r=1

∑

`∈(mr ,mr+1 ]∩IN

∑

s≤r

ξ`γ`,s

=
∞∑

r=1

∑

`∈(mr ,N ]∩IN

ξ`γ`,r.

Therefore, using Lemma 2.3, one more time we know that the function g =∑
r≥1 g′r + g′′r belongs to 8G. Now we are going to see that g =

∑N
`=1 ξ`g`,

so that
∑N

`=1 ξ`g` ∈ 8G. Indeed,

N∑

`=1

ξ`g` =
∞∑

r=1

N∑

`=1

ξ`γ`,rf`,r =
∞∑

r=1

( ∑

`∈[1,mr ]∩IN

ξ`γ`,rf`,r +
∑

`∈(mr ,N ]∩IN

ξ`γ`,rf`,r

)

=
∞∑

r=1

(
g′r +

∑

`∈(mr ,N ]∩IN

ξ`γ`,rf`,r

)
.

But

∞∑

r=1

∑

`∈(mr ,N ]∩IN

ξ`γ`,rf`,r =
∞∑

r=1

∑

`∈(mr ,mr+1 ]∩IN

∑

s≤r

ξ`γ`,sf`,s =
∞∑

r=1

g′′r .

Therefore,
N∑

`=1

ξ`g` =
∞∑

r=1

g′r + g′′r .
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Our first result about concavity of these spaces is the following.

Theorem 2.5. Let 1 < q < ∞. Then the space Xq(G) is q-concave.

Proof. Let x1, . . . , xN be a finite number of elements in Xq(G). We set
Sq =

∑N
`=1 ‖x`‖q and ξ` = ‖x`‖q/Sq. Then

∑N
`=1 ξ` = 1.

For each `, take f` ∈ G such that

‖x`‖ ≤ 4
3
〈|x`|, q′

√
|f`|〉.

Hence,

Sq ≤ 4
3

N∑

`=1

‖x`‖(q−1)〈|x`|, q′
√
|f`|〉 =

4
3

N∑

`=1

Sq/q′ q′
√

ξ` 〈|x`|, q′
√
|f`|〉

=
4
3
Sq−1

N∑

`=1

∞∑

i=1

|x`(i)| q′
√

|ξ`f`(i)|.

Using Hölder’s inequality and Lemma 2.4, we have that
∑

`≤N |ξ`f`| ∈ 8G. Now

Sq ≤ 4
3
Sq−1

∞∑

i=1

( N∑

`=1

|x`(i)|q
) 1

q
( N∑

`=1

|ξ`f`(i)|
) 1

q′ ≤ 1
6
Sq−1

∥∥∥
( N∑

`=1

|x`|q
) 1

q
∥∥∥.

This implies
( N∑

`=1

‖x`‖q
) 1

q ≤ 1
6

∥∥∥
( N∑

`=1

|x`|q
) 1

q
∥∥∥

and the proof is complete.

Step 3. For each r ≥ 1, we write

Fr =
{
f ∈ Gr : ‖f‖`∞ ≤ αr−1

kr−1

}
.

Again, Fr ⊆ co(N) and Fr are generating families with F1 ⊆ F2 but now, for

r ≥ 2, Fr 6⊂ Fr+1.

Finally, we define the generating family

F =
{
0 ≤ f ≤

∞∑

r=1

γrfr : fr ∈ Fr, γr ≥ 0,

∞∑

r=1

γr = 1
}
.

We have to observe that the family F depends on the sequences (ks)∞s=0, (αs)∞s=0

and (mr)∞r=1.
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3. q-ORLICZ PROPERTY AND LOWER q-ESTIMATE

In this section we prove under suitable conditions on F that the space Xq(F)
satisfies a lower q-estimate for 1 < q < ∞ and has the q-Orlicz property for
2 ≤ q < ∞ (the reader should notice that this is stronger only for q = 2).

We begin with some lemmas to be used in the sequel. The first one follows

from Lemma 2.3.

Lemma 3.1. Let r ∈ N, let (fj)j≤mr be functions in Fr and let ξj ∈ R+,

j = 1, . . . , mr, be such that
∑

j≤mr
ξj = 1. Then

1
2

∑

j≤mr

ξjfj ∈ Fr.

