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GENERAL DECAY OF ENERGY FOR A VISCOELASTIC EQUATION
WITH DAMPING AND SOURCE TERMS

Shun-Tang Wu

Abstract. The initial boundary value problem for a viscoelastic equation with
linear damping and nonlinear source term in a bounded domain is considered.
The decay rate of solution energy is discussed under some conditions on re-
laxation function g and initial data by adopting the perturbed energy method
of [4] and modifying the methods of [11, 17]. Decay estimates of the energy
function are also given.

1. INTRODUCTION

In this paper we consider the initial boundary value problem for the following
nonlinear viscoelastic equation:

(1.1) |ut|ρ utt−∆u−∆utt+
∫ t

0
g(t−s)∆u(s)ds+ut = |u|p−2 u, in Ω×(0, ∞),

with initial conditions

(1.2) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

and boundary condition

(1.3) u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

where ∆ =
N∑

j=1

∂2

∂x2
j

and Ω ⊂ RN , N ≥ 1, is a bounded domain with a smooth

boundary ∂Ω so that Divergence theorem can be applied. Here, ρ > 0, p > 2, and g
represents the kernel of the memory term which will be stated later (see assumption
(A1)).

Problem related to the equation:

f(ut)utt − ∆u − ∆utt = 0
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are interesting not only from the point of view of PDE theory, but also due to its
applications in mechanics. It describes a thin rod which possesses a rigid surface
and whose interior is somehow permissive to slight deformations such that the
material density varies according to the velocity. In this direction, Cavalcanti et
al.[4] considered the following problem:

(1.4) |ut|ρ utt − ∆u − ∆utt +
∫ t

0
g(t − s)∆u(s)ds − γ∆ut = 0,

with the same initial and boundary conditions (1.2)-(1.3), where a global existence
result for γ ≥ 0 and an exponential decay result for γ > 0 were established under
the assumptions 0 < ρ ≤ 2

N−2 if N ≥ 3 or ρ > 0 if N = 1, 2 and g(t) decays
exponentially. Lately, these decay results were extended by Messaoudi and Tatar
[10] to a situation where a source term is present. Recently, Messaoudi and Tatar
[11] studied problem (1.4) for case of γ = 0, they showed that the solution goes to
zero with an exponential or polynomial rate under some restrictions on the relaxation
function.

As ρ = 0 and there is no dispersion term, related problems have been extensively
studied and several results concerning existence, decay and blow-up have been
obtained [5 − 8, 12, 13, 15, 16, 18]. In this regard, Cavalcanti et al. [5] considered
the following equation:

utt − ∆u +
∫ t

0
g(t − s)∆u(s)ds + a(x)ut + |u|γ u = 0, in Ω × (0, ∞),

with the same initial and boundary conditions (1.2)-(1.3), where a : Ω → R+ is
a function which may vanish outside a subset ω ⊂ Ω of positive measure and
g(t) decays exponentially, they proved an exponential decay result for the energy
function. This result was later extended by Berrimi and Messaoudi [3] to the
nonlinear damping case

utt − ∆u +
∫ t

0
g(t− s)∆u(s)ds + a(x)ut|ut|m + |ut|γ u = 0,

by introducing a new a functional, they weakened the conditions in a(x) and g(t)
and obtained the decay result.

Motivated by previous works, in this paper, we investigated the problem (1.1)-
(1.3) with imposing nonlinear source and linear damping terms. We will use the
perturbed energy method to show that the exponential or polynomial decay of the
solution energy, depending on the decay rate of relaxation functions. In this way, we
can extend the results of [17] where the authors considered (1.1) without source term
and the results of [11] in the absence of the linear damping term. The content of this
paper is organized as follows. In section 2, we give some lemmas and assumptions
which will be used later, and we mention the local existence result Theorem 2.3.
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In section 3, we first define an energy function E(t) in (3.3) and show that it is a
nonincreasing function of t. We obtain global existence and decay properties of the
solutions of (1.1)− (1.3) given in Theorem 3.6.

