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INTEGRAL REPRESENTATIONS FOR SRIVASTAVA’S TRIPLE
HYPERGEOMETRIC FUNCTIONS

Junesang Choi, Anvar Hasanov, H. M. Srivastava* and Mamasali Turaev

Abstract. While investigating the Lauricella’s list of 14 complete second-
order hypergeometric series in three variables, Srivastava noticed the existence
of three additional complete triple hypergeometric series of the second order,
which were denoted by H4, Hp and Ho. Each of these three triple hyper-
geometric functions H4, Hp and H¢ has been investigated extensively in
many different ways including, for example, in the problem of finding their
integral representations of one kind or the other. Here, in this paper, we aim
at presenting further integral representations for each of Srivastava’s triple
hypergeometric functions H4, Hp and Hc.

1. INTRODUCTION AND PRELIMINARIES

In the theory of hypergeometric functions of several variables, a remarkably large
number of triple hypergeometric functions have been introduced and investigated.
A comprehensive table of 205 distinct triple hypergeometric functions is provided in
the work of Srivastava and Karlsson [13, Chapter 3]. Out of these 205 distinct triple
hypergeometric functions, Lauricella [7, p. 114] introduced fourteen complete triple
hypergeometric functions of the second order. He denoted his triple hypergeometric
functions by the symbols Fi, -- -, Fi4 of which Fy, Fy, F5 and Fy correspond,
respectively, to the three-variable Lauricella functions Ff), Fg), Fég) and FS)
that are the three-variable cases of the n-variable Lauricella functions Fé”), Fg”),

Fé”) and Fg”) (cf. [7, p. 113]; see also [1, p. 114, Equations (1) to (4)], [13, p.
33 et seq.] and [4, 5]). Saran [9] initiated a systematic study of ten of the triple
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hypergeometric functions from Lauricella’s set. Exton [3] introduced 20 distinct
triple hypergeometric functions, which he denoted by X; --- X5, and investigated
their twenty Laplace integral representations whose kernels include the confluent
hypergeometric functions (£ and 1 F, and the Humbert hypergeometric functions
®5 and ¥, of two variables. The four Appell hypergeometric functions F, - - - Fy
of two variables are simply the special case of Lauricella’s n-variable functions
when n = 2, that is,

R=FY RBR=FY RKR=FY ad F=F

While transforming Pochhammer’s double-loop contour integrals associated with
the functions Fy and Fy4 (that is, F and F'r, respectively) belonging to Lauricella’s
set of hypergeometric functions of three variables, Srivastava [10, 11] discovered
the existence of three additional complete triple hypergeometric functions H4, Hp
and H of the second order, which are defined as follows (see also [13, p. 43,
Equations 1.5(11) to 1.5(13)]):

Hy (a1, a2,as3;¢1,c2; 2, y, 2)

ma (€1)m (€2)pgp ml nl p

(|| = v <1yl =5 <1; [z =t < (1—1)(1—89)),

(11) = i (al)m+p (a2)m+n (a’3)n+p x™ Y

Hp(a1, a2, as;c1, ¢, ¢35, Y, 2)

(L2) D S L G GRS
. m,n,p=0 (c1)m(c2)nlcs)p m! n! p!
(v:=lal; s :=lyl; t:=|z]; v+ 54+ t+2Vest < 1)
and

He (a1, az, a3;¢; 2, y, 2)

_ i (al)m—l—p a’2)m+n (a3)n+p ﬁ ﬁ i
(1.3) m! n! p

(vi=z]; 5 == y|; t:=|2]; v+s+t—2\/(1-1)(1—s)(1-t)<2),

where, with C and Z, denoting the set of complex numbers and the set of
nonpositive integers, respectively, (\),, is the Pochhammer symbol defined (for
A € C) by

14) (), 1= LAFD) (n=0)
r'(\) AA+1)--(An—1) (neN:={1,2,3,---})
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I'(z) being the well-known Gamma function. Of course, all 20 of Exton’s triple
hypergeometric functions X1, - - -, X5 as well as Srivastava’s triple hypergeomet-
ric functions H 4, Hp and H¢ are included in the set of the aforementioned 205
distinct triple hypergeometric functions which were presented systematically by Sri-
vastava and Karlsson [13, Chapter 3]. The above-stated three-dimensional regions
of convergence of the triple hypergeometric series in (1.1), (1.2) and (1.3) for Hy,
Hp and H¢, respectively, were given by Srivastava [10, 11] (see also Srivastava
and Karlsson [13, Section 3.4]).