From here on we will assume another property on the sequence (αs)∞s=0:

(∗) There exists a constant C ≥ 1 such that
s∑

`=2

α` ≤ Cαs for all s ≥ 2.

Lemma 3.2. Let s, r ∈ N with s ≤ r, let (fj)j≤mr+1 be a collection of

functions in Fs and let ξj ∈ R+, j = 1, . . . , mr+1, such that
∑

j≤mr+1
ξj = 1. If

the sequence (αs)∞s=0 satisfies (∗), then there exists As,r ⊆ N with card(As,r) = kr

such that

χAc
s,r

1
2C

∑

j≤mr+1

ξjfj ∈ Fr+1.

Proof. If r = s = 1, we only have to notice that F1 ⊆ F2. Assume that

r ≥ 2. We define g = (1/2)
∑

j≤mr+1
ξjfj . If we show that g ∈ Gr+1 and that

‖ 1
C gχAc

s,r
‖`∞ ≤ αr/kr for a set As,r of integers, then the proof will be finished.

By hypothesis, fj ∈ Gs ⊆ Gr ⊆ Gr+1 for all j ≤ mr+1, so by Lemma 2.3,

g ∈ Gr+1. On the other hand, by Proposition 2.2 (2) and (∗) we can find As,r ⊆ N
with card(As,r) = kr such that

∥∥∥ 1
C

gχAc
s,r

∥∥∥
`∞

≤
∑r

`=2 α`

Ckr
≤ αr

kr
.

Our next result shows a convexity property of the family F.

Theorem 3.3. Let (g`)`≤N be a finite collection of functions in F given by

g` ≤
∞∑

r=1

γ`,rf`,r ,
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where f`,r ∈ Fr, γ`,r ∈ R+ and
∑∞

r=1 γ`,r = 1 for all ` ≤ N . Let ξ` ∈ R+ be

such that
∑

`≤N ξ` = 1 and assume that the sequence (αs)∞s=0 satisfies (∗). Then
there exists Br ⊆ N with card(Br) ≤ rkr, r ≥ 1, such that the functions defined

by

f ′
` = χBc

r(`)

r(`)∑

r=1

γ`,rf`,r +
∞∑

r=r(`)+1

γ`,rf`,r,

satisfy

1
8C

N∑

`=1

ξ`f
′
` ∈ F,

where r(`) is chosen so that mr(`) < ` ≤ mr(`)+1.

Proof. Write IN = [1, N ]∩ N and set

g′r =
∑

`∈[1,mr]∩IN

ξ`γ`,rf`,r and νr =
∑

`∈[1,mr]∩IN

ξ`γ`,r.

Then by Lemma 3.1, we have that g′r ∈ 2νrFr.

Fix r ∈ N and let s ≤ r. We consider the functions (f`,s)`∈(mr ,mr+1 ]∩IN
⊆ Fs.

Then, by Lemma 3.2, we know that there exists As,r ⊆ N with card(As,r) = kr

such that

χAc
s,r

∑

`∈(mr ,mr+1 ]∩IN

ξ`γ`,sf`,s ∈ 2CwsFr+1,

where ws =
∑

`∈(mr ,mr+1 ]∩IN
ξ`γ`,s. Set Br = ∪r

s=1As,r, and note that card(Br)
≤ rkr. Since r ≤ mr, Lemma 3.1, gives that the function

g′′r = χBc
r

∑

s≤r

∑

`∈(mr ,mr+1 ]∩IN

ξ`γ`,sf`,s ≤
∑

s≤r

χAc
s,r

∑

`∈(mr ,mr+1 ]∩IN

ξ`γ`,sf`,s

belongs to 4CδrFr+1, where δr =
∑

s≤r ws. Therefore, applying Lemma 3.1 again

we see that the function

g =
∞∑

r=1

g′r + g′′r

belongs to 8CF. Observe also that
∑∞

r=1 νr + δr = 1.
Now we are going to define functions f ′

` such that
∑

`≤N ξ`f
′
` = g. Let us fix

` ∈ {m1, . . . , N}. Then there exists a unique r such that mr < ` ≤ mr+1. We

denote by r(`) this unique r and define the function

f ′
` = χBc

r(`)

r(`)∑

r=1

γ`,rf`,r +
∞∑

r=r(`)+1

γ`,rf`,r.
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For ` ∈ {1, . . . , m1}, we define (corresponding to r(`) = 0) the function f ′
` =∑∞

r=1 γ`,rf`,r. Thus f ′
` can also be expressed as

f ′
` =

∞∑

r=1

γ`,rf`,rh`,r ,

where h`,r = 1 if ` ≤ mr and h`,r = χBc
r(`)

if mr < `. The same proof as in

Lemma 2.4, gives that
∑N

`=1 ξ`f
′
` = g ∈ 8CF.