2. PRELIMINARIES RESULTS

In this section, we shall give some lemmas and assumptions which will be used
throughout this work. We use the standard Lebesgue space Lp(Ω) and sobolev space
H1

0 (Ω) with their usual products and norms.

Lemma 2.1. (Sobolev-Poincaré inequality [9]). Let 2≤p≤ 2N
N−2 , the inequality

‖u‖p ≤ cs ‖∇u‖2 for u ∈ H1
0 (Ω),

holds with some positive constant c s.

Assume that ρ satisfies

(2.1) 0 < ρ ≤ 2
N − 2

if N ≥ 3 or ρ > 0 if N = 1, 2.

In regard to the relaxation function g(t), we assume that it verifies:
(A1) g : R+ → R+ is a bounded C1 function satisfying

(2.2) 1 −
∫ ∞

0
g(s)ds = l > 0,

and there exist positive constants ξ such that

(2.3) g′(t) ≤ −ξgr(t), 1 ≤ r <
3
2
.

Remark 2.2. r < 3
2 is imposed so that

∫∞
0 g2−r(s)ds < ∞.

Now, we state the local existence result of the problem (1.1)-(1.3) which can be
established by combining arguments of [2, 4, 17].

Theorem 2.3. Suppose that (2.1) and (A1) hold, and that u0, u1 ∈ H1
0 (Ω).

Assume further 2 < p ≤ 2(N−1)
N−2 , if N ≥ 3, p ≥ 2, if N = 1, 2. Then there exists a

unique solution u of (1.1)− (1.3) satisfying u, u t ∈ C
(
[0, T ); H1

0 (Ω)
)
, T > 0.

3. GLOBAL EXISTENCE AND ENERGY DECAY

In this section, we shall prove the exponential or polynomial decay of the so-
lutions energy depending on the decay rate of the relaxation function. We use the
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perturbed energy method introduced by Cavalcanti et al. [1, 4, 5] and some technical
lemmas [3, 11]. For the initial boundary problem (1.1)-(1.3), we define

(3.1)
I(t) ≡ I(u(t)) =

(
1−

∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 + ‖∇ut(t)‖2
2

+(g ◦ ∇u)(t) − ‖u(t)‖p
p,

(3.2)
J(t) ≡ J(u(t)) =

1
2

(
1 −

∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 +
1
2
(g ◦ ∇u)(t)

+
1
2
‖∇ut(t)‖2

2 −
1
p
‖u(t)‖p

p,

and the energy function

(3.3) E(t) =
1

ρ + 2
‖ut‖ρ+2

ρ+2 + J(t), for t ≥ 0,

where

(3.4) (g ◦ ∇u)(t) =
∫ t

0

∫
Ω

g(t − s) |∇u(t) −∇u(s)|2 dxds.

Lemma 3.1. E(t) is a nonincreasing function on [0, T ] and

(3.5) E ′(t) = −‖ut‖2
2 +

1
2
(g′ ◦ ∇u)(t)− 1

2
g(t) ‖∇u(t)‖2

2 .

Proof. By multiplying the equation in (1.1) by ut and integrating it over Ω,
then using integration by parts and the assumption (A1), we obtain (3.5) for any
regular solution. Then, by density arguments, we have the proof.

Lemma 3.2. Let u0, u1 ∈ H1
0 (Ω), if I(0) > 0 and

(3.6) α =
cp
s

l

(
2p

l(p− 2)
E(0)

)p−2
2

< 1,

then I(t) > 0, for t ∈ [0, T ].

Proof. Since I(0) > 0, then there exists (by continuity of u(t)) T ∗ < T such
that

(3.7) I(t) ≥ 0,



General Decay of Energy for a Viscoelastic Equation with Damping and Source Terms 117

for all t ∈ [0, T ∗]. From (3.1) and (3.7), (3.2) gives that

(3.8)
J(t) =

p − 2
2p

[(
1 −

∫ t

0

g(s)ds

)
‖∇u‖2

2 + ‖∇ut‖2
2 + (g ◦ ∇u)(t)

]
+

1
p
I(t)

≥ p − 2
2p

[(
1 −

∫ t

0

g(s)ds

)
‖∇u‖2

2 + ‖∇ut‖2
2 + (g ◦ ∇u)(t)

]
.

