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EXISTENCE OF A KIND OF BEST SIMULTANEOUS APPROXIMATIONS
IN Lp(Ω, Σ, X)

X. F. Luo* and L. H. Peng

Abstract. Let X be a Banach space, Y a nonempty locally weakly compact closed
convex subset of X, (Ω, Σ, μ) a complete positive σ-finite measure space and Σ0

a sub-σ-algebra of Σ. This paper gives existence results of best simultaneous
approximations to two functions in Lp(Ω, Σ, X) from Lp(Ω, Σ, Y )/Lp(Ω, Σ0, Y )
if span Y /and span Y

∗ has/have the Radon-Nikodym property.

1. INTRODUCTION

Throughout this paper, X is a Banach space with norm ‖·‖, (Ω, Σ, μ) is a complete
positive σ-finite measure space, p ∈ [1, +∞), and Lp(Ω, Σ, X) denotes the Banach
space of all Bochner p-integrable (essentially bounded for p = ∞) functions defined on
Ω with values in X endowed with the usual norm ‖ · ‖p. Let G be a nonempty subset
of Lp(Ω, Σ, X) and let f ∈ Lp(Ω, Σ, X). Then g0 ∈ G is called a best approximation
to f from G if

‖f − g0‖p = inf{‖f − g‖p : g ∈ G}.
The set of all best approximations to f from G is denoted by PG(f). G is called
proximinal in Lp(Ω, Σ, X) if PG(f) �= ∅ for each f ∈ Lp(Ω, Σ, X).
For a given closed subspace Y of X , many papers have been devoted to studying

when the space Lp(Ω, Σ, Y ) is proximinal in Lp(Ω, Σ, X) (see the references cited in
[3, 7, 8]), and the main problem that these papers address is that if Y is proximinal
in X , is Lp(Ω, Σ, X) proximinal Lp(Ω, Σ, Y )? Until to 1998, Mendoza [7] solved
this problem. He shown that if Y is separable then Lp(Ω, Σ, Y ) is proximinal in
Lp(Ω, Σ, X) if and only if Y is proximinal in X , and provided an example to shows
that the condition that Y is separable can not be dropped.
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In the present paper, we shall study the problem of best simultaneous approximations
in Lp(Ω, Σ, X). The setting is as follows. Let

(1.1) U := {a ∈ R
m : ‖a‖B ≤ 1},

where m ∈ N and ‖ · ‖B is a given norm on R
m. Let G ⊂ Lp(Ω, Σ, X). For any

F = (f1, · · · , fm) ∈ (Lp(Ω, Σ, X))m, define the norm

‖F‖ := max
a∈U

∥∥∥∥∥
m∑

i=1

aifi

∥∥∥∥∥
p

.

Then g0 ∈ G is called a best simultaneous approximation to F from G if

‖F − g0‖ = d(F, G) := inf{‖F − g‖ : g ∈ G},
here and in the sequel, we adopt the convention that F − g = (f1 − g, · · · , fm − g).
The set of all best simultaneous approximations to F from G is denoted by PG(F ).
G is called simultaneously proximinal in Lp(Ω, Σ, X) if PG(F ) �= ∅ for each F ∈
(Lp(Ω, Σ, X))m. When m = 2 (an extension to any positive integer being straightfor-
ward) and Y is a locally weakly compact closed convex subset of X , we shall show in
this paper that Lp(Ω, Σ0, Y ) (here, Σ0 being a sub-σ-algebra of Σ) is simultaneously
proximinal in Lp(Ω, Σ, X) for each 1 ≤ p < +∞ (with the additional assumption that
(Ω, Σ, μ) be finite for the case of p = 1) if span Y and span Y

∗ have the Radon-
Nikodym property. While for the case when Σ0 = Σ, we shall show that Lp(Ω, Σ, Y )
is simultaneous proximinal in Lp(Ω, Σ, X) for each 1 ≤ p < ∞ if span Y has the
Radon-Nikodym property.
We note that the results of the present paper are corresponding to those given in

[3], in which another kind of best simultaneous approximation problem in Lp(Ω, Σ, X)
based to a so-called monotonic norm in Rm is considered. Also, it should be pointed
that the study of this paper is motivated by works in [4, 5, 6], in which the problems
of best simultaneous approximation in normed spaces under a monotonic norm in Rm

are investigated.