We need also some general lemmas.

Lemma 3.4. Let F be a generating family and let 1 < q < ∞. Assume that
(x`)`≤N is a finite collection of elements in Xq(F) and B ⊆ N. Then

N∑

`=1

‖x`χB‖ ≤ card(B) sup
|ε`|=1

∥∥∥
N∑

`=1

ε`x`

∥∥∥.

Proof. Set c = supf∈F ‖f‖`∞ . Since c1/q′‖x‖`∞ ≤ ‖x‖ ≤ c1/q′‖x‖`1 , we have

N∑

`=1

‖x`χB‖ ≤
N∑

`=1

∑

i∈B

|x`(i)|C1/q′ =
∑

i∈B

N∑

`=1

|x`(i)|C1/q′

≤ card(B) sup
|ε`|=1

∥∥∥
N∑

`=1

ε`x`

∥∥∥
`∞

C1/q′ ≤ card(B) sup
|ε`|=1

∥∥∥
N∑

`=1

ε`x`

∥∥∥,

which yields the result.

Lemma 3.5. Let F be a generating family, ξ` ∈ R+, ` = 1, . . . , N, and let

(f`)`≤N be a finite collection of functions in F such that
∑

`≤N ξ`f` ∈ F .

a) If 1 < q < ∞, then

N∑

`=1

〈|x`|, q′
√

ξ`f`〉 ≤
∥∥∥

N∑

`=1

|x`|
∥∥∥.

b) If 2 ≤ q < ∞, then

N∑

`=1

〈|x`|, q′
√

ξ`f`〉 ≤
√

2 sup
|ε`|=1

∥∥∥
N∑

`=1

ε`x`

∥∥∥.
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Proof. Since
∑

`≤N ξ`f` ∈ F , by Hölder’s inequality we get

N∑

`=1

〈|x`|, q′
√

ξ`f`〉 ≤
〈( N∑

`=1

|x`|q
) 1

q
, q′

√√√√
N∑

`=1

ξ`f`

〉
≤

∥∥∥
( N∑

`=1

|x`|q
) 1

q
∥∥∥.

If 1 < q < ∞, then
∥∥∥
( N∑

`=1

|x`|q
) 1

q
∥∥∥ ≤

∥∥∥
N∑

`=1

|x`|
∥∥∥.

Hence a) is true. If q ≥ 2, by Kintchine’s inequality (see [2, 1.10]) there exists a
constant B1 =

√
2 such that for all i ∈ N,

( N∑

`=1

|x`(i)|q
) 1

q ≤
( N∑

`=1

|x`(i)|2
) 1

2 ≤ B1

∫ 1

0

∣∣∣
N∑

`=1

r`(t)x`(i)
∣∣∣dt.

Therefore,

N∑

`=1

〈|x`|, q′
√

ξ`f`〉 ≤
√

2
∫ 1

0

∥∥∥
N∑

`=1

r`(t)x`(i)
∥∥∥dt ≤

√
2 sup

t∈[0,1]

∥∥∥
N∑

`=1

r`(t)x`

∥∥∥.

From this we get b) and the proof is complete.

Lemma 3.6. Let F be a generating family and let 1 < q < ∞. Suppose that
(ηr)∞r=1 is an increasing sequence of real numbers and that {x1, . . . , xN} is a finite
collection of elements in Xq(F) such that the sequence (‖x`‖)`≤N is decreasing.

Let (Cr)r≥1 be subsets of N. Consider, for r ≥ 1, the subsets of N,

Hr = {` : 1 ≤ ` ≤ N, mr < ` ≤ mr+1 and ‖x`‖ ≤ ηr‖x`χCr‖},

and let H = ∪r≥1Hr. Then,

∑

`∈H

‖x`‖q ≤
( N∑

`=1

‖x`‖q
) 1

q′ sup
|ε`|=1

∥∥∥
N∑

`=1

ε`x`

∥∥∥
( ∞∑

r=1

ηrcard(Cr)
q′
√

mr

)
.