Thus, by (2.2), (3.3) and Lemma 3.1, we deduce

(3.9)
l ‖∇u‖2

2 ≤
(

1 −
∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 ≤ 2p

p − 2
J(t)

≤ 2p

p − 2
E(t) ≤ 2p

p − 2
E(0), ∀t ∈ [0, T ∗].

Applying Lemma 2.1, (3.9) and (3.6), we obtain

(3.10)
‖u‖p

p ≤ cp
s‖∇u‖p

2 ≤ cp
s

l

(
2p

l(p− 2)
E(0)

)p−2
2

l ‖∇u‖2
2

= αl ‖∇u‖2
2 <

(
1−

∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 , ∀t ∈ [0, T ∗].

Hence

I(t)=
(

1−
∫ t

0
g(s)ds

)
‖∇u(t)‖2

2+‖∇ut‖2
2+(g◦∇u)(t)−‖u‖p

p > 0, ∀t∈ [0, T ∗].

By repeating this procedure and using the fact that

lim
t→T ∗

cp
s

l

(
2p

l(p− 2)
E(u(t), ut(t))

)p−2
2

≤ α < 1.

This implies that we can take T ∗ = T.

Remark 3.3. It follows from Lemma 3.1 and Lemma 3.2 that the energy function
is uniformly bounded and decreasing in t, which implies that

l ‖∇u‖2
2 + ‖∇ut‖2

2 ≤ 2p

p − 2
E(0), ∀t ≥ 0.

This infers that the solution of (1.1)-(1.3) is bounded and global in time.
Now, we define

(3.11) G(t) = ME(t) + εΦ(t) + Ψ(t),
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where M and ε are positive constants which will be specified later and

Φ(t) =
1

ρ + 1

∫
Ω

|ut|ρ utudx +
∫

Ω

∇ut(t)∇u(t)dx(3.12)

Ψ(t) =
∫

Ω

(
∆ut − 1

ρ + 1
|ut|ρ ut

)∫ t

0

g(t − s) (u(t) − u(s)) dsdx.(3.13)

Lemma 3.4. Let u ∈ H1
0 (Ω), then, for ρ ≥ 0, we have

(3.14)

∫
Ω

(∫ t

0
g(t − s) (u(t) − u(s)) ds

)ρ+2

dx

≤ (1 − l)ρ+1 cρ+2
s

(
4pE(0)
l(p− 2)

) ρ
2

(g ◦ ∇u) (t).

Proof. By Hölder inequality, Lemma 2.1 and Remark 3.3, we get∫
Ω

(∫ t

0
g(t − s) (u(t)− u(s)) ds

)ρ+2

dx

≤
∫

Ω

(∫ t

0

g(t− s)ds

)ρ+1 (∫ t

0

g(t − s) |u(t)− u(s)|ρ+2 ds

)
dx

≤ (1 − l)ρ+1 cρ+2
s

∫ t

0

g(t− s) ‖∇u(t) −∇u(s)‖ρ+2
2 ds

≤ (1 − l)ρ+1 cρ+2
s

(
4pE(0)
l(p− 2)

)ρ
2

(g ◦ ∇u) (t).

Lemma 3.5. Let u be a solution of (1.1)-(1.3), then there exists two positive
constants β1 and β2 such that

β1E(t) ≤ G(t) ≤ β2E(t),

for ε small enough and M sufficiently large.

