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A∞(Rn) WEIGHTS AND THE LOCAL MAXIMAL OPERATOR

Guoen Hu and Wentan Yi

Abstract. Let s ∈ (0, 1/2), M0, s be the local maximal operator of John and
Strömberg, and M0, s the multi(sub)linear local maximal operator. In this paper,
the authors give some characterizations of the weights w1, ..., w� for which the
operatorM0, s is bounded from Lp1 (Rn, w1)× ...×Lp�(Rn, w�) to Lp(Rn, ν�w)
with ν�w =

∏�
k=1 w

p/pk

k , p1, ..., p� ∈ (0, ∞) and 1/p =
∑

1≤k≤� 1/pk. A new
characterization of A∞(Rn) weights and a characterization of weights w which
satisfies wθ ∈ A∞(Rn) for some θ ∈ (0, ∞), are also obtained.

1. INTRODUCTION AND STATEMENTS OF RESULTS

The class of Ap(Rn) weights was introduced by Muckenhoupt [5], in order to
characterize the weight w for which the Hardy-Littlewood maximal operator M is
bounded on Lp(Rn, w). Let w be a weight, that is, w is a non-negative and locally
integrable function. For p ∈ [1, ∞), a weight w is said to be a Ap(Rn) weight if

sup
Q⊂Rn

( 1
|Q|

∫
Q

w(x) dx
)1/p( 1

|Q|
∫

Q
w−1/(p−1)(x) dx

)1/p′
< ∞,

where and in the following, ( 1
|Q|

∫
Q w− 1

p−1 )1/p′ in the case of p = 1 is understood
as (infx∈Q wk)−1. As it is well known, the operator M is bounded on Lp(Rn, w)
when p ∈ (1, ∞) if and only if w ∈ Ap(Rn), and is bounded from L1(Rn, w) to
L1,∞(Rn, w) if and only if w ∈ A1(Rn). In the last forty years there has been
significant progress in the study of Ap(Rn) weights and the behavior of classical
operators on various weighted spaces with Ap weights, see [1, Chap. 9].
Fairly recently, to study weighted estimates for the multilinear Calderón-Zygmund

operators, Lerner et al. [4] introduced the multi(sub)linear Hardy-Littlewood maximal
operatorM defined by
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M(f1, ..., f�)(x) = sup
Q�x

�∏
k=1

( 1
|Q|

∫
Q

|fk(y)| dy
)
,

and proved that for p1, ..., p� ∈ [1, ∞), the operatorM is bounded from Lp1(Rn, w1)×
...× Lp�(Rn) to Lp,∞(Rn, ν�w) if and only if �w ∈ A�P (Rn), namely,

(1.1) sup
Q⊂Rn

( 1
|Q|

∫
Q

ν�w(x) dx
)1/p

�∏
k=1

( 1
|Q|

∫
Q

w
−1/(pk−1)
k (x)

)1/p′k
< ∞.

Moreover, in the setting of max1≤k≤� pk > 1, �w ∈ A�P (Rn) is also the sufficient
condition such thatM is bounded from Lp1(Rn, w1)× ...× Lp�(Rn) to Lp(Rn, ν�w),
where and in the sequel, for �P = (p1, ..., p�) and �w = (w1, ..., w�), we set p ∈ (0, ∞)
such that 1/p =

∑
1≤k≤� 1/pk and ν�w =

∏
1≤k≤� w

p/pk

k . This result is very interesting
and leads to the right class of multiple weights for the multilinear Calderón-Zygmund
operators.
Now we consider the analogy of the operator M in the setting of local maximal

operator. Let s ∈ (0, 1) and f be a measurable function in R
n. Set

m0, s; Q(f) = inf{λ > 0 : |{x ∈ Q : |f(x)| > λ}| < s|Q|},
and define the local maximal operator M0, s by

M0, sf(x) = sup
Q�x

m0, s; Q(f).

This operator is useful in the study of boundedness of some class operators (see [2]
and [3]). The multi(sub)linear version of M0, s is defined by

M0, s(f1, ..., f�)(x) = sup
Q�x

�∏
k=1

m0, s; Q(fk).