Proof. We assume that sup|ε`|=1 ‖
∑N

`=1 ε`x`‖ = 1. By Lemma 3.4 and the
definition of Hr, we know that

∑

`∈Hr

‖x`‖ ≤ ηr

∑

`∈Hr

‖x`χCr‖ ≤ ηrcard(Cr).

Thus
∑

`∈Hr

‖x`‖q ≤ (max
`∈Hr

‖x`‖q−1)
( ∑

`∈Hr

‖x`‖
)
≤ (max

`∈Hr

‖x`‖q−1)ηrcard(Cr).
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On the other hand, since (‖x`‖)`≤N is decreasing we get

‖x`‖q ≤
∑N

`=1 ‖x`‖q

`
≤

∑N
`=1 ‖x`‖q

mr

if ` ∈ Hr and so ‖x`‖q−1 ≤ (
∑N

`=1 ‖x`‖q)
1
q′

q′
√

mr
. Whence we conclude that

∑

`∈H

‖x`‖q ≤
( N∑

`=1

‖x`‖q
) 1

q′
( ∞∑

r=1

ηrcard(Cr)
q′
√

mr

)
.

We are now ready to study the q-Orlicz property and a lower q-estimate of the
space Xq(F).

Theorem 3.7. Let (ηr)∞r=1 be an increasing sequence of real numbers with

ηr ≥ 2. Assume that the sequence (αs)∞s=0 satisfies (∗) and that the sequences
(ηr)∞r=1, (kr)∞r=1 and (mr)∞r=1 satisfy

∞∑

r=1

rηrkr

q′
√

mr
< ∞.(3)

Then if 1 < q < ∞ the space Xq(F) satisfies a lower q-estimate. Furthermore, if

2 ≤ q < ∞ the space Xq(F) has the q-Orlicz property.

Proof. Let N ∈ N and let (x`)`≤N a collection of elements in Xq(F). We
assume that the sequence (‖x`‖)`≤N is decreasing. We set Sq =

∑N
`=1 ‖x`‖q and

ξ` = ‖x`‖q

Sq . Hence
∑N

`=1 ξ` = 1.
By definition of the norm in Xq(F), for each ` there exists a function g` ∈ F

such that

‖x`‖ ≤ 4
3
〈|x`|, g`

1/q′〉.(4)

If we apply Theorem 3.3 to the functions g` and the numbers ξ` = ‖x`‖q

Sq , then

we can find functions f ′
` so that

∑N
`=1 ξ`f

′
` ∈ 8CF and subsets Br ⊆ N with

card(Br)≤ rkr.

In order to estimate Sq, we split it as

Sq =
N∑

`=1

‖x`‖q =
m1∑

`=1

‖x`‖q +
∑

`∈H

‖x`‖q +
∑

6̀∈H∪{1,... ,m1}

‖x`‖q,
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where H = ∪r≥1Hr and

Hr = {` : 1 ≤ ` ≤ N, mr < ` ≤ mr+1 and ‖x`‖ ≤ ηr‖x`χBr‖}.

If ` ∈ H , then by Lemma 3.6 we have

∑

`∈H

‖x`‖q ≤ Sq/q′ sup
|ε`|=1

∥∥∥
N∑

`=1

ε`x`

∥∥∥
( ∞∑

r=1

ηrrkr

q′
√

mr

)
≤ TSq−1 sup

|ε`|=1

∥∥∥
N∑

`=1

ε`x`

∥∥∥,

where T :=
∑∞

r=1 rηrkr/ q′
√

mr. On the other hand, if ` ∈ {1, . . . , m1}, then
g` ≤ f ′

` and hence

m1∑

`=1

‖x`‖q ≤ 4
3

m1∑

`=1

‖x`‖q−1〈|x`|, q′
√

g`〉 ≤
4
3

N∑

`=1

‖x`‖q−1〈|x`|, q′
√

f ′
`〉.

Finally, if we assume that ` 6∈ H∪{1, . . . , m1}, then there exists a number r(`) ≥ 1
such that mr(`) < ` ≤ mr(`)+1 and by the definition of Hr we have for ηr ≥ 2,

‖x`χBr(`)
‖ ≤ ‖x`‖

ηr(`)
≤ ‖x`‖

2
.

