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WEAK AND STRONG CONVERGENCE THEOREMS FOR POSITIVELY
HOMOGENEOUS NONEXPANSIVE MAPPINGS IN BANACH SPACES

Wataru Takahashi and Jen-Chih Yao*

Abstract. Our purpose in this paper is first to prove a weak convergence the-
orem by Mann’s iteration for positively homogeneous nonexpansive mappings
in a Banach space. Further, using the shrinking projection method defined by
Takahashi, Takeuchi and Kubota, we prove a strong convergence theorem for
such mappings. From two results, we obtain weak and strong convergence
theorems for linear contractive mappings in a Banach space. These results are
new even if the mappings are linear and contractive.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ and let
C be a closed convex subset of H . Let T be a mapping of C into itself. Then
we denote by F (T ) the set of fixed points of T . A mapping T : C → C is called
nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ C. From [46] we know a weak
convergence theorem by Mann’s iteration for nonexpansive mappings in a Hilbert
space:
Let T : C → C be a nonexpansive mapping with F (T ) �= ∅ and define a sequence
{xn} in C by x1 = x ∈ C and

xn+1 = αnxn + (1 − αn)Txn, ∀n ∈ N,

where {αn} is a real sequence in [0, 1] such that
∞∑

n=1

αn(1− αn) = ∞.

Then, {xn} converges weakly to an element z of F (T ), where z = limn→∞ Pxn

and P is the metric projection of H onto F (T ). By Reich [36], such a theorem
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was extended to a uniformly convex Banach space with a Fréchet differentiable
norm. However, we do not know whether the fixed point z is characteraized under
any projections in a Banach space. On the other hand, Nakajo and Takahashi [33]
proved a strong convergence theorem for nonexpansive mappings in a Hilbert space
by using the hybrid method in mathematical programming:
Let T : C → C be a nonexpansive mapping with F (T ) �= ∅ and let {αn} be a real
sequence in [0, 1] such that 0 ≤ αn ≤ a < 1 for all n ∈ N. Define a sequence {xn}
in C by x1 = x ∈ C and




un = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖un − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

where PCn∩Qn is the metric projection of H onto Cn ∩Qn. Then, {xn} converges
strongly to an element z of F (T ), where z = PF (T )x and PF (T ) is the metric
projection of H onto F (T ). However, we do not know whether such a strong
convergence theorem for nonexpansive mappings is extended to a Banach space.
Many authors have extended this convergence theorem to a Banach space by using
nonlinear mappings which are different from a nonexpansive mapping; see, for
instance, [28].

Our purpose in this paper is first to prove a weak convergence theorem by
Mann’s iteration for positively homogeneous nonexpansive mappings in a Banach
space. In the theorem, the limit of weak convergence is characteraized by using a
sunny generalized nonexpansive retraction in Ibaraki and Takahashi [14]. Further,
using the shrinking projection method defined by Takahashi, Takeuchi and Kubota,
we prove a strong convergence theorem for positively homogeneous nonexpansive
mappings in a Banach space. From two results, we obtain weak and strong conver-
gence theorems for linear contractive mappings in a Banach space. These results
are new even if the mappings are linear and contractive.

2. PRELIMINARIES

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual of E . We
denote the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. When {xn} is a sequence in
E , we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ε) = inf
{

1 − ‖x + y‖
2

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
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for every ε with 0 ≤ ε ≤ 2. A Banach space E is said to be uniformly convex
if δ(ε) > 0 for every ε > 0. A uniformly convex Banach space is strictly convex
and reflexive. Let C be a nonempty subset of a Banach space E . A mapping
T : C → C is nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. A mapping
T : C → C is quasi-nonexpansive if F (T ) �= ∅ and ‖Tx − y‖ ≤ ‖x − y‖ for all
x ∈ C and y ∈ F (T ), where F (T ) is the set of fixed points of T . If C is a closed
convex subset of E and T : C → C is quasi-nonexpansive, then F (T ) is closed and
convex; see Itoh and Takahashi [17]. From [44] we know the following lemma.

