METRIC VERSIONS OF POSNER'S THEOREMS

J. Alaminos, J. Extremera, Š. Špenko and A. R. Villena

Abstract

Let S and T be continuous linear operators on an ultraprime Banach algebra A. We show that if S, T, and $S T$ are close to satisfy the derivation identity on A, then either S or T approaches to zero. If T is close to satisfy the derivation identity and $[T(a), a]$ is near the centre of A for each $a \in A$, then either T approaches to zero or A is nearly commutative. Further, we give quantitative estimates of these phenomena.

1. Introduction

In [7], E. C. Posner proved two theorems about derivations on prime rings which have turned out to be very influential. A number of authors have refined and extended these theorems in several ways (see [3, Subsection 2.1], where further references can be found). In this paper we follow the pattern of [2]. To this end we restrict our attention to ultraprime Banach algebras. The ultraprimeness is a metric version of the primeness which was introduced by M. Mathieu in [4]. Let A be a Banach algebra. For each $a, b \in A$, we write $M_{a, b}$ for the two-sided multiplication operator on A defined by

$$
M_{a, b}(x)=a x b \quad(x \in A) .
$$

Recall that A is prime if $M_{a, b}=0$ implies $a=0$ or $b=0$. We define

$$
\kappa(A)=\inf \left\{\left\|M_{a, b}\right\|: a, b \in A,\|a\|=\|b\|=1\right\} .
$$

The Banach algebra A is said to be ultraprime if $\kappa(A)>0$. It is clear that each finitedimensional prime Banach algebra is ultraprime. For a Banach space X we denote by $\mathcal{L}(X)$ the Banach algebra of all continuous linear operators from X into itself. The Banach algebra $\mathcal{L}(X)$ is ultraprime and, more generally, every closed subalgebra of

[^0]$\mathcal{L}(X)$ containing the finite rank operators is ultraprime [4]. Every prime C^{*}-algebra is ultraprime [5].

In [2], a metric version of the first Posner's theorem is obtained by giving an estimate of the distance from the composition $D_{1} D_{2}$ of two derivations D_{1} and D_{2} on an ultraprime Banach algebra A to the set of all generalized derivations on A. In this paper we measure the "derivativity" of a given continuous linear operator T on an ultraprime Banach algebra A through the constant $\operatorname{der}(T)=\sup \{\| T(a b)-T(a) b-$ $a T(b)\|:\| a\|=\| b \|=1\}$ and we estimate $\|S\|\|T\|$ in terms of $\operatorname{der}(S), \operatorname{der}(T)$, and $\operatorname{der}(S T)$ for arbitrary continuous linear operators S and T on A. Further, we present a metric version of the second Posner's theorem by estimating $\|T\| \sup \{\|a b-b a\|:\|a\|=$ $\|b\|=1\}$ in terms of $\operatorname{der}(T)$ and $\sup \{\operatorname{dist}([T(a), a], \mathcal{Z}(A)):\|a\|=1\}$.

2. First Posner's Theorem

Let us recall that an additive map D from a ring R into itself is said to be a derivation if

$$
\begin{equation*}
D(a b)=D(a) b+a D(b) \quad(a, b \in R) \tag{1}
\end{equation*}
$$

The first Posner's theorem states that if R is a prime ring with characteristic different from 2, and D_{1}, D_{2} are derivations on R such that the composition $D_{1} D_{2}$ is also a derivation, then either D_{1} or D_{2} is zero. The purpose of this section is to give a quantitative estimate of this result. Let A be a Banach algebra and let $T \in \mathcal{L}(A)$. We define a continuous bilinear map $T^{\delta}: A \times A \rightarrow A$ by

$$
T^{\delta}(a, b)=T(a b)-T(a) b-a T(b) \quad(a, b \in A)
$$

The constant $\left\|T^{\delta}\right\|$ can be thought of as a measure of how much T satisfies the derivation identity (1). From now on, we write $\operatorname{der}(T)$ (the derivativity of T) for $\left\|T^{\delta}\right\|$, i.e.,

$$
\operatorname{der}(T)=\sup \{\|T(a b)-T(a) b-a T(b)\|: a, b \in A,\|a\|=\|b\|=1\}
$$

The map $T \mapsto \operatorname{der}(T)$ gives a seminorm on $\mathcal{L}(A)$ which vanishes precisely on the linear subspace $\operatorname{Der}(A)$ of $\mathcal{L}(A)$ consisting of all continuous derivations on A. This seminorm has shown to be extremely useful for analysing the hyperreflexivity of the space $\operatorname{Der}(A)$ [1].