Whence by (4) we have

1
4
‖x`‖ =

3
4
‖x`‖ −

1
2
‖x`‖ ≤ 〈|x`|, q′

√
g`〉 − ‖x`χBr(`)

‖

≤ 〈|x`|, q′
√

g`〉 − 〈|x`χBr(`)
|, q′

√
g`〉 ≤ 〈|x`χBc

r(`)
|, q′

√
g`〉

= 〈|x`|, q′
√

g`χBc
r(`)

〉 ≤ 〈|x`|, q′
√

f ′
`〉,

where we have used the fact that f ′
`(i) ≥ g`χBc

r(`)
(i) if i ∈ Bc

r(`) and f ′
`(i) =∑∞

r=r(`)+1 γ`,rf`,r ≥ 0 if i ∈ Br(`). It follows from these relations that

∑

6̀∈H∪{1,... ,m1}

‖x`‖q ≤ 4
∑

6̀∈H
⋃
{1,... ,m1}

‖x`‖q−1〈|x`|, q′
√

f ′
`〉

≤ 4
N∑

`=1

‖x`‖q−1〈|x`|, q′
√

f ′
`〉.
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Thus

m1∑

`=1

‖x`‖q +
∑

6̀∈H∪{1,... ,m1}

‖x`‖q ≤ (
4
3

+ 4)
N∑

`=1

‖x`‖q−1〈|x`|, q′
√

f ′
`〉

=
16
3

N∑

`=1

Sq−1 q′
√

ξ` 〈|x`|, q′
√

f ′
`〉

=
16
3

Sq−1
N∑

`=1

〈|x`|, q′
√

ξ`f
′
`〉.

Assume that 1 < q < ∞. Then, by Lemma 3.5 (a), we get

Sq ≤ 16 q′√8C

3
Sq−1

∥∥∥
N∑

`=1

|x`|
∥∥∥ + TSq−1 sup

|ε`|=1

∥∥∥
N∑

`=1

ε`x`

∥∥∥.

Therefore,

( N∑

`=1

‖x`‖q
) 1

q ≤
(16 q′√8C

3
+ T

)∥∥∥
N∑

`=1

|x`|
∥∥∥

and the space Xq(F) satisfies a lower q-estimate.

If 2 ≤ q < ∞, by (b) in Lemma 3.5 we have

Sq ≤
(16 q′√8C

3

√
2 + T

)
Sq−1 sup

|ε`|=1

∥∥∥
N∑

`=1

ε`x`

∥∥∥

and hence the space Xq(F) has the q-Orlicz property.

4. q-CONCAVITY

In this section, we show that the space Xq(F) is not q-concave if the family F

satisfies some further conditions. In order to do this we need to introduce another

increasing sequence of natural numbers (ns)∞s=1 with n1 = 1.
Again we need some lemmas.

Lemma 4.1. Let s, r ∈ N with r ≤ s. Let (ns)∞s=1 be an increasing sequence

of natural numbers, n1 = 1, such that ns ≤ ks+1 for every s ≥ 1, and assume that
the sequence (αs)∞s=0 satisfies (∗). Then for every function f ∈ Fr there exists a

pair of functions f1 and f2 such that f = f1 + f2 with

card(suppf1) ≤ 2ms
rks and

ns∑

i=1

f2(i) ≤ αs+1

( ns

ks+1
+

C

2s

)
.
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Proof. Since f ∈ Gr, we can assume that

f =
∞∑

`=0

2−`
∑

j≤m`
r

ζj,`hj,`,

where hj,` ∈ H, ζj,` ∈ R+ and
∑

j≤m`
r
ζj,` = 1 for all `. We know that

for each hj,` ∈ H we can find h′
j,` and h′′

j,` such that hj,` = h′
j,` + h′′

j,`, with

card(supp h′
j,`) = ks and ‖h′′

j,`‖`∞ ≤ αs+1/ks+1. Therefore we can decompose f
as f = f1 + f2, where

f1 =
s∑

`=0

2−`
∑

j≤m`
r

ζj,`h
′
j,`

and

f2 =
s∑

`=0

2−`
∑

j≤m`
r

ζj,`h
′′
j,` +

∞∑

`=s+1

2−`
∑

j≤m`
r

ζj,`hj,`.