Lemma 2.1. Let E be a uniformly convex Banach space and let δ be the
modulus of convexity in E . Let 0 < ε ≤ 2r. Then, δ(ε

r ) > 0 and

‖αx + (1− α)y‖ ≤ r{1− 2α(1− α)δ(
ε

r
)}

for all x, y ∈ E with ‖x‖ ≤ r, ‖y‖ ≤ r and ‖x − y‖ ≥ ε and α ∈ [0, 1].

Further, we know the following result by Browder; see [44].

Lemma 2.2. Let E be a uniformly convex Banach space and let C be a bounded
closed convex subset of E . Let T : C → C be a nonexpansive mapping. If {xn}
is a sequence of C such that xn ⇀ u and xn − Txn → 0, then u is a fixed point
of T .

Let C be a nonempty closed convex subset of a strictly convex and reflexive
Banach space E . Then we know that for any x ∈ E , there exists a unique element
z ∈ C such that ‖x − z‖ ≤ ‖x − y‖ for all y ∈ C. Putting z = PC(x), we call
PC the metric projection of E onto C. The duality mapping J from E into 2E∗ is
defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for every x ∈ E . Let U = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be
Gâteaux differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists. In the case, E is called smooth. We know that E is smooth if and only if
J is a single-valued mapping of E into E∗. We also know that E is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J−1 coincides with
the duality mapping J∗ on E∗. The norm of E is said to be uniformly Gâteaux
differentiable if for each y ∈ U , the limit (2.1) is attained uniformly for x ∈ U . It
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is also said to be Fréchet differentiable if for each x ∈ U , the limit (2.1) is attained
uniformly for y ∈ U . A Banach space E is called uniformly smooth if the limit
(2.1) is attained uniformly for x, y ∈ U . It is known that if the norm of E is
uniformly Gâteaux differentiable, then J is uniformly norm to weak∗ continuous on
each bounded subset of E , and if the norm of E is Fréchet differentiable, then J is
norm to norm continuous. If E is uniformly smooth, J is uniformly norm to norm
continuous on each bounded subset of E . For more details, see [44]. We know the
following results; see [44].

Theorem 2.3. Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty closed convex subset of E and let PC be the metric projection
of E onto C. Let x0 ∈ C and x1 ∈ E . Then, x0 = PC(x1) if and only if

〈x0 − y, J(x1 − x0)〉 ≥ 0

for all y ∈ C, where J is the duality mapping of E .

Theorem 2.4. Let E be a smooth Banach space and let J be the duality mapping
on E . Then, 〈x−y, Jx−Jy〉 ≥ 0 for all x, y ∈ E . Further, if E is strictly convex
and 〈x − y, Jx − Jy〉 = 0, then x = y.

Let E be a reflexive, strictly convex and smooth Banach space. The function
φ : E × E → (−∞,∞) is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for x, y ∈ E , where J is the duality mapping of E; see [1] and [21]. We have from
the definition of φ that

(2.2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉

for all x, y, z ∈ E . From (‖x‖2−‖y‖2) ≤ φ(x, y) for all x, y ∈ E , we can see that
φ(x, y) ≥ 0. Let φ∗ : E∗ × E∗ → (−∞,∞) be the function defined by

φ∗(x∗, y∗) = ‖x∗‖2 − 2〈J−1y∗, x∗〉 + ‖y∗‖2

for x∗, y∗ ∈ E∗, where J is the duality mapping of E . It is easy to see that

(2.3) φ(x, y) = φ∗(Jy, Jx)

for x, y ∈ E . If E is additionally assumed to be strictly convex, then

(2.4) φ(x, y) = 0 ⇐⇒ x = y.
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If C is a nonempty closed convex subset of a smooth, strictly and reflexive Banach
space E , then for all x ∈ E there exists a unique z ∈ C (denoted by ΠCx) such
that

(2.5) φ(z, x) = min
y∈C

φ(y, x).

The mapping ΠC is called the generalized projection from E onto C; see Alber [1],
Alber and Reich [2], and Kamimura and Takahashi [21]. The following lemmas
are well known; see, for instance, [21].