Theorem 2.1. Let A be a Banach algebra and let $S, T \in \mathcal{L}(A)$. then

$$
\kappa(A)^{2}\|S\|\|T\| \leq 3 \operatorname{der}(S T)+\frac{15}{2} \operatorname{der}(S)\|T\|+\frac{9}{2} \operatorname{der}(T)\|S\|
$$

Proof. The arguments are similar to those in [2].
For all $a, b, c \in A$ we have

$$
\begin{aligned}
S(a) b T(c)+T(a) b S(c)= & (S T)^{\delta}(a b, c)-a(S T)^{\delta}(b, c) \\
& -T^{\delta}(a, b) S(c)-S^{\delta}(T(a b), c) \\
& -S^{\delta}(a, b) T(c)-S^{\delta}(a b, T(c))-S\left(T^{\delta}(a b, c)\right) \\
& +a S^{\delta}(T(b), c)+a S^{\delta}(b, T(c))+a S\left(T^{\delta}(b, c)\right)
\end{aligned}
$$

and taking norms we arrive at

$$
\|S(a) b T(c)+T(a) b S(c)\| \leq\left(2\left\|(S T)^{\delta}\right\|+5\left\|S^{\delta}\right\|\|T\|+3\left\|T^{\delta}\right\|\|S\|\right)\|a\|\|b\|\|c\| .
$$

To shorten notation, we write $\mu=2\left\|(S T)^{\delta}\right\|+5\left\|S^{\delta}\right\|\|T\|+3\left\|T^{\delta}\right\|\|S\|$.
On account of [2, Observation 2], we have

$$
\begin{aligned}
2 S(a) u T(b) v S(c)= & (S(a) u T(b)+T(a) u S(b)) v S(c) \\
& +S(a) u(T(b) v S(c)+S(b) v T(c)) \\
& -(S(a)(u S(b) v) T(c)+T(a)(u S(b) v) S(c)),
\end{aligned}
$$

and hence $2\|S(a) u T(b) v S(c)\| \leq 3 \mu\|S\|\|a\|\|b\|\|c\|\|u\|\|v\|$ for all $a, b, c, u, v \in A$. This gives $\left\|M_{S(a), T(b) v S(c)}\right\| \leq \frac{3}{2} \mu\|S\|\|a\|\|b\|\|c\|\|v\|$ for all $a, b, c, v \in A$. Since $\kappa(A)\|S(a)\|\|T(b) v S(c)\| \leq\left\|M_{S(a), T(b) v S(c)}\right\|$, it follows that

$$
\kappa(A)\|S(a)\|\|T(b) v S(c)\| \leq \frac{3}{2} \mu\|S\|\|a\|\|b\|\|c\|\|v\|
$$

for all $a, b, c, v \in A$ and therefore that

$$
\kappa(A)\|S(a)\|\left\|M_{T(b), S(c)}\right\| \leq \frac{3}{2} \mu\|S\|\|a\|\|b\|\|c\|
$$

for all $a, b, c \in A$. From $\kappa(A)\|T(b)\|\|S(c)\| \leq\left\|M_{T(b), S(c)}\right\|$ we now deduce that $\kappa(A)^{2}\|S(a)\|\|T(b)\|\|S(c)\| \leq \frac{3}{2} \mu\|S\|\|a\|\| \| b\| \| c \|$ for all $a, b, c \in A$ and hence that $\kappa(A)^{2}\|S\|^{2}\|T\| \leq \frac{3}{2} \mu\|S\|$, which clearly establishes the theorem.

