TAIWANESE JOURNAL OF MATHEMATICS Vol. 16, No. 6, pp. 2187-2196, December 2012 This paper is available online at http://journal.taiwanmathsoc.org.tw

$A_\infty(\mathbb{R}^n)$ WEIGHTS AND THE LOCAL MAXIMAL OPERATOR

Guoen Hu and Wentan Yi

Abstract. Let $s \in (0, 1/2)$, $M_{0,s}$ be the local maximal operator of John and Strömberg, and $\mathcal{M}_{0,s}$ the multi(sub)linear local maximal operator. In this paper, the authors give some characterizations of the weights $w_1, ..., w_\ell$ for which the operator $\mathcal{M}_{0,s}$ is bounded from $L^{p_1}(\mathbb{R}^n, w_1) \times ... \times L^{p_\ell}(\mathbb{R}^n, w_\ell)$ to $L^p(\mathbb{R}^n, \nu_{\vec{w}})$ with $\nu_{\vec{w}} = \prod_{k=1}^{\ell} w_k^{p/p_k}$, $p_1, ..., p_\ell \in (0, \infty)$ and $1/p = \sum_{1 \le k \le \ell} 1/p_k$. A new characterization of $A_{\infty}(\mathbb{R}^n)$ weights and a characterization of weights w which satisfies $w^{\theta} \in A_{\infty}(\mathbb{R}^n)$ for some $\theta \in (0, \infty)$, are also obtained.

1. INTRODUCTION AND STATEMENTS OF RESULTS

The class of $A_p(\mathbb{R}^n)$ weights was introduced by Muckenhoupt [5], in order to characterize the weight w for which the Hardy-Littlewood maximal operator M is bounded on $L^p(\mathbb{R}^n, w)$. Let w be a weight, that is, w is a non-negative and locally integrable function. For $p \in [1, \infty)$, a weight w is said to be a $A_p(\mathbb{R}^n)$ weight if

$$\sup_{Q \subset \mathbb{R}^n} \Big(\frac{1}{|Q|} \int_Q w(x) \, dx \Big)^{1/p} \Big(\frac{1}{|Q|} \int_Q w^{-1/(p-1)}(x) \, dx \Big)^{1/p'} < \infty,$$

where and in the following, $(\frac{1}{|Q|} \int_Q w^{-\frac{1}{p-1}})^{1/p'}$ in the case of p = 1 is understood as $(\inf_{x \in Q} w_k)^{-1}$. As it is well known, the operator M is bounded on $L^p(\mathbb{R}^n, w)$ when $p \in (1, \infty)$ if and only if $w \in A_p(\mathbb{R}^n)$, and is bounded from $L^1(\mathbb{R}^n, w)$ to $L^{1,\infty}(\mathbb{R}^n, w)$ if and only if $w \in A_1(\mathbb{R}^n)$. In the last forty years there has been significant progress in the study of $A_p(\mathbb{R}^n)$ weights and the behavior of classical operators on various weighted spaces with A_p weights, see [1, Chap. 9].

Fairly recently, to study weighted estimates for the multilinear Calderón-Zygmund operators, Lerner et al. [4] introduced the multi(sub)linear Hardy-Littlewood maximal operator \mathcal{M} defined by

Communicated by Chin-Cheng Lin.

Received January 16, 2012, accepted March 30, 2012.

²⁰¹⁰ Mathematics Subject Classification: 42B25.

Key words and phrases: Weight, $A_{\infty}(\mathbb{R}^n)$, Weighted norm inequality, Local maximal operator.

The research was supported by the NNSF (Grant No. 10971228) of China.

$$\mathcal{M}(f_1, ..., f_\ell)(x) = \sup_{Q \ni x} \prod_{k=1}^\ell \left(\frac{1}{|Q|} \int_Q |f_k(y)| \, dy \right),$$

and proved that for $p_1, ..., p_{\ell} \in [1, \infty)$, the operator \mathcal{M} is bounded from $L^{p_1}(\mathbb{R}^n, w_1) \times ... \times L^{p_{\ell}}(\mathbb{R}^n)$ to $L^{p,\infty}(\mathbb{R}^n, \nu_{\vec{w}})$ if and only if $\vec{w} \in A_{\vec{P}}(\mathbb{R}^n)$, namely,