Various multivariable generalizations and cases of reducibility of Srivastava’s
functions H 4, Hp and Ho have been investigated (see, for details, [13, pp. 43—
44]). Turaev [15] studied the Srivastava function H 4. Hasanov etal. [6] reproduced
Srivastava’s integral representations [10, 11] for the functions H 4, Hg and H¢ in
the following (potentially useful) forms:

L(y1)I(12)
L)L (y2)T (11 — B1)L (2 — B2)

1 1
- /O /O €01 Pl (1 )AL (1B (1)1 (1 — o)~

zyén -
(1= d¢ d
(1 (1—977)(1—306—277)) < dn

(R(m1) > R(B1) > 0; R(12) > R(B2) > 0);

Ha(o, 1, Bos 1, 7252, y, 2) =

(L.5)

( 51;627’71;’725’737'% Y,z

(1.6) - 51 (B2) / / / e sTtmu pa—l g1 Ba—1

0F1(—; y15 st) oF1(—; 25 yus) oF1(—; vs; zut) dsdt du
(min {%(Oé (ﬁl (ﬁg } > 0)

where each of the confluent hypergeometric functions o F; can be rewitten in terms
of the Bessel function J,(z) and I,,(z) given by

L.\V 22
(1.7) Ju(2) = % oF1 <—; v+1; _Z>
and

L.\Y 52
(1.8) I(z) = % oF1 <—; v+1; Z) ,

respectively;
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o B I'(v)
Hc(Oé, B1, B2; v; T, Y, z) = F(Q)F(ﬁl)r(’)’ —a—0)

1 1
[ [ertprtamgreta— e i - ag
0 JO
(1.9) (1= —yn— 28 +yén + zx§2)_ﬂ2 d€ dn

(min{R(a), R(G1), R(y —a—F1)} >0).

Here, in this present sequel to some of the above-mentioned works, we aim at
investigating some further integral representations for each of the three Srivatava
functions H4, Hg, and H.

2. INTEGRAL REPRESENTATIONS OF H4

Theorem 1. Each of the following integral representations for H4 holds true:
Ha (a1, az, a3; ¢y, c2; 2,9, 2)
r (62) /1 -1 co—az—1
— 5&3 1 _ 5) 2 3
ey Tl s
(1=y&) (1 =28)"" o1 <a1, as; c1;
(?R(Cg) > §R(a3) > 0);

X

1y (- z»:)) &

Hy (a1, a2, a3; c1, c2; 2, y, 2)

o F(CQ) (1 +)‘)a3 ! az—1 _ ~\e2—az—1
~ T(a3)T (2 — a3) /0 S

@D 1+ RN - (1N 8] A (4 N &
e 2 (142’
e al’a2’61’[1+A£—(1+A)£y][1+A£—(1+A)52]>df

(R(c2) > R(ag) > 0; A > —1);

Hy (a1, a2, a3; ¢, 252, Y, 2)

Tl (e
r (a?)) T (02 — ag) (ﬂ _ a)02—a1—a2—1

B
(2.3) / (B — 5)02—'13—1 = a)aa—l (€ — ,y)a1+a2—cz
1(B=a) (§=7)=(B=7) (€=a) y] ™ [(B—) (§=7) = (B—7) (§—a) 2]
<o F1 (a1,az;¢1500) d€ (R(ea) > R(az) > 0; v < a < f),
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where 2 2
(B—a)” (§—) .
[(B—a) (=)= (B-7) E—a)yl [(B-a) (§=7)—(B—7) (§—a) 2]