2. AUXILIARY LEMMAS

Let (X, ‖ · ‖), (Ω, Σ, μ), p and Lp(Ω, Σ, X) be explained as in the beginning of
Section 1. Let Y be a subset of X and Σ0 be a sub-σ-algebra of Σ. By Lp(Ω, Σ0, Y )
we mean the subset of Lp(S, Σ, X) defined by

Lp(Ω, Σ0, Y ) := {g ∈ Lp(Ω, Σ0, X) : g(s) ∈ Y for a.e. s ∈ Ω}.
For a set E ∈ Σ, χE denotes the characteristic function of E , i.e., χE(s) = 1 if s ∈ E

and χE(s) = 0 otherwise. Recall that Y ⊂ X is called locally weakly compact if
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for each point y ∈ Y there exists δ > 0 such that B(y, δ) ∩ Y is weakly compact,
where B(y, δ) stands for the closed ball with center δ and radius r. In what follows,
we always assume that m = 2 and the closed unit ball of R

2 is defined by (1.1).
Furthermore, we assume that Y is a locally weakly compact closed convex subset of
X such that Lp(Ω, Σ0, Y ) is nonempty. Without loss of generality, we may assume
that 0 ∈ Y as pointed in [3].
The following Lemmas 1, 2 and Lemma 3, which will be used in the next section,

are corresponding to [8, Lemma 1 and 2] and [3, Lemma 2.2], respectively,

Lemma 1. Let G ⊂ X be a weakly closed subset of X and F = (x1, x2) ∈ X2.
If {gn} ⊂ G is a minimizing sequence for best simultaneous approximation to F from
G and {gn} converges weakly to g0, then g0 ∈ PG(F ).

Proof. Let (a1, a2)∈U . Then, since limn→∞ gn =g0 ∈ G weakly, one has that

lim
n→∞(a1(x1−gn)+a2(x2−gn))=a1(x1−g0)+a2(x2−g0) weakly.

By the weak lower semicontinuity of the norm, we obtain that

‖a1(x1 − g0) + a2(x2 − g0)‖ ≤ lim inf
n→∞ ‖a1(x1 − gn) + a2(x2 − gn)‖

≤ lim inf
n→∞ ‖F − gn‖ = d(F, G)

because {gn} ⊂ G is a minimizing sequence for best simultaneous approximation to
F form G. Consequently, ‖F − g0‖ ≤ d(F, G) because (a1, a2) ∈ U is arbitrary and
g0 ∈ PG(F ), which completes the proof.

Lemma 2. Let f1, f2 ∈ Lp(Ω, Σ, X) and let {gn} ⊂ Lp(Ω, Σ0, Y ) be a minimizing
sequence for best simultaneous approximation to f1, f2 from Lp(Ω, Σ0, Y ). If {An} ⊂
Σ0 satisfies that limn→∞ μ(An) = 0, then {gnχAc

n
} is a minimizing sequence for best

simultaneous approximation to f1, f2 from Lp(Ω, Σ0, Y ).

Proof. Let (a1, a2) ∈ U . It then follows from Minkowski Inequality that

‖a1(f1 − gnχAc
n
) + a2(f2 − gnχAc

n
)‖p

= ‖[a1(f1 − gn) + a2(f2 − gn)]χAc
n

+ (a1f1 + a2f2)χAn‖p

≤ ‖a1(f1 − gn) + a2(f2 − gn)‖p + |a1|‖f1χAn‖p + |a2|‖f2χAn‖p

≤ ‖F − gn‖ + M (‖f1χAn‖p + ‖f2χAn‖p) ,

where M := maxa∈U(|a1| + |a2|) is some positive number. This implies that

d(F, Lp(Ω, Σ0, Y )) ≤ ‖F − gnχAc
n
‖ ≤ ‖F − gn‖+ M (‖f1χAn‖p + ‖f2χAn‖p) .
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By the absolute continuity of a calculus, one has that limn→∞ ‖f1χAn‖p = limn→∞
‖f2χAn‖p = 0 as limn→∞ μ(An) = 0. Thus, letting n → ∞ in above inequality yields

lim
n→∞ ‖F − gnχAc

n
‖ = d(F, Lp(Ω, Σ0, Y )).