Proof. By Young’s inequality, Lemma 2.1 and (3.9), we have

(3.15)

∣∣∣∣ 1
ρ + 1

∫
Ω
|ut|ρ utudx

∣∣∣∣
≤ 1

ρ + 2
‖ut‖ρ+2

ρ+2 +
1

(ρ + 2) (ρ + 1)
‖u‖ρ+2

ρ+2

≤ 1
ρ + 2

‖ut‖ρ+2
ρ+2 +

cρ+2
s

(ρ + 2) (ρ + 1)
‖∇u‖ρ+2

2

≤ 1
ρ + 2

‖ut‖ρ+2
ρ+2 +

cρ+2
s

(ρ + 2) (ρ + 1)

(
2pE(0)
l(p− 2)

)ρ
2

‖∇u‖2
2
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and

(3.16)
∣∣∣∣
∫

Ω
∇ut(t)∇u(t)dx

∣∣∣∣ ≤ 1
2
‖∇ut‖2

2 +
1
2
‖∇u‖2

2 .

It follows from (3.13) that

(3.17)
Ψ(t) = −

∫
Ω
∇ut

∫ t

0
g(t− s) (∇u(t)−∇u(s)) dsdx

− 1
ρ + 1

∫
Ω

|ut|ρ ut

∫ t

0

g(t − s) (u(t) − u(s)) dsdx.

By Young’s inequality and Hölder inequality, the first term in the right hand of
(3.17) can be estimated as

(3.18)

∣∣∣∣−
∫

Ω
∇ut

∫ t

0
g(t− s) (∇u(t) −∇u(s)) dsdx

∣∣∣∣
≤ 1

2
‖∇ut‖2

2 +
1
2

∫
Ω

(∫ t

0
g(t− s) (∇u(t) −∇u(s)) ds

)2

dx

≤ 1
2
‖∇ut‖2

2 +
1− l

2
(g ◦ ∇u) (t).

Like for (3.15) and using (3.14), we have

(3.19)

∣∣∣∣− 1
ρ + 1

∫
Ω
|ut|ρ ut

∫ t

0
g(t − s) (u(t) − u(s))dsdx

∣∣∣∣
≤ 1

ρ + 2

(
‖ut‖ρ+2

ρ+2 +
(1− l)ρ+1 cρ+2

s

ρ + 1

(
4pE(0)
l(p− 2)

)ρ
2

(g ◦ ∇u) (t)

)
.

Hence, using (3.15)− (3.19), we have the following inequalities from (3.11)

G(t) = ME(t) + εΦ(t) + Ψ(t)

≤ ME(t) + c1 ‖ut‖ρ+2
ρ+2 + c2 ‖∇u‖2

2 + c3 ‖∇ut‖2
2 + c4 (g ◦ ∇u) (t)

and

G(t) ≥ ME(t)− c5

(
‖ut‖ρ+2

ρ+2 + ‖∇u‖2
2 + ‖∇ut‖2

2 + (g ◦ ∇u) (t)
)

where c1 = 1+ε
ρ+2 , c2 = ε

(
cρ+2
s

(ρ+2)(ρ+1)

(
2pE(0)
l(p−2)

) ρ
2 + 1

2

)
, c3 = ε+1

2 , c4 = 1−l
2 +

(1−l)ρ+1cρ+2
s

(ρ+2)(ρ+1)

(
4pE(0)
l(p−2)

) ρ
2
, and c5 = max(c1, c2, c3, c4). Thus, from the definition of
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E(t) by (3.3) and selecting M sufficiently large and ε small enough, there exist two
positive constants β1 and β2 such that

β1E(t) ≤ G(t) ≤ β2E(t).
Theorem 3.6. Let u0, u1 ∈ H1

0 (Ω) be given. Suppose that (A1), (2.1), (3.6)
and the hypotheses on p holds. Then for each t 0 > 0 the solution energy of
(1.1)-(1.3) satisfies

E(t) ≤ L1e
−kt, r = 1,

E(t) ≤ L2 (1 + t)−
1

r−1 , r > 1,

where k, L1 and L2 are some positive constants given in the proof.