Lemma 2.5. Let E be a uniformly convex and smooth Banach space and
let {xn} and {yn} be sequences in E such that {xn} or {yn} is bounded. If
limn→∞ φ(xn, yn) = 0, then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.6. Let E be a uniformly convex and smooth Banach space and let
r > 0. Then, there exists a strictly increasing, continuous and convex function
g : [0,∞) → [0,∞) such that g(0) = 0 and

g(‖x− y‖) ≤ φ(x, y)

for all x, y ∈ Br, where Br = {z ∈ E : ‖z‖ ≤ 0}.

For a sequence {Cn} of nonempty closed convex subsets of a reflexive Banach
space E , define s-LinCn and w-LsnCn as follows: x ∈s-LinCn if and only if there
exists {xn} ⊂ E such that {xn} converges strongly to x and that xn ∈ Cn for all
n ∈ N. Similarly, y ∈w-LsnCn if and only if there exists a subsequence {Cni}
of {Cn} and a sequence {yi} ⊂ E such that {yi} converges weakly to y and that
yi ∈ Cni for all i ∈ N. If C0 satisfies that

(2.6) C0 =s-LinCn =w-LsnCn,

it is said that {Cn} converges to C0 in the sense of Mosco [30] and we write
C0 =M-limn→∞ Cn. It is easy to show that if {Cn} is nonincreasing with respect
to inclusion, then {Cn} converges to ∩∞

n=1Cn in the sense of Mosco. For more
details, see [30]. We know the following theorem [12].

Theorem 2.7. Let E be a smooth Banach space and let E∗ have a Fréchet
differentiable norm. Let {Cn} be a sequence of nonempty closed convex subsets
of E . If C0 =M-limn→∞ Cn exists and nonempty, then for each x ∈ E , ΠCnx
converges strongly to ΠC0x, where ΠCn and ΠC0 are the generalized projections of
E onto Cn and C0, respectively.
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Let E be a Banach space and let D be a nonempty closed subset of E . A
mapping R : E → D is said to be sunny if

R(Rx + t(x − Rx)) = Rx, ∀x ∈ E, ∀t ≥ 0.

A mapping R : E → D is a retraction if Rx = x for all x ∈ D. A nonempty
subset of a smooth Banach space E is said to be a generalized nonexpansive retract
(resp. sunny generalized nonexpansive retract) of E if there exists a generalized
nonexpansive retraction (resp. sunny generalized nonexpansive retraction) of E

onto D. From [14], we know the following lemmas.

Lemma 2.8. (Ibaraki and Takahashi [14]). Let E be a smooth, strictly convex
and reflexive Banach space and let D be a nonempty closed subset of E . Then, a
sunny generalized nonexpansive retraction of E onto D is uniquely determined.

Lemma 2.9. (Ibaraki and Takahashi [14]). Let E be a smooth, strictly convex
and reflexive Banach space and let D be a nonempty closed subset of E . Suppose
that there exists a sunny generalized nonexpansive retraction R of E onto D and
let (x, z) ∈ E × D. Then, the following hold:

(1) z = Rx if and only if 〈x − z, Jy − Jz〉 ≤ 0, ∀y ∈ D;
(2) φ(Rx, z) + φ(x, Rx) ≤ φ(x, z).

In 2007, Kohsaka and Takahashi [24] proved the following results.

Lemma 2.10. (Kohsaka and Takahashi [24]). Let E be a smooth, strictly convex
and reflexive Banach space and let C∗ be a nonempty closed convex subset of E∗.
Suppose that ΠC∗ is the generalized projection of E∗ onto C∗. Then, R defined by
R = J−1ΠC∗J is a sunny generalized nonexpansive retraction of E onto J−1C∗.

Lemma 2.11. (Kohsaka and Takahashi [24]). Let E be a smooth, strictly
convex and reflexive Banach space and let D be a nonempty subset of E . Then,
the following conditions are equivalent

(1) D is a sunny generalized nonexpansive retract of E;
(2) D is a generalized nonexpansive retract of E;
(3) JD is closed and convex.

In this case, D is closed.

Lemma 2.12. (Kohsaka and Takahashi [24]). Let E be a smooth, strictly convex
and reflexive Banach space and let D be a nonempty closed subset of E . Suppose
that there exists a sunny generalized nonexpansive retraction R of E onto D and
let (x, z) ∈ E × D. Then, the following conditions are equivalent
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(1) z = Rx;
(2) φ(x, z) = miny∈D φ(x, y).