This means that {gnχAc
n
} is a minimizing sequence for best simultaneous approximation

to f1, f2 from Lp(Ω, Σ0, Y ). The proof is complete.

Lemma 3. Let f1, f2 ∈ Lp(Ω, Σ, X) be a pair of countable valued functions.
Then (f1, f2) admits a best simultaneous approximation from Lp(Ω, Σ, Y ).

Proof. Let k = 1, 2 and assume that fk =
∑∞

i=1 xk
i χAi for some sequence {Ai}

of disjoint measurable sets in Ω and some sequence {xk
i } ⊂ X . Then μ(Ai) < ∞

whenever xk
i �= 0 because

‖fk‖p
p =

∞∑
i=1

‖xk
i ‖pμ(Ai) < ∞.

Thus, we may assume that 0 < μ(Ai) < ∞ for each i ∈ N. Set

G :=

{
g =

∞∑
i=1

yiχAi : g ∈ Lp(Ω, Σ, Y )

}

and
φ(f1, f2; g) := ‖F − g‖ for each g ∈ G.

We first show that there exists g0 ∈ G such that

(2.1) φ(f1, f2; g0) = φ(f1, f2) := inf{φ(f1, f2; g) : g ∈ G}.

To this end, let {gn} ⊂ G be a sequence such that φ(f1, f2; gn) → φ(f1, f2). Then
there exists some positive number M1 such that φ(f1, f2; gn) ≤ M1 for all n. Let
n ∈ N and assume that gn =

∑∞
i=1 yn

i χAi . Then

‖gn‖p max
a∈U

|a1 + a2|

=

( ∞∑
i=1

‖yn
i ‖pμ(Ai)

) 1
p

max
a∈U

|a1 + a2|

= max
a∈U

‖a1g
n + a2g

n‖p

≤ max
a∈U

‖a1(f1 − gn) + a2(f2 − gn)‖p + max
a∈U

‖a1f
1 + a2f

2‖p

≤ M1 + φ(f1, f2; 0).
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Noting that maxa∈U |a1 + a2| > 0, we have that {gn} is bounded. Furthermore, for
each i, {yn

i }∞n=1 is also bounded in Y because ‖yn
i ‖ ≤ M1+φ(f1,f2;0)

(μ(Ai))1/p for each n ∈ N.
Since Y is locally weakly compact, it follows that {yn

1 } has a weakly convergent
subsequence, say {yn,1

1 }, with the weak limit y1. Then y1 ∈ Y because Y is a closed
convex subset of X . Similarly, noting that {yn,1

2 } is a subsequence of {yn
2 }, there

exists a subsequence {yn,2
2 } of {yn,1

2 } such that limn→∞ yn,2
2 = y2 weakly for some

y2 ∈ Y . Keeping on going, one has that, for each i, there exists a subsequence {yn,i+1
i+1 }

of {yn,i
i+1} such that {yn,i+1

i+1 } weakly converges to some element yi+1 ∈ Y . Since, for
each fixed natural number m and each i = 1, · · · , m, {yn,m

i } is a subsequence of
{yn,i

i }, we have that limn yn,m
i = yi weakly. Let (a1, a2) ∈ U . By the weak lower

semicontinuity of the norm in X , one has that

‖a1(x1
i − yi) + a2(x2

i − yi)‖
≤ lim inf

n
‖a1(x1

i − yn,m
i ) + a2(x2

i − yn,m
i )‖ for each i = 1, · · · , m.