The purpose of this paper is to consider the weighted norm inequalities with multi-
weight for the operator M0, s. We will give some characterizations of the weights
w1, ..., w� for which M0, s is bounded from Lp1(Rn, w1) × ... × Lp�(Rn, w�) to
Lp(Rn, ν�w) with p1, ..., p� ∈ (0, ∞], 1/p =

∑
1≤k≤� 1/p�, and ν�w =

∏�
k=1 w

p/pk

k .
As usual, set A∞(Rn) = ∪p≥1Ap(Rn) (see [1] for the characterizations of A∞(Rn)
weights). For �P = (p1, ..., p�) with p1, ..., p� ∈ (0, ∞] and r ∈ (0, min1≤k≤q� pk),
set �P/r = (p1/r, ..., p�/r) and

A�P ,∞(Rn) =
⋃

r: 0<r<min1≤k≤� pk

A�P /r(R
n).

It is obvious that when � = 1, A�P ,∞(Rn) is just the classical A∞(Rn). Our main
result can be stated as follows.
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Theorem 1.1. Let s ∈ (0, 1/(2�)), w1, ..., w� be weights, p1, ..., p� ∈ (0, ∞)
with 1/p =

∑�
k=1 1/pk. Then the following conditions are equivalent

(i) the operator M0, s is bounded from Lp1(Rn, w1) × ... × Lp�(Rn, w�) to Lp

(Rn, ν�w);
(ii) the operatorM0, s is bounded from Lp1(Rn, w1) × ...× Lp�(Rn, w�) to Lp,∞

(Rn, ν�w);
(iii) there exists a constant τ ∈ (0, 1/(2�)) such that for any cube Q and measur-

able sets E1, ..., E� ⊂ Q, if |Ek| > τ |Q| for any k with 1 ≤ k ≤ �, then∏�
k=1{wk(Ek)}p/pk � ν�w(Q);

(iv) there exists a constant τ ∈ (0, 1/(2�)), such that

(1.2) sup
Q⊂Rn

( 1
|Q|

∫
Q

ν�w(x) dx
)1/p

�∏
k=1

{m0, τ ; Q(w−1
k )}1/pk < ∞;

(v) ν�w ∈ A∞(Rn) and there exists a constant γ ∈ (0, ∞) such that for each k with
1 ≤ k ≤ �, wγ

k ∈ A∞(Rn).
(vi) �w ∈ A�P ,∞(Rn).

Remark 1.1. For the case of � = 1, Theorem 1.1 tells us that w ∈ A∞(Rn) if and
only if for some s ∈ (0, 1/2),

sup
Q⊂Rn

( 1
|Q|

∫
Q

w(x) dx
)
m0, s; Q(w−1) < ∞.

This is a new characterization of A∞(Rn) weights. Also, Theorem 1.1 implies a
characterization of A∞(Rn) weights in terms of the local maximal operator M0, s.

Remark 1.2. For the case of s ∈ (0, 1), the condition (vi) also implies (i) in
Theorem 1.1. However, we do not know if (vi) is a necessary condition such thatM0, s

is bounded from Lp1(Rn, w1)×...×Lp�(Rn, w�) to Lp(Rn, ν�w) when s ∈ (1/(2�), 1).

To prove Theorem 1.1, we will use the following result, which is new and of
independent interest.

Theorem 1.2. Let w be a weight, s1, s2 ∈ (0, 1/2) with s1 + s2 < 1/2. The
following three conditions are equivalent:

(a) There exists a constant θ ∈ (0, ∞) such that wθ ∈ A2(Rn);
(b) There exists a constant γ ∈ (0, ∞) such that wγ ∈ A∞(Rn);
(c)

(1.3) sup
Q⊂Rn

m0, s1; Q(w)m0, s2;Q(w−1) < ∞.
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We now make some conventions. Throughout this paper, we always denote by
C a positive constant which is independent of the main parameters, but it may vary
from line to line. Constant with subscript such as C1, does not change in different
occurrences. The symbol A � B means that there exists a positive constant C such
that A � CB. Given λ > 0 and a cube Q, λQ denotes the cube with the same center
as Q and whose side length is λ times that of Q.

2. PROOF OF THEOREMS

We begin with some preliminary lemmas.

Lemma 2.1. Let s1, ..., s�, s ∈ (0, 1), f1, ..., f� be measurable functions. Then
for any cube Q,

(2.1) m0, s1+s2;Q(f1 + f2) ≤ m0, s1; Q(f1) + m0; s2;Q(f2),

and

(2.2) m0,
∑

1≤k≤� sk; Q(f1...f�) ≤
�∏

k=1

m0, sk; Q(fk).

Proof. The proofs for these two inequalities are similar and we only consider (2.2).
Without loss of generality, we may assume that

m0, s1; Q(f1) = ... = m0, s� ;Q(f�) = 1.