Let E be a smooth Banach space E and let C be a nonempty subset of E . A
mapping T : C → C is generalized nonexpansive [14] if F (T ) �= ∅ and

(2.7) φ(Tx, y) ≤ φ(x, y)

for all x ∈ C and y ∈ F (T ). From Ibaraki and Takahashi [15] we know the
following lemma.

Lemma 2.13. (Ibaraki and Takahashi [15]). Let E be a smooth, strictly convex
and reflexive Banach space and let T be a generalized nonexpansive mapping of E
into itself. Then, F (T ) is a sunny generalized nonexpansive retract of E .

3. POSITIVELY HOMOGENEOUS NONEXPANSIVE MAPPINGS

Let E be a Banach space and let C be a closed convex cone of E . Then, a
mapping T : C → C is called positively homogeneous if T (αx) = αT (x) for
all x ∈ C and α > 0. In this section, we prove that a nonexpansive mapping
T : C → C under an appropriate condition is generalized nonexpansive. Before
proving it, we prove the following lemma.

Lemma 3.1. Let E be a Banach space and let C be a closed convex cone of
E . Let T : C → C be a positively homogeneous nonexpansive mapping. Then, for
any x ∈ C and m ∈ F (T ), there exists j ∈ Jm such that

〈x − Tx, j〉 ≤ 0,

where J is the duality mapping of E into E∗.

Proof. Since 0 ∈ C and 1
2T0 = T ( 1

20) = T0, we have T0 = 0. So, F (T ) �= ∅.
First, let x ∈ C \ F (T ) and m ∈ F (T ). Suppose m �= 0. We have that for k > 0,

T (km) = kT (m) = km.

So, we have that 1
k x−m �= 0 for all k > 0. We have from the Hahn-Banach theorem

that there exists y∗
k ∈ E∗ such that 〈 1

kx−m, y∗k〉 = ‖ 1
kx−m‖ and ‖y∗k‖ = 1. Then,

we have that

〈1
k
Tx − m, y∗k〉 ≤ ‖1

k
Tx − m‖ =

1
k
‖Tx − km‖

≤ 1
k
‖x− km‖ = ‖1

k
x − m‖

= 〈1
k
x − m, y∗k〉.
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So, we have 1
k 〈x − Tx, y∗k〉 ≥ 0 and hence

(3.1) 〈x − Tx, y∗k〉 ≥ 0.

Take a net {k > 0} with k → ∞ and put xk = 1
kx−m. Then, we have xk → −m.

Further, since {y∗k} is bounded, there exists a subnet {y∗
kα
} of {y∗k} converging

to some y∗ ∈ E∗ in the weak∗ topology. Let us show that y∗ ∈ E∗ satisfies
〈m,−y∗〉 = ‖m‖ and ‖y∗‖ = 1. Since the norm of E∗ is lower semicontinuous in
the weak∗ topology, we have

‖y∗‖ ≤ lim inf
α→∞ ‖y∗kα

‖ = 1.

On the other hand, we have that

|〈−m, y∗〉 − ‖xkα‖| = |〈−m, y∗〉 − 〈xkα , y∗kα
〉|

≤ |〈−m, y∗ − y∗kα
〉|+ |〈−m− xkα , y∗kα

〉|.
Since 〈−m, y∗ − y∗kα

〉 → 0 and 〈−m − xkα , y∗kα
〉 → 0, we have

‖xkα‖ → −〈m, y∗〉 = 〈m,−y∗〉.
Since ‖xkα‖ → ‖m‖, we have 〈m,−y∗〉 = ‖m‖. So, we have

‖m‖ = 〈m,−y∗〉 ≤ ‖m‖‖y∗‖.
From m �= 0, we have ‖y∗‖ ≥ 1. Therefore, we have ‖y∗‖ = 1 and 〈m,−y∗〉 =
‖m‖. We also have from (3.1) that

〈x − Tx, y∗〉 ≥ 0.

