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MAXIMAL REGULARITY FOR INTEGRAL EQUATIONS
IN BANACH SPACES

Shangquan Bu

Abstract. We study maximal regularity in periodic Besov spaces Bs
p,q(T, X)

for the integral equations (P ): u(t) = A
∫ t

−∞ a(t−s)u(s)ds)+B
∫ t

−∞ b(t−
s)u(s)ds + f(t) on [0, 2π] with periodic boundary condition u(0) = u(2π),
where A and B are closed operators in a Banach space X, a, b ∈ L1(R+)
and f is a given function defined on [0, 2π] with values in X. Under suitable
assumptions on the kernels a, b and the closed operators A, B, we completely
characterize Bs

p,q-maximal regularity of (P ).

1. INTRODUCTION

In a series of recent publications operator-valued Fourier multipliers on vector-
valued function spaces are studied (see e.g. [1-4, 13, 14]. They are needed to
establish existence and uniqueness as well as regularity of differential equations in
Banach spaces, and thus also for partial differential equations (see e.g. [1-3, 5-10].
In this paper, we use operator-valued Fourier multiplier result established in [3] to
study Bs

p,q-maximal regularity for the following integral equations:

(1)




u(t) = A
∫ t
−∞ a(t − s)u(s)ds

+ B
∫ t
−∞ b(t− s)u(s)ds + f(t), 0 ≤ t ≤ 2π

u(0) = u(2π),

here A, B are closed linear operators in a complex Banach space X , f ∈ Bs
p,q(T, X),

and a, b ∈ L1(R+).
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Equations of the form (1) has been motivated by Pugliese [11] and Prüss [12,
page 235]. Lp-maximal regularity for (1) has been studied by Lizama and Poblete
[8], using operator-valued Fourier multiplier result obtained in [2], they completely
characterized Lp-maximal regularity for (1) under suitable assumptions on the ker-
nels a, b and the operators A, B.

In this paper, we study the maximal regularity of (1) in periodic Besov spaces
Bs

p,q(T, X), where 1 ≤ p, q ≤ ∞, s > 0. We do not make any parabolicity
assumptions on A, B, not even that A generates a semigroup. Thus semigroup
theory is no longer applicable in our situation. The main tool in our study is
operator-valued Fourier multiplier results on Bs

p,q(T, X) established in [3]. In fact,
we will transform Bs

p,q-maximal regularity problem of (1) to a problem of whether
an operator-valued sequence (Mk)k∈Z defined by the kernels a, b and the operators
A, B is a Bs

p,q-multiplier. We will show that the resulting sequence (Mk)k∈Z

satisfies the sufficient conditions given in [3] ensuring an operator-valued sequence
to be a Bs

p,q-multiplier. We notice that the presence of two closed operators A and
B makes this verification particularly complicated and more careful computation is
needed.

Since our necessary and sufficient condition for (1) to have Bs
p,q-maximal reg-

ularity does not depends on the choice of 1 ≤ p, q ≤ ∞, s > 0, one immediate
consequence of our main result is that under suitable conditions on the kernels a, b,
the problem (1) has Bs

p,q-maximal regularity for some 1 ≤ p, q ≤ ∞, s > 0 if and
only if it has Bs

p,q-maximal regularity for all 1 ≤ p, q ≤ ∞, s > 0. Moreover since
periodic Hölder continuous function space Cα

per([0, 2π], X) is a particular case of
the periodic Besov spaces Bs

p,q(T, X) when taking p = q = ∞ and s = α, our main
result gives a characterization of Cα

per-maximal regularity for (1). Our result may
be applied to the case when A is sectorial and B = Aε for some 0 < ε < 1, in this
case one can use the functional calculus of A to determine a concrete expression of
the resulting sequence (Mk)k∈Z.

2. PRELIMINARIES

Let X be a complex Banach space. For f ∈ L1(T, X), we denote by

f̂ (k) =
1
2π

∫ 2π

0
e−k(t)f(t)dt

the k-th Fourier coefficient of f , where k ∈ Z , T = [0, 2π] (the points 0 and 2π
are identified), and ek(t) = eikt. For x ∈ X , we denote by ek ⊗ x the X-valued
function defined on T by (ek ⊗ x)(t) = ek(t)x.