Corollary 2.2. Let A be a Banach algebra and let $S, T \in \mathcal{L}(A)$. Then

$$
\kappa(A)^{2} \min \{\|S\|,\|T\|\} \leq \kappa(A) \sqrt{3 \operatorname{der}(S T)}+\frac{15}{2} \operatorname{der}(S)+\frac{9}{2} \operatorname{der}(T) .
$$

Proof. Of course, we can assume that $\kappa(A),\|S\|,\|T\| \neq 0$.
By applying Theorem 2.1 we arrive at

$$
1 \leq \frac{\alpha}{\|S\|\|T\|}+\frac{\beta}{\|S\|}+\frac{\gamma}{\|T\|},
$$

where $\alpha=3 \operatorname{der}(S T) \kappa(A)^{-2}, \beta=\frac{15}{2} \operatorname{der}(S) \kappa(A)^{-2}$, and $\gamma=\frac{9}{2} \operatorname{der}(T) \kappa(A)^{-2}$. We now write $\lambda=\min \{\|S\|,\|T\|\}$. Then $1 \leq \frac{\alpha}{\lambda^{2}}+\frac{\beta}{\lambda}+\frac{\gamma}{\lambda}$ and therefore

$$
\lambda^{2}-(\beta+\gamma) \lambda-\alpha \leq 0
$$

This implies that

$$
\lambda \leq \frac{\beta+\gamma+\sqrt{(\beta+\gamma)^{2}+4 \alpha}}{2} \leq \beta+\gamma+\sqrt{\alpha},
$$

which establishes the inequality in the corollary.

3. Second Posner's Theorem

Let R be a ring. In the sequel, we write $[a, b]=a b-b a$ for all $a, b \in R$ and we denote by $\mathcal{Z}(R)$ the centre of R. A map $T: R \rightarrow R$ is said to be commuting if

$$
\begin{equation*}
[T(a), a]=0 \quad(a \in R) \tag{2}
\end{equation*}
$$

and, more generally, it is said to be centralizing if

$$
\begin{equation*}
[T(a), a] \in \mathcal{Z}(R) \quad(a \in R) \tag{3}
\end{equation*}
$$

The second Posner's theorem states that if D is a centralizing derivation on a prime ring R, then either D is zero or R is commutative. Our next concern is to give a quantitative estimate of this result. Our method is motivated by [6]. To this end, we measure how much a linear operator T from a Banach algebra A into itself satisfies conditions (2) and (3) by considering the constants

$$
\operatorname{com}(T)=\sup \{\|[T(a), a]\|: a \in A,\|a\|=1\}
$$

and

$$
\operatorname{cen}(T)=\sup \{\operatorname{dist}([T(a), a], \mathcal{Z}(A)): a \in A,\|a\|=1\},
$$

respectively. Note that both com and cen are seminorms on $\mathcal{L}(A)$ vanishing precisely on the commuting maps and the centralizing maps, respectively. Further, we measure the commutativity of A through the constant

$$
\chi(A)=\sup \{\|[a, b]\|: a, b \in A,\|a\|=\|b\|=1\} .
$$

Let us recall that $\mathcal{Z}(A)$ is closed so that the quotient linear space $A / \mathcal{Z}(A)$ turns into a Banach space with respect to the norm given by $\|a+\mathcal{Z}(A)\|=\operatorname{dist}(a, \mathcal{Z}(A))(a \in A)$.

Lemma 3.1. Let A be a Banach algebra. Then

$$
\|[a, b]\| \leq 2\|a+\mathcal{Z}(A)\|\|b+\mathcal{Z}(A)\|
$$

for all $a, b \in A$.
Proof. Let $a, b \in A$. For all $u, v \in \mathcal{Z}(A)$ we have $[a, b]=[a+u, b+v]$ and so $\|[a, b]\| \leq 2\|a+u\|\|b+v\|$. By taking the infima in u and v we arrive at the claimed inequality.

Lemma 3.2. Let A a Banach algebra and let $T \in \mathcal{L}(A)$. Then

$$
\kappa(A) \operatorname{com}(T)^{2} \leq(8 \operatorname{cen}(T)+\operatorname{der}(T))\|T\|
$$

Proof. For all $a, b \in A$, we have

$$
[T(a), b]+[T(b), a]=\frac{1}{2}[T(a+b), a+b]-\frac{1}{2}[T(a-b), a-b] .
$$

We thus get

$$
\begin{equation*}
\|[T(a), b]+[T(b), a]+\mathcal{Z}(A)\| \leq 4 \operatorname{cen}(T) \tag{4}
\end{equation*}
$$

for all $a, b \in A$ with $\|a\|=\|b\|=1$.
Let $a \in A$ with $\|a\|=1$. Then

$$
\begin{aligned}
4[T(a), a]^{2}= & 2[[T(a), a], T(a)] a+2 a[[T(a), a], T(a)] \\
& -\left[\left[T(a), a^{2}\right]+\left[T\left(a^{2}\right), a\right], T(a)\right]+\left[\left[T^{\delta}(a, a), a\right], T(a)\right]
\end{aligned}
$$