Putting z∗ = −y∗, we have ‖z∗‖ = 1, 〈m, z∗〉 = ‖m‖ and

(3.2) 〈x − Tx, z∗〉 ≤ 0.

So, we have

‖‖m‖z∗‖2 = ‖m‖2 = ‖m‖〈m, z∗〉 = 〈m, ‖m‖z∗〉.
This implies ‖m‖z∗ ∈ Jm, where J is the duality mapping of E . From (3.2), we
have ‖m‖〈x− Tx, z∗〉 ≤ 0 and hence

(3.3) 〈x − Tx, j〉 ≤ 0,

where j = ‖m‖z∗ ∈ Jm. In the case of m = 0, we have {0} = Jm. So, we have

(3.4) 〈x − Tx, 0〉 = 0.
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From (3.3) and (3.4), we have that for any x ∈ C \ F (T ) and m ∈ F (T ), there
exists j ∈ Jm such that

〈x − Tx, j〉 ≤ 0.

In the case of x ∈ F (T ), we also have

〈x − Tx, j〉 = 〈0, j〉 = 0,

where j ∈ Jm. Therefore, we have that for any x ∈ C and m ∈ F (T ), there exists
j ∈ Jm such that

〈x − Tx, j〉 ≤ 0.

Using Lemma 3.1, we obtain the following theorem.

Theorem 3.2. Let E be a smooth Banach space and let C be a closed convex
cone of E . Let T : C → C be a positively homogeneous nonexpansive mapping.
Then, T is a generalized nonexpansive mapping.

Proof. Since 0 ∈ F (T ), we have that for any x ∈ C,

‖Tx‖ = ‖Tx − 0‖ ≤ ‖x− 0‖ = ‖x‖.
So, we have from Lemma 3.1 that for any x ∈ C and m ∈ F (T ),

φ(Tx, m) = ‖Tx‖2 − 2〈Tx, Jm〉+ ‖m‖2

≤ ‖x‖2 − 2〈x, Jm〉+ ‖m‖2 = φ(x, m).

Therefore, T is a generalized nonexpansive mapping of C into itself.

4. WEAK CONVERGENCE THEOREMS

In this section, we prove a weak convergence theorem of Mann’s iteration for
positively homogeneous nonexpansive mappings in a Banach space. Before proving
it, we obtain the following lemma.

Lemma 4.1. Let E be a smooth and uniformly convex Banach space and let
C be a nonempty closed subset of E such that JC is closed and convex. Let
T : C → C be a generalized nonexpansive mapping such that F (T ) �= ∅. Let {αn}
be a sequence of real numbers such that 0 ≤ αn < 1 and let {xn} be a sequence in
C generated by x1 = x ∈ C and

xn+1 = RC(αnxn + (1 − αn)Txn), ∀n ∈ N,

where RC is a sunny generalized nonexpansive retraction of E onto C. If RF (T )

is a sunny generalized nonexpansive retraction of C onto F (T ), then {RF (T )xn}
converges strongly to an element z of F (T ).
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Proof. Let m ∈ F (T ). Since RC and T are generalized nonexpansive,

φ(xn+1, m) = φ(RC(αnxn + (1 − αn)Txn), m)

≤ φ(αnxn + (1 − αn)Txn, m)

≤ αnφ(xn, m) + (1 − αn)φ(Txn, m)

≤ αnφ(xn, m) + (1 − αn)φ(xn, m)

= φ(xn, m).

So, limn→∞ φ(xn, m) exists. Since {φ(xn, m)} is bounded, {xn} and {Txn} are
bounded. Define yn = RF (T )xn for all n ∈ N. Since φ(xn+1, m) ≤ φ(xn, m) for
all m ∈ F (T ), from yn ∈ F (T ) we have

(4.1) φ(xn+1, yn) ≤ φ(xn, yn).

From Lemma 2.9 and (4.1), we have

φ(xn+1, yn+1) = φ(xn+1, RF (T )xn+1)

≤ φ(xn+1, yn) − φ(RF (T )xn+1, yn)

= φ(xn+1, yn) − φ(yn+1, yn)

≤ φ(xn+1, yn)

≤ φ(xn, yn).