Firstly, we briefly recall the definition of periodic Besov spaces in the vector-
valued case introduced in [3]. Let S(R) be the Schwartz space of all rapidly de-
creasing smooth functions on R. Let D(T) be the space of all infinitely differentiable
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functions on T equipped with the locally convex topology given by the seminorms
‖f‖α = supx∈T|f (α)(x)| for α ∈ N0 := N ∪ {0}. Let D′(T, X) := L(D(T), X)
be the space of all bounded linear operator from D(T) to X . For k ∈ Z and
f ∈ D′(T, X), one defines the k-th Fourier coefficient of f by f̂(k) := f(e−k). In
order to define periodic Besov spaces, we consider the dyadic-like subsets of R:

I0 =
{
t ∈ R : |t| ≤ 2

}
, Ik =

{
t ∈ R : 2k−1 < |t| ≤ 2k+1

}
for k ∈ N. Let φ(R) be the set of all systems φ = (φk)k∈N0 ⊂ S(R) satisfying
supp(φk) ⊂ Īk for each k ∈ N0,

∑
k∈N0

φk(x) = 1 for x ∈ R,

and for each α ∈ N0

supx∈R

k∈N0

2kα|φ(α)
k (x)| < ∞.

Let φ = (φk)k∈N0 ∈ φ(R) be fixed. For 1 ≤ p, q ≤ ∞, s ∈ R, the X-valued
periodic Besov space is defined by

Bs
p,q(T, X) :=

{
f ∈ D′(T, X) :

∥∥f
∥∥

Bs
p,q

:=

( ∑
j≥0

2sjq
∥∥∥ ∑

k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥q

p

)1/q
< ∞

}

with the usual modification if q = ∞. The space Bs
p,q(T, X) is independent from

the choice of φ and different choices of φ lead to equivalent norms ‖ · ‖Bs
p,q

on
Bs

p,q(T, X). Bs
p,q(T, X) equipped with the norm ‖ · ‖Bs

p,q
is a Banach space. See

[3, Section 2] for more information about the space Bs
p,q(T, X). We only recall that

when s > 0, then Bs
p,q(T, X) ⊂ Lp(T, X) and the inclusion is continuous.

Let X and Y be Banach spaces. We denote by L(X, Y ) the space of all bounded
linear operators from X to Y . If X = Y , we will simply denote it by L(X). let
M = (Mk)k∈Z be a sequence in L(X, Y ). We define the first derivative of M as
the sequence in L(X, Y ) given by

(∆M)k := Mk+1 − Mk, (k ∈ Z).

The second derivative of M is defined by

(∆2M)k :=
(
∆(∆M)

)
k

= Mk+2 − 2Mk+1 + Mk, (k ∈ Z).

If a = (ak)k∈Z is a scalar sequence, we define the first and second derivatives of a

in a similar way.
The main tool in our study of Bs

p,q-maximal regularity of (1) is the operator-
valued Fourier multiplier theory established in [3].
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Definition 2.1. Let X, Y be Banach spaces, 1 ≤ p, q ≤ ∞, s ∈ R and
let (Mk)k∈Z ⊂ L(X, Y ). We say that (Mk)k∈Z is a Bs

p,q-multiplier, if for each
f ∈ Bs

p,q(T, X), there exists u ∈ Bs
p,q(T, Y ), such that û(k) = Mk f̂(k) for all

k ∈ Z.

It follows from the closed graph theorem that when (Mk)k∈Z is a Bs
p,q-multiplier,

then there exists a constant C ≥ 0, such that for all f ∈ Bs
p,q(T, X), one has∥∥ ∑

k∈Z
ek ⊗ Mk f̂(k)

∥∥
Bs

p,q
≤ C‖f‖Bs

p,q
. In particular, (Mk)k∈Z must be bounded.

The following result has been obtained in [3]:

Theorem 2.2. Let X, Y be Banach spaces, 1 ≤ p, q ≤ ∞, s ∈ R and let
(Mk)k∈Z ⊂ L(X, Y ). We assume that

(2.1) sup
k∈Z

(‖Mk‖+ ‖k(∆M)k‖) < ∞,

(2.2) sup
k∈Z

‖k2(∆2M)k‖ < ∞.

Then (Mk)k∈Z is a Bs
p,q-multiplier. Moreover, if X and Y are B-convex, then the

first order condition (2.1) is sufficient for (M k)k∈Z to be a Bs
p,q-multiplier.