(1.1)
$$\sup_{Q \subset \mathbb{R}^n} \left(\frac{1}{|Q|} \int_Q \nu_{\vec{w}}(x) \, dx \right)^{1/p} \prod_{k=1}^{\ell} \left(\frac{1}{|Q|} \int_Q w_k^{-1/(p_k-1)}(x) \right)^{1/p'_k} < \infty.$$

Moreover, in the setting of $\max_{1 \le k \le \ell} p_k > 1$, $\vec{w} \in A_{\vec{P}}(\mathbb{R}^n)$ is also the sufficient condition such that \mathcal{M} is bounded from $L^{p_1}(\mathbb{R}^n, w_1) \times \ldots \times L^{p_\ell}(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n, \nu_{\vec{w}})$, where and in the sequel, for $\vec{P} = (p_1, \ldots, p_\ell)$ and $\vec{w} = (w_1, \ldots, w_\ell)$, we set $p \in (0, \infty)$ such that $1/p = \sum_{1 \le k \le \ell} 1/p_k$ and $\nu_{\vec{w}} = \prod_{1 \le k \le \ell} w_k^{p/p_k}$. This result is very interesting and leads to the right class of multiple weights for the multilinear Calderón-Zygmund operators.

Now we consider the analogy of the operator \mathcal{M} in the setting of local maximal operator. Let $s \in (0, 1)$ and f be a measurable function in \mathbb{R}^n . Set

$$m_{0,s;Q}(f) = \inf\{\lambda > 0 : |\{x \in Q : |f(x)| > \lambda\}| < s|Q|\},\$$

and define the local maximal operator $M_{0,s}$ by

$$M_{0,s}f(x) = \sup_{Q \ni x} m_{0,s;Q}(f).$$

This operator is useful in the study of boundedness of some class operators (see [2] and [3]). The multi(sub)linear version of $M_{0,s}$ is defined by

$$\mathcal{M}_{0,s}(f_1, ..., f_\ell)(x) = \sup_{Q \ni x} \prod_{k=1}^\ell m_{0,s;Q}(f_k)$$

The purpose of this paper is to consider the weighted norm inequalities with multiweight for the operator $\mathcal{M}_{0,s}$. We will give some characterizations of the weights $w_1, ..., w_\ell$ for which $\mathcal{M}_{0,s}$ is bounded from $L^{p_1}(\mathbb{R}^n, w_1) \times ... \times L^{p_\ell}(\mathbb{R}^n, w_\ell)$ to $L^p(\mathbb{R}^n, \nu_{\vec{w}})$ with $p_1, ..., p_\ell \in (0, \infty]$, $1/p = \sum_{1 \le k \le \ell} 1/p_\ell$, and $\nu_{\vec{w}} = \prod_{k=1}^\ell w_k^{p/p_k}$. As usual, set $A_\infty(\mathbb{R}^n) = \bigcup_{p \ge 1} A_p(\mathbb{R}^n)$ (see [1] for the characterizations of $A_\infty(\mathbb{R}^n)$ weights). For $\vec{P} = (p_1, ..., p_\ell)$ with $p_1, ..., p_\ell \in (0, \infty]$ and $r \in (0, \min_{1 \le k \le q\ell} p_k)$, set $\vec{P}/r = (p_1/r, ..., p_\ell/r)$ and

$$A_{\vec{P},\infty}(\mathbb{R}^n) = \bigcup_{r: 0 < r < \min_{1 \le k \le \ell} p_k} A_{\vec{P}/r}(\mathbb{R}^n).$$

It is obvious that when $\ell = 1$, $A_{\vec{P},\infty}(\mathbb{R}^n)$ is just the classical $A_{\infty}(\mathbb{R}^n)$. Our main result can be stated as follows.