and therefore

$$
\begin{aligned}
4\left\|[T(a), a]^{2}\right\| \leq & 4\|[[T(a), a], T(a)]\| \\
& +\left\|\left[\left[T(a), a^{2}\right]+\left[T\left(a^{2}\right), a\right], T(a)\right]\right\|+\left\|\left[\left[T^{\delta}(a, a), a\right], T(a)\right]\right\| .
\end{aligned}
$$

From Lemma 3.1 and (4) we now deduce that

$$
\begin{aligned}
\left\|[T(a), a]^{2}\right\| \leq & 2\|[T(a), a]+\mathcal{Z}(A)\|\|T\| \\
& +\frac{1}{2}\left\|\left[T(a), a^{2}\right]+\left[T\left(a^{2}\right), a\right]+\mathcal{Z}(A)\right\|\|T\|+\left\|T^{\delta}\right\|\|T\| \\
\leq & (4 \operatorname{cen}(T)+\operatorname{der}(T))\|T\|
\end{aligned}
$$

For each $x \in A$ with $\|x\|=1$, we have

$$
[T(a), a] x[T(a), a]=[T(a), a]^{2} x+[T(a), a][x,[T(a), a]]
$$

and so

$$
\begin{aligned}
\|[T(a), a] x[T(a), a]\| & \leq\left\|[T(a), a]^{2} x\right\|+\|[T(a), a][x,[T(a), a]]\| \\
& \leq(4 \operatorname{cen}(T)+\operatorname{der}(T))\|T\|+\|[T(a), a]\| 2 \|[T(a), a)]+\mathcal{Z}(A) \| \\
& \leq(8 \operatorname{cen}(T)+\operatorname{der}(T))\|T\| .
\end{aligned}
$$

We thus get $\left\|M_{[T(a), a],[T(a), a]}\right\| \leq(8 \operatorname{cen}(T)+\operatorname{der}(T))\|T\|$ and hence

$$
\kappa(A)\|[T(a), a]\|^{2} \leq(8 \operatorname{cen}(T)+\operatorname{der}(T))\|T\|
$$

Taking the supremum in a we finally obtain the inequality in the lemma.

Theorem 3.3. Let A be a Banach algebra and let $T \in \mathcal{L}(A)$. Then

$$
\kappa(A)^{2} \chi(A)\|T\| \leq 36 \operatorname{com}(T)+\frac{9}{2} \operatorname{der}(T) \chi(A)
$$

and

$$
\kappa(A)^{5 / 2} \chi(A)\|T\| \leq 36(8 \operatorname{cen}(T)+\operatorname{der}(T))^{1 / 2}\|T\|^{1 / 2}+\frac{9}{2} \kappa(A)^{1 / 2} \operatorname{der}(T) \chi(A) .
$$

Proof. Let $a, b \in A$ with $\|a\|=\|b\|=1$. We write $a d(a)$ for the inner derivation on A implemented by a, i.e. $\operatorname{ad}(a)(x)=[a, x]$ for each $x \in A$. Since $(-a d(a) T+a d(T(a)))(b)=\frac{1}{2}[T(a+b), a+b]-\frac{1}{2}[T(a-b), a-b]$, it follows that $\| a d(a) T-a d(T a)) \| \leq 4 \operatorname{com}(T)$, and consequently $\operatorname{dist}(\operatorname{ad}(a) T, \operatorname{Der}(A)) \leq$ $4 \operatorname{com}(T)$. On account of [1, Proposition 2.2], we have

$$
\operatorname{der}(a d(a) T) \leq 3 \operatorname{dist}(a d(a) T, \operatorname{Der}(A)) \leq 12 \operatorname{com}(T)
$$

and Theorem 2.1 now yields

$$
\kappa(A)^{2}\|a d(a)\|\|T\| \leq 36 \operatorname{com}(T)+\frac{9}{2} \operatorname{der}(T)\|a d(a)\| .
$$

Taking the supremum in a we arrive at the first inequality in the theorem. From this inequality together with Lemma 3.2 we get the second inequality in the theorem.