So, φ(xn, yn) is a convergent sequence. We also have from (4.1) that for all m ∈ N,

φ(xn+m, yn) ≤ φ(xn, yn).

From yn+m = RF (T )xn+m and Lemma 2.9, we have

φ(yn+m, yn) + φ(xn+m, yn+m) ≤ φ(xn+m, yn) ≤ φ(xn, yn)

and hence
φ(yn+m, yn) ≤ φ(xn, yn) − φ(xn+m, yn+m).

Using Lemma 2.6, we have that

g(‖yn+m − yn‖) ≤ φ(yn+m, yn) ≤ φ(xn, yn) − φ(xn+m, yn+m),

where g : [0,∞) → [0,∞) is a continuous, strictly increasing and convex function
such that g(0) = 0. Then, the properties of g yield that RF (T )xn converges strongly
to an element z of F (T ).

Using Lemma 4.1, we prove the following theorem.
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Theorem 4.2. Let E be a smooth and uniformly convex Banach space and let C

be a closed convex cone of E such that JC is closed and convex. Let T : C → C
be a positively homogeneous nonexpansive mapping. Let {αn} be a sequence of
real numbers such that 0 ≤ αn < 1 and

∑∞
n=1 αn(1−αn) = ∞. Then, a sequence

{xn} generated by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)Txn, ∀n ∈ N

converges weakly to z ∈ F (T ). Further, if E has a Fŕechet differentiable norm,
then z = limn→∞ Rxn, where R is a sunny generalized nonexpansive retraction of
C onto F (T ).

Proof. Let m ∈ F (T ). Then, we have

‖xn+1 − m‖ = ‖αnxn + (1 − αn)Txn − m‖
≤ αn‖xn − m‖ + (1 − αn)‖Txn − m‖
≤ αn‖xn − m‖ + (1 − αn)‖xn − m‖
= ‖xn − m‖.

So, limn→∞ ‖xn − m‖ exists. Putting limn→∞ ‖xn − m‖ = c, without loss of
generality, we can assume c �= 0. Using Lemma 2.1, we have that

‖xn+1 − m‖ = ‖αnxn + (1− αn)Txn − m‖
≤ ‖αn(xn − m) + (1− αn)(Txn − m)‖

≤ ‖xn − m‖{1 − 2αn(1 − αn)δ(
‖Txn − xn‖
‖xn − m‖ )}.

Then, we obtain

2c

∞∑
n=1

αn(1 − αn)δ(
‖Txn − xn‖
‖xn − m‖ ) ≤ ‖x1 − m‖ − c < ∞.

From the assumptions of {αn}, we have

lim inf
n→∞ δ(

‖Txn − xn‖
‖xn − m‖ ) = 0.

Then, we have
lim inf
n→∞ ‖Txn − xn‖ = 0.

On the other hand, we have
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‖Txn+1 − xn+1‖
= αn‖Txn+1 − xn‖ + (1 − αn)‖Txn+1 − Txn‖
≤ αn(‖Txn+1 − xn+1‖ + ‖xn+1 − xn‖) + (1 − αn)‖Txn+1 − Txn‖
≤ αn‖Txn+1 − xn+1‖ + ‖xn+1 − xn‖
= αn‖Txn+1 − xn+1‖ + (1 − αn)‖Txn − xn‖.

Then, we have ‖Txn+1 − xn+1‖ ≤ ‖Txn − xn‖. So, we obtain that

lim
n→∞ ‖Txn − xn‖ = lim inf

n→∞ ‖Txn − xn‖ = 0.

Since E is reflexive and {xn} is bounded, there exists a subsequence {xni} of
{xn} such that xni ⇀ v for some v ∈ C. Since E is uniformly convex and
limn→∞ ‖Txn − xn‖ = 0, we have from Lemma 2.2 that v is a fixed point of T .
Let {xni} and {xnj} be two subsequences of {xn} such that xni ⇀ u and xnj ⇀ v.
We know that u, v ∈ F (T ). We know from Theorem 3.2 that T is a generalized
nonexpansive mapping of C into itself. Then, we have from the convexity of ‖ · ‖2
that for any m ∈ F (T ),

φ(xn+1, m) = φ(αnxn + (1 − αn)Txn, m)

≤ αnφ(xn, m) + (1 − αn)φ(Txn, m)

≤ αnφ(xn, m) + (1 − αn)φ(xn, m)

= φ(xn, m)

for all n ∈ N. Then, limn→∞ φ(xn, m) exists. Put

a = lim
n→∞(φ(xn, u)− φ(xn, v)).