2188

Theorem 1.1. Let $s \in (0, 1/(2\ell))$, $w_1, ..., w_\ell$ be weights, $p_1, ..., p_\ell \in (0, \infty)$ with $1/p = \sum_{k=1}^{\ell} 1/p_k$. Then the following conditions are equivalent

- (i) the operator $\mathcal{M}_{0,s}$ is bounded from $L^{p_1}(\mathbb{R}^n, w_1) \times \ldots \times L^{p_\ell}(\mathbb{R}^n, w_\ell)$ to L^p $(\mathbb{R}^n, \nu_{\vec{w}})$;
- (ii) the operator $\mathcal{M}_{0,s}$ is bounded from $L^{p_1}(\mathbb{R}^n, w_1) \times \ldots \times L^{p_\ell}(\mathbb{R}^n, w_\ell)$ to $L^{p,\infty}(\mathbb{R}^n, \nu_{\vec{w}})$;
- (iii) there exists a constant $\tau \in (0, 1/(2\ell))$ such that for any cube Q and measurable sets $E_1, ..., E_\ell \subset Q$, if $|E_k| > \tau |Q|$ for any k with $1 \le k \le \ell$, then $\prod_{k=1}^{\ell} \{w_k(E_k)\}^{p/p_k} \gtrsim \nu_{\vec{w}}(Q);$
- (iv) there exists a constant $\tau \in (0, 1/(2\ell))$, such that

(1.2)
$$\sup_{Q \subset \mathbb{R}^n} \left(\frac{1}{|Q|} \int_Q \nu_{\vec{w}}(x) \, dx \right)^{1/p} \prod_{k=1}^{\ell} \{ m_{0,\tau;Q}(w_k^{-1}) \}^{1/p_k} < \infty;$$

(v) $\nu_{\vec{w}} \in A_{\infty}(\mathbb{R}^n)$ and there exists a constant $\gamma \in (0, \infty)$ such that for each k with $1 \le k \le \ell$, $w_k^{\gamma} \in A_{\infty}(\mathbb{R}^n)$.

(vi)
$$\vec{w} \in A_{\vec{P},\infty}(\mathbb{R}^n).$$

Remark 1.1. For the case of $\ell = 1$, Theorem 1.1 tells us that $w \in A_{\infty}(\mathbb{R}^n)$ if and only if for some $s \in (0, 1/2)$,

$$\sup_{Q \subset \mathbb{R}^n} \left(\frac{1}{|Q|} \int_Q w(x) \, dx \right) m_{0,s;Q}(w^{-1}) < \infty.$$

This is a new characterization of $A_{\infty}(\mathbb{R}^n)$ weights. Also, Theorem 1.1 implies a characterization of $A_{\infty}(\mathbb{R}^n)$ weights in terms of the local maximal operator $M_{0,s}$.

Remark 1.2. For the case of $s \in (0, 1)$, the condition (vi) also implies (i) in Theorem 1.1. However, we do not know if (vi) is a necessary condition such that $\mathcal{M}_{0,s}$ is bounded from $L^{p_1}(\mathbb{R}^n, w_1) \times \ldots \times L^{p_\ell}(\mathbb{R}^n, w_\ell)$ to $L^p(\mathbb{R}^n, \nu_{\vec{w}})$ when $s \in (1/(2\ell), 1)$.

To prove Theorem 1.1, we will use the following result, which is new and of independent interest.

Theorem 1.2. Let w be a weight, $s_1, s_2 \in (0, 1/2)$ with $s_1 + s_2 < 1/2$. The following three conditions are equivalent:

- (a) There exists a constant $\theta \in (0, \infty)$ such that $w^{\theta} \in A_2(\mathbb{R}^n)$;
- (b) There exists a constant $\gamma \in (0, \infty)$ such that $w^{\gamma} \in A_{\infty}(\mathbb{R}^n)$;
- (c)

(1.3)
$$\sup_{Q \subset \mathbb{R}^n} m_{0,s_1;Q}(w) m_{0,s_2;Q}(w^{-1}) < \infty.$$

We now make some conventions. Throughout this paper, we always denote by C a positive constant which is independent of the main parameters, but it may vary from line to line. Constant with subscript such as C_1 , does not change in different occurrences. The symbol $A \leq B$ means that there exists a positive constant C such that $A \leq CB$. Given $\lambda > 0$ and a cube Q, λQ denotes the cube with the same center as Q and whose side length is λ times that of Q.

2. PROOF OF THEOREMS

We begin with some preliminary lemmas.