Now, the support of f1 has at most 2ksm
s
r points. Indeed, since m1 ≥ 2 and

(ms)∞s=1 is a strictly increasing sequence we have that

s∑

`=0

m`
r ≤

(
ms

r

∞∑

`=0

(
1

mr
)`

)
= ms

r

1
1 − 1

mr

≤ ms
r

1 − 1
2

= 2ms
r.

Therefore,

card(supp f1) ≤ ks

s∑

`=0

m`
r ≤ 2ksm

s
r.

On the other hand, by
∑ns

i=1 h′′
j,`(i) ≤ ns

αs+1

ks+1
, ns ≤ ks+1 and Proposition 2.1 (1),

ns∑

i=1

f2(i) ≤ ns
αs+1

ks+1

s∑

`=0

2−` +
∞∑

`=s+1

2−`
(s+1∑

j=2

αj

)
.

Finally, by (∗) we get
ns∑

i=1

f2(i) ≤ αs+1
ns

ks+1
+ Cαs+12−s

and conclude the proof of the lemma.

As a consequence, we have:
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Lemma 4.2. Let s, r ∈ N with r ≤ s, and let (ns)∞s=1 be an increasing

sequence of natural numbers with n1 = 1, such that ns ≤ ks+1 for every s ≥ 1.
Finally assume that the sequence (αs)∞s=1 satisfies (∗). If (fr)s

r=1 are functions in

Fr and γr ∈ R+ so that
∑

r≥1 γr = 1, then there exist f ′ and f ′′ functions of F,
so that

s∑

r=1

γrfr = f ′ + f ′′

with

card(suppf ′) ≤ 2ks

( s∑

r=1

ms
r

)
and

ns∑

i=1

f ′′(i) ≤ αs+1

( ns

ks+1
+

C

2s

)
.

The new assumption on the sequence (αs)∞s=0 that will be needed is the follow-

ing:

(**) There exists a constant K ≥ 0 such that αs+1

αs
≤ K for all s ≥ 2.

Proposition 4.3. Let (ns)∞s=1 be a 2-lacunary sequence of natural numbers,
i.e., 2ns ≤ ns+1, n1 = 1, such that ks ≤ ns ≤ ks+1 and assume that the sequence

(αs)∞s=0 satisfies (∗∗). Let τ > 0 be a fixed integer, 1 < q < ∞ and let x and y
be the vectors belonging to Xq(F) defined by

x =
τ∑

s=2

1
q′
√

αs
q
√

ks
χ[ks−1,ks) and y =

τ∑

s=2

1
q′
√

αs+1
q
√

ns

χ
[ns−1,ns).

Then there exists a finite number of permutations of the set N, {σ1, . . . , σN}, such
that if we set xj = xσj then

1
N

N∑

j=1

xq
j(i) ≤ 2(2Kq−1 + 1)yq(i), for all i ∈ N.(5)

Proof. Let N= nτ − nτ−1 and let σ ∈ Π(N) be defined as

{
σ(ns − 1) = ns−1, s ≥ 2,

σ(i) = i + 1, otherwise.
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We take xj = xσj , j = 1, . . . , N . Then for i ∈ [ns−1, ns), s ≥ 2, we have

1
N

N∑

j=1

x
q
j(i) ≤ 1

N

( ∑

ns−1≤j<ns

xq(j)
)(

E
[ N

ns − ns−1

]
+ 1

)

≤ 2
ns − ns−1

( ∑

ns−1≤j<ks

xq(j) +
∑

ks≤j<ns

xq(j)
)

= 2

1
αq−1

s ks
(ks − ns−1) + 1

αq−1
s+1ks+1

(ns − ks)

ns − ns−1
.

Let s ≥ 2 and i ∈ [ns−1, ns). Since ks ≤ ns ≤ ks+1, ns ≥ 1, ns−ns−1 ≥ 1
2ns

and (αs)∞s=0 satisfies (∗∗), we conclude that

1
N

N∑

j=1

xq
j(i) ≤ 2

( ks

αq−1
s ks

1
(ns − ns−1)

+
(ns − ns−1)
αq−1

s+1ks+1

1
(ns − ns−1)

)

≤ 2
( Kq−1

αq−1
s+1(ns − ns−1)

+
1

αq−1
s+1ks+1

)

≤ 2
( 2Kq−1

αq−1
s+1ns

+
1

αq−1
s+1ns

)
= 2(2Kq−1 + 1)yq(i).