Since φ(xn, u)− φ(xn, v) = 2〈xn, Jv − Ju〉 + ‖u‖2 − ‖v‖2, we have

a = 2〈u, Jv − Ju〉 + ‖u‖2 − ‖v‖2

and
a = 2〈v, Jv − Ju〉 + ‖u‖2 − ‖v‖2.

From these equalities, we obtain

〈u − v, Ju − Jv〉 = 0.
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Since J is strictly monotone, it follows that u = v; see [44]. Therefore, {xn}
converges weakly to an element u of F (T ). On the other hand, we know from
Lemma 4.1 that {RF (T )xn} converges strongly to an element z of F (T ). From
Lemma 2.9, we also have

〈xn − RF (T )xn, JRF (T )xn − Ju〉 ≥ 0.

Since E has a Fréchet differentiable norm, the duality mapping J is norm-to-norm
continuous. So, we have 〈u − z, Jz − Ju〉 ≥ 0. Since J is monotone, we also
have 〈u− z, Jz − Ju〉 ≤ 0. So, we have 〈u− z, Jz − Ju〉 = 0. Since E is strictly
convex, we have z = u. This completes the proof.

5. STRONG CONVERGENCE THEOREMS

In this section, we prove a strong convergence theorem by a hybrid method
called the shrinking projection method for positively homogeneous nonexpansive
mappings in a Banach space.

Theorem 5.1. Let E be a uniformly convex Banach space which has a Fréchet
differentiable norm. Let T : E → E be a positively homogeneous nonexpansive
mapping. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ a < 1. Let
{xn} be a sequence generated by x1 = x ∈ E , C1 = E and




un = αnxn + (1− αn)Txn,

Cn+1 = {z ∈ Cn : φ(un, z) ≤ φ(xn, z)},
xn+1 = RCn+1x, ∀n ∈ N,

where RCn+1 is the sunny generalized nonexpansive retraction of E onto Cn+1.
Then, {xn} converges strongly to z = RF (T )x, where RF (T ) is the sunny general-
ized nonexpansive retraction of E onto F (T ).

Proof. We know that T is a generalized nonexpansive mapping of E into
itself. So, we have from Lemma 2.13 that F (T ) is a sunny generalized nonexpansive
retract of E . We shall show that JCn are closed and convex, and F (T ) ⊂ Cn for
all n ∈ N. It is obvious from the assumption that JC1 = JE = E∗ is closed and
convex, and F (T ) ⊂ C1. Suppose that JCk is closed and convex, and F (T ) ⊂ Ck

for some k ∈ N. From the definition of φ, we know that for z ∈ Ck ,

φ(uk, z) ≤ φ(xk, z)

⇐⇒‖uk‖2 − ‖xk‖2 − 2〈uk − xk, Jz〉 ≤ 0.
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So, JCk+1 is closed and convex. If z ∈ F (T ) ⊂ Ck , then we have

φ(un, z) = φ(αnxn + (1 − αn)Txn, z)

≤ αnφ(xn, z) + (1 − αn)φ(Txn, z)

≤ αnφ(xn, z) + (1 − αn)φ(xn, z)

= φ(xn, z).

Hence, we have z ∈ Ck+1. By induction, we have that JCn are closed and convex,
and F (T ) ⊂ Cn for all n ∈ N. Since JCn is closed and convex, from Lemma 2.8
there exists a unique sunny generalized nonexpansive retraction RCn of E onto Cn.
We also know from Lemma 2.10 that such RCn is denoted by J−1ΠJCnJ , where
J is the duality mapping of E and ΠJCn is the generalized projection of E onto
JCn . Thus, {xn} is well-defined.