Proof. In order to obtain the decay result of E(t), it is sufficient to prove that
of G(t). To this end, we need to estimate the derivative of G(t). It follows from
(3.12) that

(3.20)
Φ

′
(t) = −‖∇u‖2

2 +
∫

Ω
∇u(t)

∫ t

0
g(t− s)∇u(s)dsdx

−
∫

Ω
utudx + ‖u‖p

p +
1

ρ + 1
‖ut‖ρ+2

ρ+2 + ‖∇ut‖2
2 .

We estimate the second term in the right hand side of (3.20) as follows [11].

(3.21)

∣∣∣∣
∫

Ω
∇u(t)

∫ t

0
g(t− s)∇u(s)dsdx

∣∣∣∣
≤
∣∣∣∣
∫

Ω
∇u

∫ t

0
g(t− s) (|∇u(s)−∇u(t)|+ |∇u(t)|) dsdx

∣∣∣∣
≤ 1

2
‖∇u‖2

2 +
1
2

∫
Ω

(∫ t

0
g(t−s) (|∇u(s)−∇u(t)|+|∇u(t)|) ds

)2

dx.

Applying Hölder inequality, Young’s inequality and since
∫ t
0 g(s)ds ≤ ∫∞

0 g(s)ds =
1 − l by (2.2), for η > 0, we note that∫

Ω

(∫ t

0

g(t − s) (|∇u(s) −∇u(t)| + |∇u(t)|) ds

)2

dx

≤
∫

Ω

(∫ t

0
g(t− s) |∇u(s) −∇u(t)| ds

)2

dx

+
∫

Ω

(∫ t

0
g(t − s) |∇u(t)| ds

)2

dx

+ 2
∫

Ω

(∫ t

0
g(t− s) |∇u(s)−∇u(t)| ds

)(∫ t

0
g(t − s) |∇u(t)| ds

)
dx
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≤
(∫ t

0
g(s)ds

)2

‖∇u‖2
2 +

∫
Ω

(∫ t

0
g2−r(t − s)ds

)
(∫ t

0
gr(t − s) |∇u(s) −∇u(t)|2 ds

)
dx

+ η

∫
Ω

(∫ t

0
g(t− s) |∇u(t)| ds

)2

dx

+
1
η

∫
Ω

(∫ t

0
g(t − s) |∇u(s) −∇u(t)|ds

)2

dx

≤ (1 + η)
(∫ t

0
g(s)ds

)2

‖∇u‖2
2 +

(
1 +

1
η

)(∫ t

0
g2−r(s)ds

)
(gr ◦ ∇u) (t)

≤ (1 + η) (1− l)2 ‖∇u‖2
2 +

(
1 +

1
η

)(∫ t

0
g2−r(s)ds

)
(gr ◦ ∇u) (t).

Then, substituting the above inequality into (3.21) to get

(3.22)

∣∣∣∣
∫

Ω
∇u(t)

∫ t

0
g(t−s)∇u(s)dsdx

∣∣∣∣
≤ 1+(1+η) (1−l)2

2
‖∇u‖2

2+

(
1+ 1

η

)
2

(∫ t

0
g2−r(s)ds

)
(gr ◦ ∇u) (t).

For the third term, by Young’s inequality and Lemma 2.1, for η1 > 0, we have

(3.23)
∣∣∣∣
∫

Ω
utudx

∣∣∣∣ ≤ η1c
2
s ‖∇u‖2

2 +
1

4η1
‖ut‖2

2 .

Letting η = l
1−l in (3.22) and η1 = l

4c2s
in (3.23), we derive from (3.20) that

(3.24)
Φ

′
(t) ≤ − l

4
‖∇u‖2

2 +
1
2l

(∫ t

0
g2−r(s)ds

)
(gr ◦ ∇u) (t) +

c2
s

l
‖ut‖2

2

+ ‖u‖p
p +

1
ρ + 1

‖ut‖ρ+2
ρ+2 + ‖∇ut‖2

2 .