Recall that a Banach space X is B-convex if it does not contain ln1 uniformly.
This is equivalent to say that X has Fourier type 1 < p ≤ 2, i.e., the Fourier
transform is a bounded linear operator from Lp(R, X) to lq(Z, X), where 1/p +
1/q = 1. It is well known that when 1 < p < ∞, then Lp(µ) has Fourier type
min{p, p

p−1}.
Given a ∈ L1(R+) and u ∈ Bs

p,q(T, X) (extended by periodicity to R), we
define

(2.3) (a ∗ u)(t) :=
∫ t

−∞
a(t − s)u(s)ds.

Let ã(λ) =
∫ +∞
0 e−λta(t)dt be the Laplace transform of a for Reλ ≥ 0. An easy

computation shows that:

(2.4) â ∗ u(k) = ã(ik)û(k), (k ∈ Z).

It follows that when u ∈ Bs
p,q(T, X), then a ∗ u ∈ Bs

p,q(T, X) and ‖a ∗ u‖Bs
p,q

≤
‖a‖L1‖u‖Bs

p,q
by the inequality of Young.

3. A CHARACTERIZATION OF Bs
p,q-MAXIMAL REGULARITY FOR (1)

We consider the integral equations
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(3.1)




u(t) = A

∫ t

−∞
a(t − s)u(s)ds

+ B

∫ t

−∞
b(t − s)u(s)ds + f(t), 0 ≤ t ≤ 2π

u(0) = u(2π),

where A, B are closed linear operators in a complex Banach space X , f ∈
Bs

p,q(T, X), and a, b ∈ L1(R+). Using the notation (2.4), (3.1) may be writ-
ten in the more compact form: u(t) = A(a ∗ u)(t) + B(b ∗ u)(t) + f(t), (t ∈
T), u(0) = u(2π).

Definition 3.1. Let 1 ≤ p, q ≤ ∞, s > 0 and let f ∈ Bs
p,q(T, X) be given.

u ∈ Bs
p,q(T, X) is called a mild Bs

p,q-solution of (3.1), if a ∗ u ∈ Bs
p,q(T, D(A)),

b ∗ u ∈ Bs
p,q(T, D(B)) and (3.1) holds for a.e. t ∈ T. Here we consider D(A)

and D(B) as Banach spaces equipped with their graph norms. We say that (3.1)
has Bs

p,q-maximal regularity, if for each f ∈ Bs
p,q(T, X), (3.1) has a unique mild

Bs
p,q-solution.

It follows easily from the closed graph theorem that when (3.1) has Bs
p,q-maximal

regularity, then there exists a constant C ≥ 0, such that for f ∈ Bs
p,q(T, X), if u is

the unique mild Bs
p,q-solution of (3.1), then

(3.2) ‖u‖Bs
p,q

+ ‖A(a ∗ u)‖Bs
p,q

+ ‖B(b ∗ u)‖Bs
p,q

≤ C‖f‖Bs
p,q

.

Let a ∈ L1(R+) be given, for k ∈ Z we denote by

ãk :=
∫ ∞

0
a(t)e−iktdt

the Laplace transform of a. Let b ∈ L1(R+) and A, B be closed operators in X .
We will consider the operator

Ck := I − ãkA − b̃kB, (k ∈ Z).

The natural domain of definitionD(Ck) ofCk depends on the values of ãk and b̃k:

(1) if ãk 
= 0 and b̃k 
= 0, then D(Ck) = D(A) ∩ D(B);
(2) if ãk 
= 0 and b̃k = 0, then D(Ck) = D(A);
(3) if b̃k 
= 0 and ãk = 0, then D(Ck) = D(B);
(4) if ãk = b̃k = 0, then D(Ck) = X .

We define the resolvent set of A, B with respect to a, b by
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ρa,b(A, B) :=
{
k ∈ Z : Ck is bijective from D(Ck)

to X and C−1
k , b̃kBC−1

k ∈ L(X)
}
.

It is clear from the definition that when k ∈ ρa,b(A, B), then ãkAC−1
k ∈ L(X).

The notion of 1-regular and 2-regular scalar sequences were introduced in [7].
Let (ak)k∈Z ⊂ C be a scalar sequence such that there exists N ∈ N such that for
|k| ≥ N , we have ak 
= 0. We say that (ak)k∈Z ⊂ C is 1-regular if

sup
|k|≥N

∥∥∥k(∆a)k

ak

∥∥∥
k∈Z

< ∞.

It is said to be 2-regular if it is 1-regular and

sup
|k|≥N

∥∥∥k2(∆2a)k

ak

∥∥∥
k∈Z

< ∞.

It is clear from the definition that when (ak)k∈Z is 1-regular, then lim|k|→∞
ak+1

ak
=1.