Lemma 2.1. Let $s_1, ..., s_\ell, s \in (0, 1)$, $f_1, ..., f_\ell$ be measurable functions. Then for any cube Q,

(2.1)
$$m_{0,s_1+s_2;Q}(f_1+f_2) \le m_{0,s_1;Q}(f_1) + m_{0;s_2;Q}(f_2),$$

and

(2.2)
$$m_{0,\sum_{1\leq k\leq \ell} s_k; Q}(f_1...f_\ell) \leq \prod_{k=1}^{\ell} m_{0,s_k; Q}(f_k).$$

Proof. The proofs for these two inequalities are similar and we only consider (2.2). Without loss of generality, we may assume that

$$m_{0, s_1; Q}(f_1) = \dots = m_{0, s_\ell; Q}(f_\ell) = 1.$$

Then for any $\epsilon > 0$ and k with $1 \le k \le \ell$,

$$|\{x \in Q : |f_k(x)| > 1 + \epsilon\}| < s_k |Q|.$$

This in turn implies that

$$|\{x \in Q: |f_1(x)...f_\ell(x)| > (1+\epsilon)^\ell\}| < \sum_{k=1}^\ell s_k |Q|,$$

and so

$$m_{0,\sum_{1\leq k\leq \ell} s_k;Q}(f_1...f_\ell) \leq (1+\epsilon)^{\ell}.$$

Our desired conclusion then follows directly.

Lemma 2.2. Let w be a weight. Then $w \in A_{\infty}(\mathbb{R}^n)$ if and only if for some $s \in (0, 1)$

(2.3)
$$\sup_{Q \subset \mathbb{R}^n} m_{0,s;Q}(w^{-1}) \left(\frac{1}{|Q|} \int_Q w(x) \, dx\right) < \infty;$$

Proof. At first, we claim that if (2.3) is true, then w is doubling. In fact, by the inequality (2.2), we know that for any $\tau \in (s, 1)$ and any $p \in (0, \infty)$,

(2.4)
$$m_{0,\tau;Q}(f) \lesssim \left\{ m_{0,\tau-s;Q}(f^{p}w) \right\}^{1/p} \left\{ m_{0,s;Q}(w^{-1}) \right\}^{1/p} \\ \lesssim \left(\frac{1}{|Q|} \int_{Q} |f(x)|^{p} w(x) \, dx \right)^{1/p} \left(\frac{1}{|Q|} \int_{Q} w(x) \, dx \right)^{-1/p}$$

where the second inequality follows from the fact that, for any cube Q and any $r \in (0, \infty)$,

(2.5)
$$m_{0,\sigma;Q}(w^{-1}) \le \sigma^{-1/r} \left(\frac{1}{|Q|} \int_Q w^{-r}(x) \, dx\right)^{1/r}.$$

Choose $f(x) = \chi_{\tau Q}(x)$. Note that $m_{0,\tau;Q}(f) = 1$. The estimate (2.4) leads to that

$$w(Q) \lesssim w(\tau Q)$$

and w is doubling. Also, (2.4) implies that for any $p \in (0, \infty)$,

$$M_{0,\tau}f(x) \lesssim \{M_w^c(|f|^p)(x)\}^{1/p}.$$

where M_w^c is the weighted centered maximal operator with weight w. Since w is doubling, M_w^c is bounded from $L^1(\mathbb{R}^n, w)$ to $L^{1,\infty}(\mathbb{R}^n, w)$. Thus by a simple interpolation argument, we know (2.3) implies that $M_{0,\tau}$ is bounded on $L^p(\mathbb{R}^n, w)$.

We can now conclude the proof of Lemma 2.2. It is easy to see that $w \in A_{\infty}(\mathbb{R}^n)$ implies (2.3). On the other hand, if (2.3) is true, as we have pointed out, for $\tau \in (s, 1)$ and $p \in (0, \infty)$,

(2.6)
$$||M_{0,\tau}f||_{L^{p}(\mathbb{R}^{n},w)} \lesssim ||f||_{L^{p}(\mathbb{R}^{n},w)}.$$

For each cube Q and measurable set $E \subset Q$, if $|E| \ge \tau |Q|$, choosing $f(x) = \chi_E(x)$ in the inequality (2.6) then yields

$$w(Q) \lesssim w(E).$$

This via the characterization of the $A_{\infty}(\mathbb{R}^n)$ weights tells us that $w \in A_{\infty}(\mathbb{R}^n)$, see [1, Chap. 9].

The following lemma is a combine of Theorem 3.6 and Theorem 3.7 in [4].