Taking the derivative of Ψ(t) in (3.13) and using the equation in (1.1), we get

(3.25)

Ψ
′
(t)=

∫
Ω
∇u(t)

∫ t

0
g(t − s) (∇u(t) −∇u(s))dsdx

−
∫

Ω

(∫ t

0
g(t−s)∇u(s)ds

)(∫ t

0
g(t−s) (∇u(t)−∇u(s))ds

)
dx
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+
∫

Ω
ut(t)

∫ t

0
g(t− s) (u(t) − u(s)) dsdx

−
∫

Ω
|u|p−2 u

∫ t

0
g(t− s) (u(t) − u(s)) dsdx

−
∫

Ω
∇ut(t)

∫ t

0
g
′
(t − s) (∇u(t) −∇u(s)) dsdx

− 1
ρ + 1

∫
Ω
|ut|ρ ut

∫ t

0
g
′
(t − s) (u(t) − u(s)) dsdx

−
(∫ t

0
g(s)ds

)
‖∇ut‖2

2 −
1

ρ + 1

(∫ t

0
g(s)ds

)
‖ut‖ρ+2

ρ+2 .

Similarly to (3.24), in what follows we will estimate the right hand side of (3.25).
Using Young’s inequality, for δ > 0, we get

(3.26)

∣∣∣∣
∫

Ω
∇u(t)

∫ t

0
g(t− s) (∇u(t) −∇u(s)) dsdx

∣∣∣∣
≤ δ ‖∇u‖2

2 +
1
4δ

∫
Ω

(∫ t

0
g(t− s) (∇u(t) −∇u(s)) ds

)2

dx

≤ δ ‖∇u‖2
2 +

1
4δ

(∫ t

0
g2−r(s)ds

)
(gr ◦ ∇u) (t).

and

(3.27)

∣∣∣∣
∫

Ω

(∫ t

0
g(t−s)∇u(s)ds

)(∫ t

0
g(t − s) (∇u(t)−∇u(s)) ds

)
dx

∣∣∣∣
≤ δI1 + 1

4δ I2,

where
I1 =

∫
Ω

(∫ t

0

g(t− s) |∇u(s)|ds

)2

dx

and
I2 =

∫
Ω

(∫ t

0
g(t− s) |∇u(t) −∇u(s)| ds

)2

dx.

As in deriving (3.22), for η > 0, we have

(3.28) |I1| ≤ (1 + η) (1 − l)2 ‖∇u‖2
2 +

(
1 +

1
η

)(∫ t

0
g2−r(s)ds

)
(gr ◦ ∇u) (t)

and

(3.29) |I2| ≤
(∫ t

0
g2−r(s)ds

)
(gr ◦ ∇u) (t).
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Taking η = 1 in (3.28) and using (3.29), we then get from (3.27) that

(3.30)

∣∣∣∣
∫

Ω

(∫ t

0
g(t−s)∇u(s)ds

)(∫ t

0
g(t−s) (∇u(t)−∇u(s))ds

)
dx

∣∣∣∣
≤ 2δ (1 − l)2 ‖∇u‖2

2 +
(

2δ +
1
4δ

)(∫ t

0
g2−r(s)ds

)
(gr ◦ ∇u) (t).

By Young’s inequality and Lemma 2.1, the third term can be estimated as

(3.31)

∣∣∣∣
∫

Ω
ut(t)

∫ t

0
g(t− s) (u(t) − u(s)) dsdx

∣∣∣∣
≤ δ ‖ut‖2

2 +
c2
s

4δ

(∫ t

0
g2−r(s)ds

)
(gr ◦ ∇u) (t).

For the fourth term, it follows from Young’s inequality, Lemma 2.1 and (3.9) that

(3.32)

∣∣∣∣
∫

Ω
|u|p−2 u

∫ t

0
g(t− s) (u(t) − u(s)) dsdx

∣∣∣∣
≤ δ

∫
Ω

|u|2(p−1) dx +
1
4δ

∫
Ω

(∫ t

0

g(t − s) (u(t) − u(s)) ds

)2

dx

≤ δc2(p−1)
s ‖∇u‖2(p−1)

2 +
c2
s

4δ

(∫ t

0
g2−r(s)ds

)
(gr ◦ ∇u) (t)

≤ δc2(p−1)
s

(
2pE(0)
l(p− 2)

)p−2

‖∇u‖2
2+

c2
s

4δ

(∫ t

0
g2−r(s)ds

)
(gr◦∇u) (t).