Corollary 3.4. Let A be a Banach algebra and let $T \in \mathcal{L}(A)$. Then

$$
\kappa(A)^{2} \min \{\chi(A),\|T\|\} \leq \frac{9}{2} \operatorname{der}(T)+6 \kappa(A) \sqrt{\operatorname{com}(T)}
$$

and

$$
\kappa(A)^{5 / 4} \min \left\{\chi(A),\|T\|^{1 / 2}\right\} \leq \sqrt{36(8 \operatorname{cen}(T)+\operatorname{der}(T))^{1 / 2}+\frac{9}{2} \kappa(A)^{1 / 2} \operatorname{der}(T)} .
$$

Proof. Of course, we can assume that $\kappa(A), \chi(A),\|T\| \neq 0$.
By applying the first inequality in Theorem 3.3 we arrive at

$$
1 \leq \frac{\alpha}{\chi(A)\|T\|}+\frac{\beta}{\|T\|},
$$

where $\alpha=36 \operatorname{com}(T) \kappa(A)^{-2}$ and $\beta=\frac{9}{2} \operatorname{der}(T) \kappa(A)^{-2}$. Write $\lambda=\min \{\chi(A),\|T\|\}$. Then $1 \leq \frac{\alpha}{\lambda^{2}}+\frac{\beta}{\lambda}$ and therefore $\lambda^{2}-\beta \lambda-\alpha \leq 0$, which implies that

$$
\lambda \leq \frac{\beta+\sqrt{\beta^{2}+4 \alpha}}{2} \leq \beta+\sqrt{\alpha}
$$

and this gives the first inequality in the corollary.
We now apply the second inequality in Theorem 3.3 to get

$$
1 \leq \frac{\alpha}{\chi(A)\|T\|^{1 / 2}}+\frac{\beta}{\|T\|}
$$

where $\alpha=36(8 \operatorname{cen}(T)+\operatorname{der}(T))^{1 / 2} \kappa(A)^{-5 / 2}$ and $\beta=\frac{9}{2} \operatorname{der}(T) \kappa(A)^{-2}$. Let $\lambda=$ $\min \left\{\chi(A),\|T\|^{1 / 2}\right\}$. Then $1 \leq \frac{\alpha}{\lambda^{2}}+\frac{\beta}{\lambda^{2}}$, which implies $\lambda \leq \sqrt{\alpha+\beta}$ and this proves the second inequality in the corollary.

Acknowledgment

The work on this paper was done during the visit of the third author at Universidad de Granada. She would like to thank for the hospitality extended to her.

References

1. J. Alaminos, J. Extremera and A. R. Villena, Hyperreflexivity of the derivation space of some group algebras, II, Bull. London Math. Soc., 44 (2012), 323-325.
2. M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33(1) (1991), 89-93.
3. M. Brešar, Commuting maps: a survey, Taiwanese J. Math., 8(3) (2004), 361-397.
4. M. Mathieu, Rings of quotients of ultraprime Banach algebras, with applications to elementary operators, Conference on Automatic Continuity and Banach Algebras (Canberra), 1989, pp. 297-317, Proc. Centre Math. Anal. Austral. Nat. Univ., Vol. 21, Austral. Nat. Univ., Canberra, 1989.
5. M. Mathieu, Elementary operators on prime C^{*}-algebras, I. Math. Ann., 284(2) (1989), 223-244.
6. M. Mathieu, Posner's second theorem deduced from the first, Proc. Amer. Math. Soc., 114(3) (1992), 601-602.
7. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
J. Alaminos, J. Extremera and A. R. Villena

Departamento de Análisis Matemático
Facultad de Ciencias
Universidad de Granada
Granada, Spain
E-mail: alaminos@ugr.es
jlizana@ugr.es
avillena@ugr.es
Š. Špenko
Institute of Mathematics, Physics and Mechanics
Ljubljana, Slovenia
E-mail: spela.spenko@imfm.si

[^0]: Received January 9, 2012, accepted February 6, 2012. Communicated by Ngai-Ching Wong. 2010 Mathematics Subject Classification: Primary 46H05; Secondary 47B47, 47B48.
 Key words and phrases: Derivation, Ultraprime Banach algebra, Centralizing map.
 The first, the second, and the fourth named authors were supported by MICINN Grant MTM2009-07498 and Junta de Andalucía Grants FQM-185 and P09-FQM-4911.