Thus
m∑

i=1

‖a1(x1
i − yi) + a2(x2

i − yi)‖pμ(Ai)

≤
m∑

i=1

[lim inf
n

‖a1(x1
i − y

n,m
i ) + a2(x2

i − y
n,m
i )‖]pμ(Ai)

≤ lim inf
n

m∑
i=1

‖a1(x1
i − yn,m

i ) + a2(x2
i − yn,m

i )‖pμ(Ai)

≤ lim inf
n

∞∑
i=1

‖a1(x1
i − yn,m

i ) + a2(x2
i − yn,m

i )‖pμ(Ai)

= lim inf
n

‖a1(f1 − yn,m) + a2(f2 − yn,m)‖p

≤ lim inf
n

[φ(f1, f2; gn,m)]p = [φ(f1, f2)]p,

where the last equality holds because {gn,m}∞n=1 is a subsequence of {gn}. Passing
onto limit and noting that (a1, a2) ∈ U is arbitrary, one has that

(2.2) max
a∈U

( ∞∑
i=1

‖a1(x1
i − yi) + a2(x2

i − yi)‖pμ(Ai)

) 1
p

≤ φ(f1, f2).

This implies that
∑∞

i=1 ‖yi‖pμ(Ai) < ∞. Define g0 =
∑∞

i=1 yiχAi . Then g0 ∈ G and
(2.1) is seen to holds thanks to (2.2).
We then verify that

(2.3) φ(f1, f2) ≤ ‖F − w‖ for each w ∈ Lp(Ω, Σ, Y ).
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Granting this, one has that g0 is a best simultaneous approximation to (f1, f2) from
Lp(Ω, Σ, Y ) and completes the proof.
To show (2.3), let w ∈ Lp(Ω, Σ, Y ) be a countably valued function that has the

expression w =
∑∞

j=1 wjχBj for some sequence {Bj} of disjoint measurable sets in
Ω and some sequence {wj} ⊂ Y . Then fk and w can be respectively rewritten as

fk =
∞∑

i,j=1

xk
ijχAi∩Bj and w =

∞∑
i,j=1

wijχAi∩Bj ,

where
xk

ij = xk
i and wij = wj for each i, j = 1, 2, · · · .

We claim that

(2.4)
∞∑

j=1

μ(Ai ∩ Bj)‖wj‖ ≤ ‖w‖p(μ(Ai))
1
q for each i ∈ N.

In fact, (2.4) is clear in the case of p = 1. While in the case of 1 < p < ∞, we obtain
from Hölder Inequality that

∞∑
j=1

μ(Ai ∩ Bj)‖wj‖ ≤
⎛
⎝ ∞∑

j=1

(
μ(Ai ∩ Bj)

μ(Bj)
1
p

)q
⎞
⎠

1
q
⎛
⎝ ∞∑

j=1

μ(Bj)‖wj‖p

⎞
⎠

1
p

= ‖w‖p

⎛
⎝ ∞∑

j=1

(
μ(Ai ∩ Bj)

μ(Bj)

)q

μ(Bj)

⎞
⎠

1
q

≤ ‖w‖p

⎛
⎝ ∞∑

j=1

μ(Ai ∩ Bj)
μ(Bj)

μ(Bj)

⎞
⎠

1
q

= ‖w‖p(μ(Ai))
1
q .

Hence (2.4) holds and the claim is proved. Write

ȳi =

∞∑
j=1

μ(Ai ∩ Bj)wj

μ(Ai)
for each i ∈ N.

Then ȳi ∈ Y because
∑∞

j=1[μ(Ai ∩ Bj)]/μ(Ai) = 1 and Y is a closed convex set.
Define ḡ =

∑∞
i=1 ȳiχAi . Then ḡ ∈ G. Furthermore, let (a1, a2) ∈ U . Then

‖a1(f1 − w) + a2(f2 − w)‖p
p

=
∞∑

i,j=1

‖a1(x1
ij − wij) + a2(x2

ij − wij)‖pμ(Ai ∩ Bj)



Existence of Best Simultaneous Approximations in Lp(Ω,Σ, X) 1607

=
∞∑
i=1

μ(Ai)
∞∑

j=1

μ(Ai ∩ Bj)
μ(Ai)

‖a1(x1
i − wj) + a2(x2

i − wj)‖p

≥
∞∑
i=1

μ(Ai)

⎛
⎝ ∞∑

j=1

μ(Ai ∩ Bj)
μ(Ai)

‖a1(x1
i − wj) + a2(x2

i − wj)‖
⎞
⎠

p

≥
∞∑
i=1

μ(Ai)‖a1(x1
i − ȳi) + a2(x2

i − ȳi)‖p

= ‖a1(f1 − ḡ) + a2(f2 − ḡ)‖p
p,

where we use the fact that the function t �→ tp is convex on [0, +∞) and the definition
of norm in X . Since (a1, a2) ∈ U is arbitrary and ḡ ∈ G, it follows from (2.1) that
‖F − w‖ ≥ ‖F − ḡ‖ ≥ φ(f1, f2); hence (2.3) holds and the proof is complete.