Using Young’s inequality and (A1) to deal with the fifth term

(3.33)

∣∣∣∣
∫

Ω
∇ut(t)

∫ t

0
g
′
(t − s) (∇u(t) −∇u(s)) dsdx

∣∣∣∣
≤ δ ‖∇ut‖2

2 +
1
4δ

∫
Ω

(∫ t

0

g
′
(t − s) (∇u(t) −∇u(s)) ds

)2

dx

≤ δ ‖∇ut‖2
2 −

g(0)
4δ

(
g
′ ◦ ∇u

)
(t).

By Young’s inequality, (2.1), Lemma 2.1 and Remark 3.3, we have
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(3.34)

∣∣∣∣ 1
ρ+1

∫
Ω
|ut|ρ ut

∫ t

0
g
′
(t − s) (u(t) − u(s)) dsdx

∣∣∣∣
≤ 1

ρ+1

(
δ ‖ut‖2(ρ+1)

2(ρ+1)
+

1
4δ

∫
Ω

(∫ t

0
g
′
(t−s) (u(t)−u(s))ds

)2

dx

)

≤ 1
ρ+1

(
δ ‖ut‖2(ρ+1)

2(ρ+1)
− g(0)c2

s

4δ

∫
Ω

∫ t

0
g
′
(t−s) |∇u(t)−∇u(s)|2 dsdx

)

≤ δc
2(ρ+1)
s

ρ + 1

(
2pE(0)
p − 2

)ρ

‖∇ut‖2
2 −

g(0)c2
s

4δ (ρ + 1)

(
g
′ ◦ ∇u

)
(t).

A substitution of (3.26)-(3.34) into (3.25) yields

(3.35)
Ψ

′
(t) ≤ δc6 ‖∇u‖2

2 + c7

(∫ t

0

g2−r(s)ds

)
(gr ◦ ∇u) (t) − c8

(
g

′ ◦ ∇u
)

(t)

+c9 ‖∇ut‖2
2 + δ ‖ut‖2

2 −
1

ρ + 1

(∫ t

0

g(s)ds

)
‖ut‖ρ+2

ρ+2 ,

where c6 = 1+2 (1 − l)2 + c
2(p−1)
s

(
2pE(0)
l(p−2)

)p−2
, c7 = 1+c2s

2δ +2δ, c8 =
g(0)(1+c2s)

4δ ,

and c9 = δ
(
1 + c

2(ρ+1)
s
ρ+1

(
2pE(0)

p−2

)ρ) − ∫ t
0 g(s)ds. Since g is positive, continuous

and g(0) > 0, then for any t0 > 0, we have

(3.36)
∫ t

0
g(s)ds ≥

∫ t0

0
g(s)ds = g0, ∀ t ≥ t0.

Hence, we conclude from (3.5), (3.11), (3.24), (3.35) and (3.36) that for any t ≥
t0 > 0,

G
′
(t) = ME ′(t) + εΦ′(t) + Ψ′(t)

≤
(

M

2
−c8

)(
g
′ ◦ ∇u

)
(t)− g0−ε

ρ+1
‖ut‖ρ+2

ρ+2−
(

lε

4
−δc6

)
‖∇u‖2

2 + ε ‖u‖p
p

−
(

M − δ− c2
sε

l

)
‖ut‖2

2−
(

g0−δ

(
1+

c
2(ρ+1)
s

ρ+1

(
2pE(0)
p−2

)ρ
)
−ε

)
‖∇ut‖2

2

+
( ε

2l
+ c7

)(∫ t

0

g2−r(s)ds

)
(gr ◦ ∇u) (t).