Lemma 2.3. Let $w_1, ..., w_m$ be weights, $p_1, ..., p_m, p \in (0, \infty)$ with $1/p = \sum_{k=1}^m 1/p_k$, $r \in (0, \min_{1 \le k \le \ell} p_k)$. Then the following three conditions are equivalent (i) The operator \mathcal{M}_r defined by

$$\mathcal{M}_r f(x) = \sup_{Q \ni x} \prod_{k=1}^{\ell} \left(\frac{1}{|Q|} \int_Q |f_k(x)|^r \, dx \right)^{1/r}$$

is bounded from $L^{p_1}(\mathbb{R}^n, w_1) \times \ldots \times L^{p_\ell}(\mathbb{R}^n, w_\ell)$ to $L^p(\mathbb{R}^n, \nu_{\vec{w}})$; (ii) $\vec{w} \in A_{\vec{P}/r}(\mathbb{R}^n)$;

(iii) for any k with
$$1 \le k \le \ell$$
, $w_k^{-\frac{1}{\frac{p_k}{r}-1}} \in A_{\frac{\ell p_k}{p_k-r}}(\mathbb{R}^n)$, and $\nu_{\vec{w}} \in A_{\ell p/r}(\mathbb{R}^n)$.

To prove Theorem 1.2, we will employ the characterization of BMO(\mathbb{R}^n) space in terms of John-Strömberg sharp maximal operator, see [7]. Let f be a real-valued measurable function in \mathbb{R}^n . For a fixed cube Q, $m_f(Q)$, the median value of f on Q, is defined to be any number such that

$$|\{x \in Q : f(x) > m_f(Q)\}| \le \frac{1}{2}|Q|, |\{x \in Q : f(x) < m_f(Q)\}| \le \frac{1}{2}|Q|.$$

If f is complex-valued, the median value of f on Q is defined by $m_f(Q) = m_{\text{Re}(f)}(Q) + im_{\text{Im}(f)}(Q)$, where $i^2 = -1$.

The following characterization of $BMO(\mathbb{R}^n)$ can be found in Strömberg [7].

Lemma 2.4. Let $s \in (0, 1/2)$ and f be a measurable function. Then

 $\|f\|_{\mathrm{BMO}(\mathbb{R}^n)} \lesssim \|f\|_{\mathrm{BMO}_{0,s}(\mathbb{R}^n)},$

where

$$||f||_{\text{BMO}_{0,s}(\mathbb{R}^n)} = \sup_{Q \subset \mathbb{R}^n} m_{0,s;Q}(f - m_f(Q)).$$

Proof of Theorem 1.2. The implicity (a) \Rightarrow (b) and (b) \Rightarrow (c) are obvious. To prove that (c) implies (a), we first claim that if w satisfies the estimate (1.3), then there exists a constant C such that for any $\epsilon > 0$,

(2.7)
$$\sup_{Q \subset \mathbb{R}^n} m_{0,s;Q}(w+\epsilon)m_{0,s;Q}((w+\epsilon)^{-1}) \le C.$$

In fact, for each fixed cube $Q \subset \mathbb{R}^n$, a straightforward computation gives that

$$m_{0,s;Q}(w+\epsilon) = m_{0,s;Q}(w) + \epsilon,$$

and

$$m_{0,s;Q}((w+\epsilon)^{-1}) = \frac{1}{\sup\{\lambda > 0 : |\{x \in Q : w+\epsilon < \lambda\}| < s|Q|\}} \\ = \frac{1}{\sup\{\lambda > 0 : |\{x \in Q : w < \lambda\}| < s|Q|\} + \epsilon} \\ = \frac{1}{\{m_{0,s;Q}(w^{-1})\}^{-1} + \epsilon}.$$

Therefore,

$$\sup_{Q \subset \mathbb{R}^n} m_{0,s;Q}(w+\epsilon)m_{0,s;Q}((w+\epsilon)^{-1}) \le 1 + \sup_{Q \subset \mathbb{R}^n} m_{0,s;Q}(w)m_{0,s;Q}(w^{-1}),$$

and (2.7) follows directly.