Hy (a1, a2, a3; ¢, ¢2; 2, Y, 2)

. F(Cg) o az—1 aitaz—ca
(2.4) - T (a3) T (co — a3) /0 ¢ 1+¢)

(A+E—y) M (1+E—25) "

z(1+¢)?
(I+E—yo)(1+€—z¢

Hy (a1, a2, a3;¢1, 25, Y, 2)

- 2r (02) R az—% 2 \Cc2—az—1
= I’(ag)F(CQ—ag)/o (sm §) (cos §)

. (1 — ysin? 5)_a2 (1 — zsin? 5)_(“

g =

coF <a1,a2;01; )> d¢ (R(c2) > R(as) > 0);

™

(2.5)

X
(1 — ysin? §) (1 — zsin? §)
Here oF; denotes the well-known Gauss hypergeometric function defined by

JFi(a, b e Z):iwﬁ
(2.6) (ce C\Zy; T;\O< 1;]2|=1 (z#—-1) and R(c—a—0b) > 0;

z=-1 and R(c—a—-0b)>-1).

ok <a1,a2;01; ) dé (R(c2) > R(as) > 0).

Proof. The integral representation (2.1) was derived by Srivastava himself [10,
p. 100] as an intermediate result in his demonstration of the integral representation
(1.5) [10, p. 100, Equation (3.3)]. In fact, Srivastava’s derivation of (2.1) involved
writing the triple hypergeometric series in (1.1) as a single series of the Appell
function F; as follows:

Hy (a1, a2, as; c1, c2; 2, y, 2)

o (a1)n (a2), L ™
(2.7) = mEO ()., F1 (a3, a2 +m, a1 +m; ca;y, 2] oy
and then applying Picard’s integral formula [1, p. 29, Equation (4)]:
L'(y)
F /o~ —
1 [(X,/B,ﬁ7')’7x,y:| F((X)F("}’—Oé)

1
(28) . /0 7l (1= et (1 - ar) P (1= yr) P dr
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(R(y) > R(a) > 0; ye C\ Zy)

to each term on the right-hand side of (2.7). The transition from (2.1) to Srivastava’s
final result (1.5) was made by appealing to the following classical result (see, for
details, [10, pp. 99-100]):

oy (0 3712) = s [ 2 (1 et (1) P ar
(2.9) F(a)l(vy—a) Jo
(R(y) > R(e) > 0; y € C\ Zy).
The assertions (2.4) and (2.5) of Theorem 1 would follow from Srivastava’s
result (2.1) upon setting

§
mev

dg
(1+¢)?

d§ and (0,1) — (0, 00)

and
€ sin?€, dE— 2sinfcoséde and  (0,1) (0, g) ,

respectively.

Each of the integral representations (2.1) to (2.5) can also be proved directly by
expressing the series definition of the involved hypergeometric function o F in each
integrand and changing the order of the integral sign and the summation, and finally
using one or the other of the following well-known relationships between the Beta
function B(«, ), the Gamma function I'(z) and their various associated Eulerian
integrals (see, for example, [2, pp. 9-11] and [14, p. 26 and p. 86, Problem 1]):

/0 e1—0f e (min{R(a), R(B)} > 0)

D(a) D(B)
T(a+ )

(2.10) B(a, B) =
(o, B C\Zy),

Ta—l

(211) B(Oé7 /8) =2 /0 (sin92°‘_1(cos 0)25_1 df = /0 W dr
(min{R(a), R(8)} > 0)

and
b—c)® (a—c)? [P (t—a)* ' (b—1t)*!
(212) N
— (14 ) /0 e (A > 1)

(min{?R(a), R(B)} > 0).
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3. INTEGRAL REPRESENTATIONS OF Hp

Theorem 2. Each of the following integral representations for Hp holds true:

I'(a1 +a 1 _ _
Hpg (a1, az,a3; c1, ¢, C3;2, Y, 2) = W/ ¢l (1—¢)® !
0

(3.1) - Xyglar +ag,as;c1, 9, 03525 (1 =€),y (1 —=§), 2&] d€
(min{?R(al), R(ag)} > 0);