Investigating the proof of Lemma 2.1, we obtain the following result.

Lemma 4. Let f1, f2 ∈ Lp(Ω, Σ, X) be a pair of countable valued functions.
Then there exists a best simultaneous approximation g0 to (f1, f2) from Lp(Ω, Σ, Y )
such that for each E ∈ Σ, so is g0|E to (f1|E , f2|E) from Lp(E, Σ|E, Y ).

Recall that a Banach space X is said to have the Radon-Nikodym property if, for
each finite measure space (Ω, Σ, μ) and each μ-continuous vector measureG : Σ → X
of bounded variation, there exists g ∈ L1(Ω, Σ, μ) such that G(E) =

∫
E gdμ for all

E ∈ Σ.
The following lemma (see, [3, Lemma 3.1]), which is an extension of Dunford

Theorem ([2, Theorem IV.2.1])), plays an important role in establishing main results
of this paper.

Lemma 5. Let (Ω, Σ1, μ) be a σ-finite measure space with Σ1 generated by a
countable field. Suppose that X has the Radon-Nikodym property. Let 1 ≤ p < ∞
and let {gn} be a sequence of Lp(Ω, Σ1, X) satisfying the following conditions.

(i) {gn} is bounded in Lp(Ω, Σ1, X).
(ii) {gn} is uniformly integrable.
(iii) For each E∈Σ1 with μ(E)<∞, {∫E gndμ} is relatively weakly compact in X .

Then there exist a subsequence {gnk
} of {gn} and g0 ∈ Lp(Ω, Σ1, X) such that for

each E ∈ Σ1 with μ(E) < ∞,
(2.5) lim

k
〈gnk

− g0, h
∗χE〉 = 0 for each h∗ ∈ Lq(Ω, Σ1, X

∗).
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3. MAIN RESULT

Theorem 1. Let Y be a locally weakly compact closed convex subset of X such
that spanY and span Y

∗ have the Radon-Nikodym property. Suppose that p > 1
or p = 1 and (Ω, Σ, μ) is finite. Then Lp(Ω, Σ0, Y ) is simultaneously proximinal in
Lp(Ω, Σ, X).

Proof. Let f1, f2 ∈ Lp(Ω, Σ, X) and let {gn} ⊂ Lp(Ω, Σ0, Y ) be a minimizing
sequence for best simultaneous approximation to f1, f2 from Lp(Ω, Σ0, Y ). Then
{‖F − gn‖} is bounded. Note that

max
a∈U

|a1 + a2|‖gn‖p

= max
a∈U

‖a1(f1 − gn) + a2(f2 − gn)− a1f1 − a2f2‖p

≤ max
a∈U

‖a1(f1 − gn) + a2(f2 − gn)‖p + max
a∈U

‖a1f1 + a2f2‖p

= ‖F − gn‖ + max
a∈U

‖a1f1 + a2f2‖p.

One has that {gn} is bounded.
Let Σ1 ⊂ Σ0 be a σ-algebra generated by a countable algebra such that each gn

is measurable with respect to (Ω, Σ1, μ). Then {gn} ⊂ Lp(Ω, Σ1, Y ). By [1, Lemma
2.1.3], there exist a subsequence of {gn}, denoted by {gn}, and a sequence {En} of
pairwise disjoint measurable sets in Σ1 such that {gnχEc

n
} is uniformly integrable in

L1(Ω, Σ1, spanY ). Define

ḡn =

{
gnχEc

n
, p = 1,

gn, 1 < p < +∞.

Then, for each 1 ≤ p < ∞, it follows from Lemma 2 that {ḡn} is a minimizing
sequence for a best simultaneous approximation to f1, f2 from Lp(Ω, Σ0, Y ). By the
same proof as that given to [3, Theorem 3.1], we result that there exist a subsequence
of {ḡn}, again denoted as {ḡn}, and g0 ∈ Lp(Ω, Σ0, Y ) such that {ḡn} converges
weakly to g0 in Lp(Ω, Σ, X). Therefore, g0 is a best simultaneous approximation to
f1, f2 from Lp(Ω, Σ0, Y ) thanks to Lemma 1, which completes the proof.