2192

We now invoke the idea in [1, p. 300] to prove that (c) implies (a). For each positive integer k, set $w_k(x) = w(x) + 1/k$ and let $w_k(x) = \exp \phi_k(x)$. Then $\phi_k(x)$ is finite a. e. $x \in \mathbb{R}^n$. It then follows from (2.7) that for any cube $Q \subset \mathbb{R}^n$,

(2.8)
$$m_{0,s_1;Q}\left(\exp(\phi_k(x) - m_{\phi_k}(Q))\right)m_{0,s_2;Q}\left(\exp(-(\phi_k - m_{\phi_k}(Q)))\right) \lesssim 1.$$

Noticing that

$$|\{x \in Q : \exp(\phi_k - m_{\phi_k}(Q)) > \frac{1}{2}\}| \ge |\{x \in Q : \phi_k(x) \ge m_{\phi_k}(Q)\}| > \frac{1}{2}|Q|,$$

we then know that

$$m_{0,s_1;Q}\left(\exp(\phi_k - m_{\phi_k}(Q))\right) \gtrsim 1,$$

and similarly,

$$m_{0,s_2;Q}\Big(\exp(-(\phi_k - m_{\phi_k}(Q)))\Big) \gtrsim 1.$$

This, along with (2.8) and the estimate (2.1), leads to that

$$\begin{array}{ll} m_{0,\,s_1+s_2;\,Q}(|\phi_k - m_{\phi_k}(Q)|) & \lesssim & m_{0,\,s_1;\,Q}\Big(\exp(\phi_k - m_{\phi_k}(Q))\Big) \\ & + m_{0,\,s_2;\,Q}\Big(\exp(-(\phi_k - m_{\phi_k}(Q)))\Big) \\ & \lesssim & 1. \end{array}$$

Lemma 2.4, via the the John-Nirenberg inequality now states that for some positive constants C_1 independent of k,

$$\sup_{Q \subset \mathbb{R}^n} \frac{1}{|Q|} \int_Q \exp\left(\frac{|\phi_k(x) - m_Q(\phi_k)|}{C_1}\right) dx < \infty.$$

Therefore, for any cube $Q \subset \mathbb{R}^n$,

$$\Big(\frac{1}{|Q|} \int_Q w_k^{1/C_1}(x) \, dx\Big) \Big(\frac{1}{|Q|} \int_Q w_k^{-1/C_1}(x) \, dx\Big) \lesssim 1.$$

Taking $k \to \infty$ in the last inequality then yields $w^{1/C_1} \in A_2(\mathbb{R}^n)$.

Proof of Theorem 1.1. It suffices to prove that $(i) \Rightarrow (ii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \Rightarrow (i)$, and $(ii) \Rightarrow (iii)$ and $(iii) \Rightarrow (v)$.

(i) \Rightarrow (ii). This is obvious.

(ii) \Rightarrow (iv). For each cube $Q \subset \mathbb{R}^n$, set $f_k^j = (w_{k,j}^{-1} + 1/j)^{1/p_k}\chi_Q$ with $w_{k,j} = w_k + 1/j$ and $1 \le k \le \ell$. Also, set $\lambda_0^j = \frac{1}{2} \prod_{k=1}^{\ell} m_{0,s;Q}(f_k^j)$. It is obvious that $\lambda_0^j \in (0, \infty)$. The hypothesis tells us that

$$\nu_{\vec{w}}(\{x \in \mathbb{R}^n : \mathcal{M}_{0,s}(f_1^j, ..., f_\ell^j)(x) > \lambda_0^j\}) \lesssim (\lambda_0^j)^{-p} \prod_{k=1}^\ell \|f_k\|_{L^{p_k}}^p(\mathbb{R}^n, w_k),$$

which, via the fact that $m_{0,s;Q}(w_{k,j}^{-1}+1/j) = m_{0,s;Q}(w_{k,j}^{-1}) + 1/j$, in turn implies that

$$\nu_{\vec{w}}(Q) \prod_{k=1}^{\ell} \{m_{0,s;Q}(w_{k,j}^{-1}) + 1/j\}^{p/p_k} \lesssim \prod_{k=1}^{\ell} \left(\int_Q \frac{w_k(x)}{w_k(x) + 1/j} \, dx + w_k(Q)/j \right)^{p/p_k},$$

Taking $j \to \infty$ then leads to (iv).