Since {JCn} is a nonincreasing sequence of nonempty closed convex subsets
of E∗ with respect to inclusion, it follows that

(5.1) ∅ �= JF (T ) ⊂ M- lim
n→∞ JCn = ∩∞

n=1JCn.

Put C∗
0 = ∩∞

n=1JCn . Then, by Theorem 2.7 we have that {ΠJCn+1Jx} converges
strongly to x∗0 = ΠC∗

0
Jx. Since E∗ has a Fréchet differencial norm, J−1 is contin-

uous. So, we have

xn+1 = Rn+1x = J−1ΠJCn+1Jx → J−1x∗
0.

To complete the proof, it is sufficient to show that J−1x∗
0 = RF (T )x.

Since xn = RCnx and xn+1 = RCn+1x ∈ Cn+1 ⊂ Cn, we have from Lemma
2.9 and (2.2) that

0 ≤ 2〈x− xn, Jxn − Jxn+1〉
= φ(x, xn+1) − φ(x, xn) − φ(xn, xn+1)

≤ φ(x, xn+1) − φ(x, xn).

So, we get that

φ(x, xn) ≤ φ(x, xn+1).(5.2)

Further, since xn = RCnx and z ∈ F (T ) ⊂ Cn, from Lemma 2.12 we have

φ(x, xn) ≤ φ(x, z).(5.3)
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So, we have that limn→∞ φ(x, xn) exists. This implies that {xn} is bounded.
Hence, {un} and {Txn} are also bounded. From

φ(xn, xn+1) = φ(RCnx, xn+1)

= φ(x, xn+1) − φ(x, RCnx)

= φ(x, xn+1) − φ(x, xn) → 0,

we have that

φ(xn, xn+1) → 0.(5.4)

From xn+1 ∈ Cn+1, we have that φ(un, xn+1) ≤ φ(xn, xn+1). So, we get that
φ(un, xn+1) → 0. Using Lemma 2.5, we have

lim
n→∞ ‖un − xn+1‖ = lim

n→∞ ‖xn − xn+1‖ = 0.

So, we have

‖un − xn‖ ≤ ‖un − xn+1‖ + ‖xn+1 − xn‖ → 0.(5.5)

Since ‖xn − un‖ = ‖xn − αnxn − (1 − αn)Txn‖ = (1 − αn)‖xn − Txn‖ and
0 ≤ αn ≤ a < 1, we have that

‖Txn − xn‖ → 0.(5.6)

Since xn+1 → J−1x∗
0 and T is continuous, we have J−1x∗

0 ∈ F (T ).
Put z0 = RF (T )x. Since z0 = RF (T )x ⊂ Cn+1 and xn+1 = RCn+1x, we have

that

(5.7) φ(x, xn+1) ≤ φ(x, z0).

So, we have that

φ(x, J−1x∗
0) = ‖x‖2 − 2〈x, x∗

0〉 + ‖J−1x∗
0‖2

= lim
n→∞(‖x‖2 − 2〈x, Jxn〉 + ‖xn‖2)

= lim
n→∞φ(x, xn)

≤ φ(x, z0).

So, we get z0 = J−1x∗
0. Hence, {xn} converges strongly to z0. This completes the

proof.

Using Theorem 5.1, we prove a strong convergence theorem for linear contractive
mappings in a Banach space.
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Theorem 5.2. Let E be a uniformly convex Banach space which has a Fréchet
differentiable norm. Let T : E → E be a linear contractive mapping. Let {αn} be
a sequence of real numbers such that 0 ≤ αn ≤ a < 1. Let {xn} be a sequence
generated by x1 = x ∈ E , C1 = E and




un = αnxn + (1− αn)Txn,

Cn+1 = {z ∈ Cn : φ(un, z) ≤ φ(xn, z)},
xn+1 = RCn+1x, ∀n ∈ N,

where RCn+1 is the sunny generalized nonexpansive retraction of E onto Cn+1.
Then, {xn} converges strongly to z = RF (T )x, where RF (T ) is the sunny general-
ized nonexpansive retraction of E onto F (T ).

Proof. A linear contractive mapping T : E → E is positively homogeneous
and nonexpansive. So, using Theorem 5.1, we obtain the desired result.
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