Theorem 2. Let 1 ≤ p < ∞ and let Y be a locally weakly compact closed convex
subset of X . If span Y has the Radon-Nikodym property, then Lp(Ω, Σ, Y ) is best
simultaneously proximinal in Lp(Ω, Σ, X).

Proof. Let F = (f1, f2) ∈ (Lp(Ω, Σ, X))2. We shall show that there exists
g0 ∈ Lp(Ω, Σ, Y ) such that

(3.1) ‖F − g0‖ ≤ ‖F − g‖ for each g ∈ Lp(Ω, Σ, Y ).
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For each k = 1, 2, let {fk
n} be a sequence of countably valued measurable functions

in Lp(Ω, Σ, X) such that

(3.2) lim
n

‖fk
n − fk‖p = 0 and lim

n
‖fk

n(s) − fk(s)‖ = 0 for a.e. s ∈ Ω.

By Lemma 4, for each n, there exists a best simultaneous approximation gn to (f1
n, f2

n)
from Lp(S, Σ, Y ) such that for each E ∈ Σ, so is gn|E to f1|E , f2|E from Lp(E, Σ|E,

Y ). Let Σ1 be a σ-algebra generated by a countable algebra such that each fk
n and gn

are measurable with respect to (Ω, Σ1, μ). Thus, f1 and f2 are measurable with respect
to (Ω, Σ1, μ). Consequently, {f1, f2}, {fk

n}, {gn} ⊂ Lp(Ω, Σ1, X). We assert that
there exist a subsequence of {gn}, denoted by itself, and g0 ∈ Lp(Ω, Σ1, spanY ) such
that, for each E ∈ Σ1 with μ(E) < ∞,
(3.3) lim

n
〈gn − g0, h

∗χE〉 = 0 for each h∗ ∈ Lq(Ω, Σ1, X
∗).

By Lemma 3, it suffices to verify that {gn} satisfies the following conditions:
(i) {gn} is bounded in Lp(Ω, Σ1, spanY );
(ii) {gn} is uniformly integrable in (Ω, Σ1, spanY );
(iii) for each E ∈ Σ1 with μ(E) < ∞, {∫E gn(s)dμ} is relatively weakly compact

in spanY .

Since, for each n, gn is a best simultaneous approximation to f1, f2 from Lp(Ω, Σ,
Y ) and 0 ∈ Lp(Ω, Σ, Y ), we have that

‖gn‖p max
a∈U

|a1 + a2|
= max

a∈U
‖a1gn + a2gn‖p

≤ max
a∈U

‖a1(f1
n − gn) + a2(f2 − gn)‖p + max

a∈U
‖a1f

1
n + a2f

2
n‖p

≤ 2 max
a∈U

‖a1f
1
n + a2f

2
n‖p

≤ 2 max
a∈U

(|a1| + |a2|) max{‖f1
n‖p, ‖f2

n‖p}.

Thus gn is bounded since {‖f1
n‖p} and ‖f2

n‖p are bounded by (3.2) and (i) is proved.
To prove (ii), we first consider the case of p = 1. Since limn ‖fk

n −fk‖1 = 0 by (3.2),
{fk

n} is uniformly integrable for each k = 1, 2. On the other hand, for each E ∈ Σ,
since gn|E is best simultaneous approximation to (f1

n|E , f2
n|E) from Lp(E, Σ|E, Y ),

we have that

‖gn|E‖p max
a∈U

|a1 + a2| ≤ 2 max
a∈U

(|a1| + |a2|) max{‖f1
n|E‖p, ‖f2

n|E‖p}.