(iv) \Rightarrow (v). Recall that $2\ell\tau < 1$, we can choose a constant $\delta > 0$ such that $2\ell\tau + \delta < 1$. It follows from the inequality (2.2) that

$$\sup_{Q \subset \mathbb{R}^n} \left(\frac{1}{|Q|} \int_Q \nu_{\vec{w}}(x) \, dx \right) m_{0,\,\ell\tau;\,Q}(\nu_{\vec{w}}^{-1}) < \infty.$$

This via Lemma 2.2 shows that $\nu_{\vec{w}} \in A_{\infty}(\mathbb{R}^n)$. On the other hand, for each fixed k with $1 \leq k \leq \ell$, again by (2.2),

$$m_{0,(\ell-1)\tau+\delta;Q}(w_k^{p/p_k}) \le m_{0,\delta;Q}(\nu_{\vec{w}}) \prod_{1 \le j \le \ell, \ j \ne k} \{m_{0,\tau;Q}(w_j^{-1})\}^{p/p_j}.$$

Therefore,

$$m_{0,(\ell-1)\tau+\delta;Q}(w_k)m_{0,\tau;Q}(w_k^{-1}) \lesssim 1,$$

which together with Theorem 1.2 implies that $w_k^{\gamma_k} \in A_{\infty}(\mathbb{R}^n)$ for some $\gamma_k \in (0, \infty)$. Taking $\gamma = \min_{1 \le k \le \ell} \gamma_\ell$ then leads to condition (v).

(v) \Rightarrow (vi). The case $\ell = 1$ is obvious. For the case of $\ell > 1$, we know from Theorem 1.2 that there exists a constant $\theta \in (0, \infty)$ such that for each k with $1 \le k \le \ell$, $w_k^{\theta} \in A_2(\mathbb{R}^n)$. Thus, we can take some $r \in (0, \min_{1 \le k \le \ell} p_k)$ which is small enough, such that $\nu_{\vec{w}} \in A_{\ell p/r}(\mathbb{R}^n)$, and for each k with $1 \le k \le \ell$, $w_k^{-1/(p_k/r-1)} \in A_2(\mathbb{R}^n) \subset A_{\ell p_k/(p_k-r)}(\mathbb{R}^n)$. This, along with Lemma 2.3, tells us $\vec{w} \in A_{\vec{P}/r}(\mathbb{R}^n)$.

 $(vi) \Rightarrow (i)$. This is an easy consequence of Lemma 2.3 and the fact that for any $s \in (0, 1)$ and $r \in (0, \infty)$,

$$\mathcal{M}_{0,s}(f_1, ..., f_\ell)(x) \lesssim \mathcal{M}_r(f_1, ..., f_\ell(x))$$

(ii) \Rightarrow (iii). Let Q be a cube and $E_1, ..., E_\ell \subset Q$ be measurable sets such that $|E_k| > s|Q|$ for k with $1 \le k \le \ell$. Since $\mathcal{M}_{0,s}$ is bounded from $L^{p_1}(\mathbb{R}^n, w_1) \times ... \times L^{p_\ell}(\mathbb{R}^n, w_\ell)$ to $L^{p,\infty}(\mathbb{R}^n, \nu_{\vec{w}})$, it follows that

$$w(\{x \in \mathbb{R}^n : \mathcal{M}_{0,s}(\chi_{E_1}, ..., \chi_{E_\ell})(x) > 1/2\}) \lesssim \prod_{k=1}^{\ell} \{w_k(E_k)\}^{p/p_k}$$

Note that for any $x \in Q$, $\mathcal{M}_{0,s}(\chi_{E_1}, ..., \chi_{E_\ell})(x) > 1/2$. We thus have that

$$\nu_{\vec{w}}(Q) \lesssim \prod_{k=1}^{\ell} \{w_k(E_k)\}^{p/p_k}.$$

2194

(iii) implies (v). At first, we prove that for $\sigma \in (\tau, 1/(2\ell))$, $\mathcal{M}_{0,\sigma}$ is bounded from $L^{p_1}(\mathbb{R}^n, w_1) \times \ldots \times L^{p_\ell}(\mathbb{R}^n, w_\ell)$ to $L^{p,\infty}(\mathbb{R}^n, \nu_{\vec{w}})$. To see this, for each fixed $\lambda > 0$, set

where

$$\Omega^R_{\sigma,\lambda} = \{ x \in \mathbb{R}^n : \mathcal{M}^R_{0,\sigma}(f_1, ..., f_\ell)(x) > \lambda \},\$$

$$\mathcal{M}_{0,\sigma}^{R}(f_{1}, ..., f_{\ell})(x) = \sup_{Q \ni x, |Q| < R^{n}} \prod_{k=1}^{\ell} m_{0,\sigma;Q}(f_{k}).$$