[ (a1 +az) (B=7)" (a—7)"
T (al) T (ag) (ﬂ — a)a1+a2_1

B
-/ (B-€) 1 (€= a)t (€ — )0

(3.2) . X4 (a1 +ag,ag;Cl,CQ,Cg;Jlx,ng,ng) df

Hp (a1, ag,a3;c1, ¢, c3;2,y, 2) =

(min{R(a1), R(az)} > 0; v < a < B),

where
e @V E-NE=a)(=0 (=1 (8-6
(B—a)* (£ —n) (B—a)(E—7)
G-,
T B €
(3.3)
Hg (a1, a2, as; c1,co,C3; 2, Yy, 2) = %

jus

25 -l 5 Nas—1
: (sin® &)™ 2 (cos® €)™ 2 Xy (a1+aq, as; c1, ¢2, ¢35 012, 09y, 032) d
0
(min{?R(al), %(ag)} > 0),
where
o1 :=sin?€cos’ €, o9:=cos’¢ and o3 :=sin’¢;

(3.4)
2 (a1 —|—a2) (1 +)\)a1

I'(a1)T (a2)

Hp (a1, a2, a3;c1, ¢, 3,2, Y, 2) =

/% (sin? 5)@1—% (cos? f)az_%
o (T4+Asin?g)™ ™
(min{R(a1), R(az)} > 0; A > —1),

X4 (a1 + ag, as; c1, ¢, ¢35 012, 02y, 03%) dE
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where
(14 \)sin? € cos? ¢ cos? & (14 X\)sin?¢
o1 = 5, 0= ———%— and o3:=-—""5;
(1+)\sin2§) 1+ Asin“¢ 1+ Asin“¢
(3.5)

2T (a1 + ag) A%
Hp (a1, a2,a3;¢1,¢2,¢3;2,y, 2) = ( )

I'(a1) T (a2)
1 1
3 Sil’l2 Ty 0082 a2—3
/ (sin”¢) ( 5 24@ Xy (a1+az, az; c1, co, €35 012, 02y, 032) df
0 (cos?&+Asin®¢)
(min{R(a1), R(az)} > 0; A > 0),
where
Asin? € cos? & cos® & Asin? &
o1 = X PR g9 :ﬁ and g3 = ﬁ
(cos? £+ Asin? £) cos? £+ Asin” & cos? £+ Asin” &

Here X, denotes one of Exton’s twenty hypergeometric functions defined by (see
[3] and [13, p. 84, Entry (453)])

. (a1)2 (a2) ™y 2P
Xy(a1, ag; c1, co, ¢35 @, Yy, 2) = Z m+n+p 32 )n+p S
(3.6) =0 (Cl)m(C2)n(63)p m! n! p!

(c:=|zl; 5:=|yl; t:= |2} 2ve+ (Vs + V) < 1).

Proof. A similar argument as in the demonstration of Theorem 1 will establish
the results asserted by Theorem 2. Indeed, instead of the Gauss hypergeometric
series in (2.6), we make use of the double hypergeometric series in (3.6) for Exton’s
function Xj4.

Alternatively, the assertions (3.1) to (3.5) of Theorem 2 can be proven directly
and much more systematically by first writing the definition (1.2) in the following
form:

Hp(a1, a2, as; c1, ¢, ¢35 2, Y, 2)

i (@1)m4p(a2)m4n(a3)ntp ™oyt 2P
ma=y (e)mle)n(ca)p ml nl pl
_ io: (a1 +a2)2m+n+p(a3)n+p (al)m+p(a2)m+” ﬁ ﬁ i
i (Cl)m(CQ)n(Cg)p (a1+a2)2m+n+p m! nl pl
_ M i (a1 + a2)2m+ntp(a3)np ™ oyt 2P
P(a)T(az) 4= (c)mlc2)n(cs)y  ml nl pl