Then for any ε > 0 and k with 1 ≤ k ≤ �,

|{x ∈ Q : |fk(x)| > 1 + ε}| < sk|Q|.
This in turn implies that

|{x ∈ Q : |f1(x)...f�(x)| > (1 + ε)�}| <

�∑
k=1

sk|Q|,

and so
m0,

∑
1≤k≤� sk ;Q(f1...f�) ≤ (1 + ε)�.

Our desired conclusion then follows directly.

Lemma 2.2. Let w be a weight. Then w ∈ A∞(Rn) if and only if for some
s ∈ (0, 1)

(2.3) sup
Q⊂Rn

m0, s; Q(w−1)
( 1
|Q|

∫
Q

w(x) dx
)

< ∞;

Proof. At first, we claim that if (2.3) is true, then w is doubling. In fact, by the
inequality (2.2), we know that for any τ ∈ (s, 1) and any p ∈ (0, ∞),
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(2.4)

m0, τ ;Q(f) �
{
m0, τ−s; Q(fpw)

}1/p{
m0, s; Q(w−1)

}1/p

�
( 1
|Q|

∫
Q

|f(x)|pw(x) dx
)1/p( 1

|Q|
∫

Q

w(x) dx
)−1/p

,

where the second inequality follows from the fact that, for any cube Q and any r ∈
(0, ∞),

(2.5) m0, σ; Q(w−1) ≤ σ−1/r
( 1
|Q|

∫
Q

w−r(x) dx
)1/r

.

Choose f(x) = χτQ(x). Note that m0, τ ;Q(f) = 1. The estimate (2.4) leads to that

w(Q) � w(τQ),

and w is doubling. Also, (2.4) implies that for any p ∈ (0, ∞),

M0, τf(x) � {M c
w(|f |p)(x)}1/p.

where M c
w is the weighted centered maximal operator with weight w. Since w is

doubling, M c
w is bounded from L1(Rn, w) to L1,∞(Rn, w). Thus by a simple inter-

polation argument, we know (2.3) implies that M0, τ is bounded on Lp(Rn, w).
We can now conclude the proof of Lemma 2.2. It is easy to see that w ∈ A∞(Rn)

implies (2.3). On the other hand, if (2.3) is true, as we have pointed out, for τ ∈ (s, 1)
and p ∈ (0, ∞),

(2.6) ‖M0, τf‖Lp(Rn, w) � ‖f‖Lp(Rn, w).

For each cube Q and measurable set E ⊂ Q, if |E| ≥ τ |Q|, choosing f(x) = χE(x)
in the inequality (2.6) then yields

w(Q) � w(E).

This via the characterization of the A∞(Rn) weights tells us that w ∈ A∞(Rn), see
[1, Chap. 9].
The following lemma is a combine of Theorem 3.6 and Theorem 3.7 in [4].

Lemma 2.3. Let w1, ..., wm be weights, p1, ..., pm, p ∈ (0, ∞) with 1/p =∑m
k=1 1/pk, r ∈ (0, min1≤k≤� pk). Then the following three conditions are equivalent
(i) The operatorMr defined by

Mrf(x) = sup
Q�x

�∏
k=1

( 1
|Q|

∫
Q
|fk(x)|r dx

)1/r

is bounded from Lp1(Rn, w1)× ...× Lp�(Rn, w�) to Lp(Rn, ν�w);
(ii) �w ∈ A�P/r(R

n);
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(iii) for any k with 1 ≤ k ≤ �, w
− 1

pk
r −1

k ∈ A �pk
pk−r

(Rn), and ν�w ∈ A�p/r(Rn).

To prove Theorem 1.2, we will employ the characterization of BMO(Rn) space
in terms of John-Strömberg sharp maximal operator, see [7]. Let f be a real-valued
measurable function in R

n. For a fixed cube Q, mf (Q), the median value of f on Q,
is defined to be any number such that

|{x ∈ Q : f(x) > mf (Q)}| ≤ 1
2
|Q|, |{x ∈ Q : f(x) < mf(Q)}| ≤ 1

2
|Q|.

If f is complex-valued, the median value of f onQ is defined bymf (Q) = mRe(f)(Q)+
imIm(f)(Q), where i2 = −1.

The following characterization of BMO(Rn) can be found in Strömberg [7].

Lemma 2.4. Let s ∈ (0, 1/2) and f be a measurable function. Then

‖f‖BMO(Rn) � ‖f‖BMO0, s(Rn),

where
‖f‖BMO0, s(Rn) = sup

Q⊂Rn
m0, s; Q(f − mf (Q)).