However, g′(t) ≤ −ξgr(t) by (2.3), thus, we see that
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(3.36)

G
′
(t) ≤ −

[
ξ

(
M

2
− c8

)
−
( ε

2l
+ c7

) ∫ ∞

0
g2−r(s)ds

] (
g

r ◦ ∇u
)
(t)

−g0 − ε

ρ + 1
‖ut‖ρ+2

ρ+2 −
(

lε

4
− δc6

)
‖∇u‖2

2 + ε ‖u‖p
p

−
(

M − δ − c2
sε

l

)
‖ut‖2

2

−
(

g0 − δ

(
1 +

c
2(ρ+1)
s

ρ + 1

(
2pE(0)
p − 2

)ρ
)

− ε

)
‖∇ut‖2

2 .

At this point, we choose ε < g0 and

δ < min




lε

4c6
,

g0 − ε

1 + c
2(ρ+1)
s
ρ+1

(
2pE(0)

p−2

)ρ


 .

Once ε and δ fixed, we pick M sufficiently large so that

ξ

(
M

2
− c8

)
−
( ε

2l
+ c7

)∫ ∞

0

g2−r(s)ds > 0

and
M − δ − c2

sε

l
> 0.

Therefore, for all t ≥ t0, we have

(3.37)
G

′
(t) ≤ −c10 (gr ◦ ∇u) (t) − c11 ‖ut‖ρ+2

ρ+2 − c12 ‖∇u‖2
2

−c13 ‖∇ut‖2
2 + ε ‖u‖p

p ,

where c10 = ξ
(

M
2 − c8

) − ( ε
2l + c7

) ∫∞
0 g2−r(s)ds, c11 = g0−ε

ρ+1 , c12 = lε
4 − δc6

and c13 = g0 − δ
(
1 + c

2(ρ+1)
s
ρ+1

(
2pE(0)

p−2

)ρ) − ε.

Case 1. r = 1
By virtue of the choice of ε, δ and M, estimates (3.37) yields, for some constant

α1 > 0,

(3.38) G
′
(t) ≤ −α1E(t), ∀t ≥ t0.

Hence, combining (3.38) and Lemma 3.5, we have

(3.39) G
′
(t) ≤ −α1

β2
G(t), ∀t ≥ t0.

An integration of (3.39) over (t0, t) leads to
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(3.40) G(t) ≤ G(t0)e
−α1

β2
(t−t0), ∀t ≥ t0.

Therefore, (3.40) and Lemma 3.5 yield

(3.41) E(t) ≤ L1e
−k(t−t0), ∀t ≥ t0,

where L1 = G(t0)
β1

and k = α1
β2

.

Case 2. 1 < r < 3
2

Similar to the discussion in [11], we note that

(3.42) (gr ◦ ∇u) (t) ≥ c14 (g ◦ ∇u)r (t),

for some constant c14 > 0. Combining (3.37) and (3.42), we get

(3.43)
G

′
(t)

≤ −c15

(
(g ◦ ∇u)r (t)+‖ut‖ρ+2

ρ+2+‖∇u‖2
2+‖∇ut‖2

2 − ‖u‖p
p

)
, ∀t ≥ t0,

here c15 is some positive constant. On the other hand, from the definition of E(t)
by (3.3) and Lemma 3.1, we have

(3.44)
Er(t)

≤ c16

[
Er−1(0)

(
‖ut‖ρ+2

ρ+2+‖∇u‖2
2+‖∇ut‖2

2−‖u‖p
p

)
+(g ◦ ∇u)r (t)

]
,

for all t ≥ t0 and some constant c16 > 0. A combination of the last two inequalities
and using Lemma 3.5, we derive

(3.45) G
′
(t) ≤ −c17G

r(t), ∀t ≥ t0,

for some constant c17 > 0. An integration of (3.45) over (t0, t) gives

(3.46) G(t) ≤ L2 (1 + t)−
1

r−1 , ∀t ≥ t0,

where L2 is some positive constant. Therefore, by using Lemma 3.5 once more, we
complete the proof.
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