Thus, {gn} is uniformly integrable. For the case of 1 < p < ∞, let E ∈ Σ with
μ(E) < ∞. Then, by Hölder Inequality, we get that
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∫
E
‖gn(s)‖dμ ≤

(∫
E
‖gn(s)‖pdμ

) 1
p
(∫

E
dμ

) 1
q

≤ M2(μ(E))
1
q ,

where M2 = supn≥1 ‖gn‖p, which implies that (ii) holds. Finally, let E ∈ Σ1 with
0 < μ(E) < ∞. Note that {∫E gn(s)dμ} is bounded by (ii), and

1
μ(E)

∫
E

gn(s)dμ ∈ co(gn(E)) ⊂ Y for each n ∈ N

thanks to [2, Corollary II.2.8]. Hence (iii) follows and the assertion holds.
Next we assert that g0 ∈ Lp(Ω, Σ, Y ), the proof of which can be completed by

same technique as that given in proving [3, Theorem 3.2].
Finally, we show that g0 is a best simultaneous approximation to f1, f2 from

Lp(Ω, Σ, Y ). To do this, let ε > 0 and k = 1, 2. Then there exists fk
ε ∈ Lp(Ω, Σ1, X)

with countable values such that

(3.4) ‖fk
ε − (fk − g0)‖p < ε.

Let (a1, a2) ∈ U . Then, by (3.4), we have that

(3.5)
‖a1(f1 − g0) + a2(f2 − g0)‖p

≤ ‖a1(f1 − g0 − f1
ε ) + a2(f2 − g0 − f1

ε )‖p + ‖a1f
1
ε + a2f

2
ε ‖p

≤ (|a1| + |a2|)ε + ‖a1f
1
ε + a2f

2
ε ‖p.

Since a1f
1
ε +a2f

2
ε is countably valued, by [3, Lemma 2.3], there is h∗

ε ∈ Lq(Ω, Σ1, X
∗)

such that ‖h∗
ε‖q ≤ 1 and

(3.6) 〈a1f
1
ε + a2f

2
ε , h∗

ε〉 = ‖a1f
1
ε + a2f

2
ε ‖p.

It follows from (3.4) and (3.5) that

(3.7)
‖a1f

1
ε + a2f

2
ε ‖p ≤ |〈a1(f1

ε − (f1 − g0)) + a2(f2
ε − (f1 − g0)), h∗

ε〉|
+|〈a1(f1 − g0) + a2(f1 − g0), h∗

ε〉|
≤ (|a1|+ |a2|)ε + |〈a1(f1 − g0) + a2(f1 − g0), h∗

ε〉|

On the other hand, there existsE ∈ Σ1 with μ(E) < +∞ such that ‖(fk−g0)χΩ\E‖p <
ε for each k = 1, 2. Thus,

(3.8)

|〈[a1(f1 − g0) + a2(f1 − g0)], h∗
ε〉|

≤ |〈[a1(f1 − g0) + a2(f1 − g0)]χΩ\E , h∗
ε〉|

+|〈a1(f1 − g0) + a2(f1 − g0), h∗
εχE〉|

≤ (|a1|+ |a2|)ε + |〈a1(f1 − g0) + a2(f1 − g0), h∗
εχE〉|.
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Let us estimate |〈a1(f1− g0)+a2(f1 − g0), h∗
εχE〉|. By (3.2) and (3.3) , we have that

lim
n→∞〈fk

n − gn, h∗
εχE〉 = 〈fk − g0, h

∗
εχE〉 for each k = 1, 2.

Thus,

|〈a1(f1 − g0) + a2(f1 − g0), h∗
εχE〉|

= lim
n

|〈a1(f1
n − gn) + a2(f2

n − gn), h∗
εχE〉|

≤ lim inf
n

‖〈a1(f1
n − gn) + a2(f2

n − gn)‖p

≤ lim inf
n

max
a∈U

‖〈a1(f1
n − gn) + a2(f2

n − gn)‖p

≤ lim inf
n

max
a∈U

‖〈a1(f1
n − g) + a2(f2

n − g)‖p

= max
a∈U

‖〈a1(f1 − g) + a2(f2 − g)‖p = ‖F − g‖.

This together with (3.5), (3.7) and (3.8) implies that

‖a1(f1 − g0) + a2(f2 − g0)‖p ≤ 3(|a1| + |a2|)ε + ‖F − g‖.

Since ε > 0 and (a1, a2) ∈ U are arbitrary, we have that (3.1) holds. The proof is
complete.
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