Proof of Theorem 1.2. The implicity (a)⇒(b) and (b)⇒(c) are obvious. To prove
that (c) implies (a), we first claim that if w satisfies the estimate (1.3), then there exists
a constant C such that for any ε > 0,

(2.7) sup
Q⊂Rn

m0, s; Q(w + ε)m0, s; Q((w + ε)−1) ≤ C.

In fact, for each fixed cube Q ⊂ R
n, a straightforward computation gives that

m0, s; Q(w + ε) = m0, s; Q(w) + ε,

and

m0, s; Q((w + ε)−1) =
1

sup{λ > 0 : |{x ∈ Q : w + ε < λ}| < s|Q|}
=

1
sup{λ > 0 : |{x ∈ Q : w < λ}| < s|Q|}+ ε

=
1

{m0, s; Q(w−1)}−1 + ε
.

Therefore,

sup
Q⊂Rn

m0, s; Q(w + ε)m0, s; Q((w + ε)−1) ≤ 1 + sup
Q⊂Rn

m0, s; Q(w)m0, s; Q(w−1),

and (2.7) follows directly.
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We now invoke the idea in [1, p. 300] to prove that (c) implies (a). For each
positive integer k, set wk(x) = w(x) + 1/k and let wk(x) = exp φk(x). Then φk(x)
is finite a. e. x ∈ R

n. It then follows from (2.7) that for any cube Q ⊂ R
n,

(2.8) m0, s1;Q

(
exp(φk(x)− mφk

(Q))
)
m0, s2;Q

(
exp(−(φk − mφk

(Q)))
)

� 1.

Noticing that

|{x ∈ Q : exp(φk − mφk
(Q)) >

1
2
}| ≥ |{x ∈ Q : φk(x) ≥ mφk

(Q)}| > 1
2
|Q|,

we then know that
m0, s1; Q

(
exp(φk − mφk

(Q))
)

� 1,

and similarly,
m0, s2; Q

(
exp(−(φk − mφk

(Q)))
)

� 1.

This, along with (2.8) and the estimate (2.1), leads to that

m0, s1+s2;Q(|φk − mφk
(Q)|) � m0, s1; Q

(
exp(φk − mφk

(Q))
)

+m0, s2;Q

(
exp(−(φk − mφk

(Q)))
)

� 1.

Lemma 2.4, via the the John-Nirenberg inequality now states that for some positive
constants C1 independent of k,

sup
Q⊂Rn

1
|Q|

∫
Q

exp
( |φk(x) − mQ(φk)|

C1

)
dx < ∞.

Therefore, for any cube Q ⊂ R
n,

( 1
|Q|

∫
Q

w
1/C1

k (x) dx
)( 1

|Q|
∫

Q

w
−1/C1

k (x) dx
)

� 1.

Taking k → ∞ in the last inequality then yields w1/C1 ∈ A2(Rn).

Proof of Theorem 1.1. It suffices to prove that (i)⇒(ii)⇒(iv)⇒(v)⇒(vi)⇒(i), and
(ii)⇒(iii) and (iii)⇒(v).
(i)⇒(ii). This is obvious.
(ii)⇒(iv). For each cube Q ⊂ R

n, set f j
k = (w−1

k, j + 1/j)1/pkχQ with wk, j =

wk + 1/j and 1 ≤ k ≤ �. Also, set λ
j
0 = 1

2

∏�
k=1 m0, s; Q(f j

k). It is obvious that
λj

0 ∈ (0, ∞). The hypothesis tells us that

ν�w({x ∈ R
n : M0, s(f

j
1 , ..., f

j
� )(x) > λ

j
0}) � (λj

0)
−p

�∏
k=1

‖fk‖p
Lpk (Rn, wk),
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which, via the fact that m0, s; Q(w−1
k, j + 1/j) = m0, s; Q(w−1

k, j) + 1/j, in turn implies
that

ν�w(Q)
�∏

k=1

{m0, s; Q(w−1
k, j) + 1/j}p/pk �

�∏
k=1

(∫
Q

wk(x)
wk(x) + 1/j

dx + wk(Q)/j

)p/pk

,

Taking j → ∞ then leads to (iv).
(iv)⇒(v). Recall that 2�τ < 1, we can choose a constant δ > 0 such that 2�τ +δ <

1. It follows from the inequality (2.2) that

sup
Q⊂Rn

( 1
|Q|

∫
Q

ν�w(x) dx
)
m0, �τ ; Q(ν−1

�w ) < ∞.

This via Lemma 2.2 shows that ν�w ∈ A∞(Rn). On the other hand, for each fixed k

with 1 ≤ k ≤ �, again by (2.2),

m0, (�−1)τ+δ;Q(wp/pk

k ) ≤ m0, δ; Q(ν�w)
∏

1≤j≤�, j �=k

{m0, τ ;Q(w−1
j )}p/pj .