-B(ay +m+p,as+m+n),
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replacing the Beta function:
B(a1 +m+p,as+m+n) (min{R(a1), R(az)} > 0)

by one or the other of its numerous Eulerian integral representations in (for
example) (2.10) to (2.12), and then interpreting the resulting triple hypergeometric
series by means of the definition (2.6). In this manner, of course, we can derive a
considerably large number of other integral representations for Hp involving the
triple hypergeometric function X, defined by (2.6). ]

4, INTEGRAL REPRESENTATIONS OF Hg

Theorem 3. Each of the following integral representations for Hx holds true:

. e — F(C) ! a;1—1 c—ap—1
He (a1,a2,a37c7w7y72)—r(a1)r(c_al)/0 £ (1-9)
.0 (1=28)" (127" o} <a2,a3;6— ai; %) dg§
(R(c) > R(a1) > 0);
He (a1, a2, a3;¢; 2,9, 2)
F(a1+a2+a3 a la—l—a 1 as—1 az—1
- e (1 gl (1)
P a1+a22—|—a37a1+a2;—a3+1 ¢ E(E i w Y )>d§dn
(min{?R(al), §R(a2), %(ag)} > 0),
where
2 mr,y,2) = aneE(1=n+y (1 —&) (L—n)+2£(1-n);
. e _ F(C) (1+)‘) ! a;—1 c—a;—1
He (a1, a9, a3;¢52,y, 2) = T (o) T (e = ar) /0 £ (1-9)
(4.3) LA A)ETBTOL A = (L A 2€] 2 [T+ A — (1+A)2¢ ™

y (1A (1) )
[1+AE—(14N) ] [LTHAE—(1+N) 2]
(R(c) > R(a1) > 0; A > —1);

dg

< oF ( az,a3; c—ar;
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He (a1, a2, a3;¢;2,y, 2)

F)@B-—y)"(a=n)"" B e
IF'(a)T (c—ar) (B — a)c—az—ag—l /a (B—=8)

(4.4) (E—) T (E=) BT (B—a) (E—7)— (B—7) (E—a) 2]
((B=a) (6= = (B=7) (€—a) 2™ 5 (a9, a3; c—ar; oy) dé

(R(c) > R(a1) > 0; v < a < ),

where

B-a)(a=7)(E=7) B¢ ,
[(B=a) (=)= (B=1(E-a)a][(B-a)(=7)—(B=7(—a)z]

g =

T o]
He (a1, a2, a3;¢,2,y,2) = F(al)l“((cc)— - /0 gar=l (] 4 g)artas—e
(45) (1 +£_£{L‘)_Q2 (1+£_£z)—a3 2F1 (a27a3;c_a1;0_y) df

(R(c) > R(a1) > 0),

where
. (1+¢) |
(I+&-&r)(1+E-¢&2)
Hc (a1, a2, a3; ¢; v, y, 2)
_ 2l (o) L 2 £\~ 5 2 £\Ca1— %
= Tl T (e ) /0 (sin” ) (cos®€)
(4.6) (11— x sin® f)_ag (1- zsin? f)_% oF1 (ag, ag;c — ay; oy) d€
(R(c) > R(a1) > 0),
where

cos® &
(1 — rsin® f) (1 — zsin? f) '
Here o F) denotes the Gauss hypergeometric function given by (2.6).

g =

Proof.  Our proof of Theorem 3 is much akin to that of Theorem 1, which we
have already presented in a reasonably detailed manner. ]
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5. ConcLubING REMARKS AND OBSERVATIONS

Integral representations for most of the special functions of mathematical physics
and applied mathematics have been investigated in the existing literature. Here we
have presented only some illustrative integral representations for each of Srivastava’s
functions H4, Hp and Ho. A variety of integral representations of Hu, Hp
and H¢, which may be different from those presented here, can also be provided.
Furthermore, just as we mentioned in connection with the single- and double-integral
representations (2.1) and (1.5) for H 4, Srivastava’s double-integral representation
(1.9) for Hc can easily be deduced from the assertion (4.1) of Theorem 3 by
appealing to the classical result (2.9).
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