The main theorem of this section is the following:

Theorem 4.4 Let 1 < q < ∞ and let (ns)∞s=1 be a sequence of natural numbers

with n1 = 1. Assume that the sequence (αs)∞s=0 satisfies (∗) and (∗∗), and that the
sequences (ns)∞s=1 and (ks)∞s=1 are 2-lacunary and satisfy ks ≤ ns ≤ ks+1 for all

s ≥ 1. Assume further that the sequences (ks)∞s=1, (ns)∞s=1 and (mr)∞r=1 satisfy

∞∑

s=1

q′
√

ns

ks+1
< ∞ and

∞∑

s=1

q

√
ks(

∑s
r=1 ms

r)
ns

< ∞.

Then the space Xq(F) fails to be q-concave.

Proof. Let τ > 0 be a fixed integer and let x, y and xj , j = 1, . . . , N , be
the vectors defined in Proposition 4.3. We know that Xq(F) is a rearrangement
invariant space, h ∈ F and (ks)∞s=1 is a lacunary sequenc. Therefore, ‖xj‖ = ‖x‖
for all j = 1, . . . , N and

‖x‖ ≥ 〈|x|, q′√
h〉 =

τ∑

s=2

(ks − ks−1) q′
√

αs

q′
√

αs
q
√

ks
q′√ks

=
τ∑

s=2

(ks − ks−1)
ks

≥ 1
2
(τ − 1).



q-concavity and q-Orlicz property on Symmetric Sequence Spaces 349

Thus,
N∑

j=1

‖xj‖q = N‖x‖q ≥ N

2q
(τ − 1)q.

In order to show that

( N∑

j=1

‖xj‖q
) 1

q
/∥∥∥

( N∑

j=1

|xj |q
) 1

q
∥∥∥

is arbitrarily large, we are going to find an upper bound for the denominator in the

last expression. By Proposition 4.3, we know that (1/N)
∑

j≤N xq
j(i) ≤ 2(2Kq−1+

1)yq(i) for all i ∈ N, and hence it is enough to estimate ‖y‖.
Let f ∈ F and assume that f ≤

∑
r≥1 γrfr with fr ∈ Fr, γr ≥ 0 and∑

r≥1 γr = 1. Then

〈|y|, q′
√

f〉 =
∞∑

i=1

|y(i)| q′
√

f(i) ≤
τ∑

s=2

I(s) + II(s) + III(s)

where for s ≥ 2,

I(s)=
1

q′
√

αs+1
q
√

ns

∑

ns−1≤i<ns

q′

√√√√
s∑

r=1

γrfr(i),

II(s)=
1

q′
√

αs+1
q
√

ns

∑

ns−1≤i<ns

q′
√

γs+1fs+1(i),

III(s)=
1

q′
√

αs+1
q
√

ns

∑

ns−1≤i<ns

q′

√ ∑

r≥s+2

γrfr(i).

We shall first estimate II(s). We observe that Hölder’s inequality and Proposition
2.2 (1) give us

II(s) ≤ 1
q′
√

αs+1
q
√

ns

ns∑

i=1

q′
√

γs+1fs+1(i) ≤
1

q′
√

αs+1
q
√

ns

q

√
nsγ

q/q′

s+1
q′

√√√√
ns∑

i=1

fs+1(i)

≤
γ

1/q′

s+1

q′
√

αs+1

q′

√√√√
ns∑

i=1

fs+1(i) ≤
γ

1/q′

s+1

q′
√

αs+1

q′

√√√√
s+1∑

`=1

α`.

And by (∗) we have

II(s) ≤ q′
√

γs+1
q′

√
Cαs+1

αs+1
= q′

√
γs+1

q′√
C.



350 Oscar Blasco and Teresa Signes

Thus, again, using Hölder’s inequality, we have

τ∑

s=2

II(s) ≤ q′√
C

τ∑

s=2

q′
√

γs+1 ≤ q′√
C q
√

τ − 1 q′

√√√√
τ∑

s=2

γs+1 ≤ q′√
C q
√

τ − 1.