Therefore,
m0, (�−1)τ+δ;Q(wk)m0, τ ;Q(w−1

k ) � 1,

which together with Theorem 1.2 implies that wγk
k ∈ A∞(Rn) for some γk ∈ (0, ∞).

Taking γ = min1≤k≤� γ� then leads to condition (v).
(v)⇒(vi). The case � = 1 is obvious. For the case of � > 1, we know from Theorem

1.2 that there exists a constant θ ∈ (0, ∞) such that for each k with 1 ≤ k ≤ �,
wθ

k ∈ A2(Rn). Thus, we can take some r ∈ (0, min1≤k≤� pk) which is small enough,
such that ν�w ∈ A�p/r(Rn), and for each k with 1 ≤ k ≤ �, w−1/(pk/r−1)

k ∈ A2(Rn) ⊂
A�pk/(pk−r)(Rn). This, along with Lemma 2.3, tells us �w ∈ A�P/r

(Rn).
(vi)⇒(i). This is an easy consequence of Lemma 2.3 and the fact that for any

s ∈ (0, 1) and r ∈ (0, ∞),

M0, s(f1, ..., f�)(x) � Mr(f1, ..., f�(x).

(ii)⇒(iii). Let Q be a cube and E1, ..., E� ⊂ Q be measurable sets such that
|Ek| > s|Q| for k with 1 ≤ k ≤ �. SinceM0, s is bounded from Lp1(Rn, w1) × ...×
Lp�(Rn, w�) to Lp,∞(Rn, ν�w), it follows that

w({x ∈ R
n : M0, s(χE1, ..., χE�

)(x) > 1/2}) �
�∏

k=1

{wk(Ek)}p/pk.

Note that for any x ∈ Q, M0, s(χE1 , ..., χE�
)(x) > 1/2. We thus have that

ν�w(Q) �
�∏

k=1

{wk(Ek)}p/pk.
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(iii) implies (v). At first, we prove that for σ ∈ (τ, 1/(2�)),M0,σ is bounded from
Lp1(Rn, w1)× ...×Lp�(Rn, w�) to Lp,∞(Rn, ν�w). To see this, for each fixed λ > 0,
set

ΩR
σ, λ = {x ∈ R

n : MR
0, σ(f1, ..., f�)(x) > λ},

where

MR
0, σ(f1, ..., f�)(x) = sup

Q�x, |Q|<Rn

�∏
k=1

m0, σ; Q(fk).

For each fixed x ∈ ΩR
σ, ,λ, we can choose a cube Qx containing x and satisfies that∏�

k=1 m0, σ; Qx(fk) > λ. Then there exist positive numbers λ1, ..., λ� such that
�∏

k=1

λk > λ, m0, σ; Qx(fk) > λk, 1 ≤ k ≤ �.

This in turn implies that

|{y ∈ Qx : |fk(y)| > λk}| > τ
∣∣∣(σ

τ
)1/nQx

∣∣∣.
The condition (iii) tells us that

ν�w

((σ

τ

)1/n
Qx

)
�

�∏
k=1

{wk({y ∈ Qx : |fk(y)| > λk})}p/pk

� λ−p
�∏

k=1

( ∫
Qx

|f(y)|pkwk(y) dy
)p/pk

.

By the covering lemma of Besicovitch type (see [6]), from the family of cubes
{Qx}x∈ΩR

σ, λ
, we can chooseN (depending only on n, τ and σ) subfamiliesDl = {Ql

j},
l = 1, ..., N , such that

ΩR
σ, λ ⊂ ∪N

l=1 ∪j

(σ

τ

)1/n
Ql

j,

and for each fixed l with 1 ≤ l ≤ N , any two cubes Ql
j1
and Ql

j2
are disjoint. We

finally have that

ν�w(ΩR
σ,λ) � λ−p

N∑
l=1

∑
j

�∏
k=1

(∫
Ql

j

|f(y)|pkwk(y) dy
)p/pk

� λ−p
N∑

l=1

�∏
k=1

( ∑
j

∫
Ql

j

|fk(y)|pwk(y) dy
)p/pk

� λ−p
�∏

k=1

‖fk‖p
Lpk(Rn, wk).

TakingR → ∞ then shows thatM0, σ is bounded from Lp1(Rn, w1)×...×Lp�(Rn, w�)
to Lp,∞(Rn, ν�w). This, as we have proved, certainly implies the condition (v).
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