For each fixed $x \in \Omega^R_{\sigma,\lambda}$, we can choose a cube Q_x containing x and satisfies that $\prod_{k=1}^{\ell} m_{0,\sigma;Q_x}(f_k) > \lambda$. Then there exist positive numbers $\lambda_1, ..., \lambda_{\ell}$ such that

$$\prod_{k=1}^{\ell} \lambda_k > \lambda, \ m_{0,\sigma;Q_x}(f_k) > \lambda_k, \ 1 \le k \le \ell$$

This in turn implies that

$$\left|\{y \in Q_x : |f_k(y)| > \lambda_k\}\right| > \tau \left| \left(\frac{\sigma}{\tau}\right)^{1/n} Q_x \right|.$$

The condition (iii) tells us that

$$egin{aligned} &
u_{ec w}\Big(\Big(rac{\sigma}{ au}\Big)^{1/n}Q_x\Big) \lesssim \prod_{k=1}^\ell \{w_k(\{y\in Q_x:\,|f_k(y)|>\lambda_k\})\}^{p/p_k} \ &\lesssim \lambda^{-p}\prod_{k=1}^\ell \Big(\int_{Q_x} |f(y)|^{p_k}w_k(y)\,dy\Big)^{p/p_k}. \end{aligned}$$

By the covering lemma of Besicovitch type (see [6]), from the family of cubes $\{Q_x\}_{x\in\Omega_{\sigma,\lambda}^R}$, we can choose N (depending only on n, τ and σ) subfamilies $\mathcal{D}_l = \{Q_j^l\}, l = 1, ..., N$, such that

$$\Omega^R_{\sigma,\,\lambda} \subset \cup_{l=1}^N \cup_j \left(\frac{\sigma}{\tau}\right)^{1/n} Q^l_j$$

and for each fixed l with $1\leq l\leq N,$ any two cubes $Q_{j_1}^l$ and $Q_{j_2}^l$ are disjoint. We finally have that

$$\nu_{\vec{w}}(\Omega^R_{\sigma,\lambda}) \lesssim \lambda^{-p} \sum_{l=1}^N \sum_j \prod_{k=1}^\ell \left(\int_{Q_j^l} |f(y)|^{p_k} w_k(y) \, dy \right)^{p/p_k}$$
$$\lesssim \lambda^{-p} \sum_{l=1}^N \prod_{k=1}^\ell \left(\sum_j \int_{Q_j^l} |f_k(y)|^p w_k(y) \, dy \right)^{p/p_k}$$
$$\lesssim \lambda^{-p} \prod_{k=1}^\ell \|f_k\|_{L^{p_k}(\mathbb{R}^n, w_k)}^p.$$

Taking $R \to \infty$ then shows that $\mathcal{M}_{0,\sigma}$ is bounded from $L^{p_1}(\mathbb{R}^n, w_1) \times \ldots \times L^{p_\ell}(\mathbb{R}^n, w_\ell)$ to $L^{p,\infty}(\mathbb{R}^n, \nu_{\vec{w}})$. This, as we have proved, certainly implies the condition (v).

References

- 1. L. Grafakos, Modern Fourier Analysis, GTM 250, Springer, New York, 2009.
- 2. G. Hu, Da Yang and Do Yang, Boundedness of maximal singular integral operators on spaces of homogeneous type and its applications, *J. Math. Soc. Japan*, **59** (2007), 323-349.
- 3. A. K. Lerner, Weighted rearrangement inequalities for local sharp maximal functions, *Trans. Amer. Math. Soc.*, **357** (2005), 2445-2465.
- A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres and R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, *Adv. Math.*, 220 (2009), 1222-1264.
- 5. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, *Trans. Amer. Math. Soc.*, **165** (1972), 207-226.
- 6. Y. Sawano, Sharp estimates of the modified Hardy-Littlewood maximal operator on the nonhomogeneous space via covering lemmas, *Hokkaido Math. J.*, **34** (2005), 435-458.
- 7. J. O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, *Indiana Univ. Math. J.*, 28 (1979), 511-544.

Guoen Hu and Wentan Yi Department of Applied Mathematics Zhengzhou Information Science and Technology Institute P. O. Box 1001-747 Zhengzhou 450002 P. R. China E-mail: guoenxx@yahoo.com.cn