To bound III(s), we observe that by Hölder’s inequality

III(s) ≤ 1
q′
√

αs+1
q
√

ns

q
√

ns
q′

√√√√
ns∑

i=1

∑

r≥s+2

γrfr(i) ≤ q′
√

ns

ks+1
,

where in the last step we used ‖fr‖`∞ ≤ αr−1

kr−1
≤ αs+1

ks+1
for r ≥ s + 2.

Finally, we shall estimate I(s). Let us fix s ≥ 2. By Lemma 4.2, we can find
functions f ′ and f ′′ such that

∑s
r=1 γrfr = f ′ + f ′′ with

card(suppf ′) ≤ 2ks

( s∑

r=1

ms
r

)
and

ns∑

i=1

f ′′(i) ≤ αs+1

( ns

ks+1
+

C

2s

)
.

This allows us to split I(s) as I(s) ≤ IV (s) + V (s) for all s ≥ 2, where

IV (s) =
1

q′
√

αs+1
q
√

ns

∑

ns−1≤i<ns

q′
√

f ′(i)

and

V (s) =
1

q′
√

αs+1
q
√

ns

∑

ns−1≤i<ns

q′
√

f ′′(i).

By Hölder’s inequality,

IV (s) ≤ 1
q′
√

αs+1
q
√

ns

ns∑

i=1

q′
√

f ′(i)χsuppf ′(i)

≤ 1
q′
√

αs+1
q
√

ns

( ns∑

i=1

χsuppf ′(i)
)1

q
( ns∑

i=1

f ′(i)
) 1

q′

≤ 1
q′
√

αs+1
q
√

ns
(card(suppf ′))

1
q

( ns∑

i=1

f ′(i)
) 1

q′
.

Since card(suppf ′) ≤ 2ks(
∑s

r=1 ms
r), (∗), Proposition 2.2 (1) yields

IV (s) ≤ q

√
2ks(

∑s
r=1 ms

r)
ns

q′

√∑s+1
`=1 α`

αs+1
= q

√
2 q′√

C
q

√
ks(

∑s
r=1 ms

r)
ns

.
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On the other hand, Hölder’s inequality and the fact that
∑ns

i=1 f ′′(i) ≤ αs+1( ns
ks+1

+
C
2s ) imply that

V (s) ≤ 1
q′
√

αs+1

q′

√√√√
ns∑

i=1

f ′′(i) ≤ q′
√

ns

ks+1
+ C2−s.

It follows from these relations that

〈|y|, q′
√

f〉 ≤ q′√
C q′√τ − 1 + 2

τ∑

s=2

q′
√

ns

ks+1
+ q′√

C

τ∑

s=2

1
2s/q′

+ q′√
C

q
√

2
τ∑

s=2

q

√
ks(

∑s
r=1 ms

r)
ns

.

Since we are assuming that A =
∞∑

s=1

q′
√

ns/ks+1 and B =
∞∑

s=1

q

√√√√ks(
s∑

r=1

ms
r)/ns are

finite, we have

〈|y|, q′
√

f〉 ≤ q′√
C q
√

τ − 1 + 2A +
q′√C

21/q′ − 1
+ q

√
2 q′√

CB ≤ q′√
C q
√

τ − 1 + S,

where S is a constant independent of τ . Putting this altogether, we have

(∑N
j=1 ‖xj‖q

) 1
q

∥∥∥
(∑N

j=1 |xj |q
) 1

q
∥∥∥

≥
1
2

q
√

N(τ − 1)
q
√

2(2Kq−1 + 1) q
√

N( q′√C q
√

τ − 1 + S)

=
(τ − 1)

2 q
√

2(2Kq−1 + 1)( q′√C q
√

τ − 1 + S)
.

This expression goes to infinity as τ goes to infinity.

Proof of the Theorem 1.1. Let 1 < q < ∞ and take (ks)∞s=0 to be the sequence

of natural numbers defined by

k0 = k1 = 1,

ks+1 = 32s+2s2(E[q′]+1) k1+s(E[q′]+1)
s

and the sequences

αs = 32s, (α0 = 9), ms = (32sks)E[q′]+1, ηs = 3s, ns =
ks+1

3s

for all s ≥ 1. These sequences satisfy the assumptions in Theorem 3.7 and in

Theorem 4.4; hence Xq(F) satisfies a lower q-estimate and is not q-concave.
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Universidad Complutense de Madrid

28040 Madrid, Spain

E-mail: Teresa Signes@mat.ucm.es