In order to give a characterization of Bs
p,q-maximal regularity for (3.1), we need

the following key preparation.

Theorem 3.2. Let 1 ≤ p, q ≤ ∞, s > 0, let a, b ∈ L1(R+) be such that
the corresponding sequences (ãk)k∈Z and (b̃k)k∈Z be 2-regular, and let A, B be
closed operators in a complex Banach space X . Assume that ρ a,b(A, B) = Z. Then(
(I − ãkA − b̃kB)−1

)
k∈Z

,
(
b̃kB(I − ãkA − b̃kB)−1

)
k∈Z

and
(
ãkA(I − ãkA −

b̃kB)−1
)
k∈Z

are Bs
p,q-multipliers.

Proof. Since (ãk)k∈Z and (b̃k)k∈Z are 2-regular by assumption, we have

(3.3) lim
|k|→∞

ãk+1/ãk = lim
|k|→∞

b̃k+1/b̃k = 1.

Assume that ρa,b(A, B) = Z. We let Mk := (I − ãkA − b̃kB)−1 for k ∈ Z. Then
(Mk)k∈Z, (b̃kBMk)k∈Z and (ãkAMk)k∈Z are bounded in L(X). Firstly, we show
that (Mk)k∈Z is a Bs

p,q-multiplier. For this we are going to show that (Mk)k∈Z

satisfies the conditions (2.1) and (2.2). A simple computation gives

(3.4)

(∆M)k = Mk+1((∆ã)kA + (∆b̃)kB)Mk

k(∆M)k = Mk+1
k(∆ã)k

ãk
ãkAMk + Mk+1

k(∆b̃)k

b̃k

b̃kBMk,
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for large |k|. This shows that supk∈Z ‖k(∆M)k‖ < ∞ by assumption. On the
other hand by (3.4) we have

(3.5)

(∆2M)k = (∆M)k+1

(
(∆ã)k+1A + (∆b̃)k+1B

)
Mk+1

+Mk+1

(
(∆2ã)kA + (∆2b̃)kB

)
Mk+1

+Mk+1

(
(∆ã)kA + (∆b̃)kB

)
(∆M)k

and thus for large |k|

k2(∆2M)k =
[
k(∆M)k+1

](k(∆ã)k+1

ãk+1
ãk+1AMk+1 +

k(∆b̃)k+1

b̃k+1

b̃k+1BMk+1

)

+Mk+1

(k2(∆2ã)k

ãk
ãkAMk+1 +

k2(∆2b̃)k

b̃k

b̃kBMk+1

)

+Mk+1

(k(∆ã)k

ãk
ãkAMk+1 +

k(∆b̃)k

b̃k

b̃kBMk+1

)

·
(k(∆ã)k

ãk
ãkAMk +

k(∆b̃)k

b̃k

b̃kBMk

)
.

This implies that supk∈Z ‖k2(∆2M)k‖ < ∞ by assumption and (3.3). We have
shown that (Mk)k∈Z satisfies the conditions (2.1) and (2.2). Consequently (Mk)k∈Z

is a Bs
p,q-multiplier by Theorem 2.2.

Let Nk = b̃kBMk for k ∈ Z. Then for large |k|

(3.6)

(∆N )k = (∆b̃)kBMk+1 + b̃kB(∆M)k

k(∆N )k =
k(∆b̃)k

b̃k

b̃kBMk+1 + b̃kBMk+1

(k(∆ã)k

ãk
ãkAMk

+
k(∆b̃)k

b̃k

b̃kBMk

)
.

Thus supk∈Z ‖k(∆N )k‖ < ∞ by assumption and (3.3). By (3.6)

k2(∆2N )k = k2(∆2b̃)kBMk+2 + 2k2(∆b̃)kB(∆M)k+1 + b̃kB(∆2M)k

: = Q
(1)
k + Q

(2)
k + Q

(3)
k .

It is clear from the assumptions and (3.3) that (Q(1)
k )k∈Z is bounded. On the other

hand by (3.4) for large |k|

Q
(2)
k = 2

[k(∆b̃)k

b̃k

b̃kBMk+1

](k(∆ã)k

ãk
ãkAMk +

k(∆b̃)k

b̃k

b̃kBMk

)
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and by (3.5)

Q
(3)
k = b̃kBMk+1

(k(∆ã)k

ãk
ãkAMk +

k(∆b̃)k

b̃k

b̃kBMk

)

·
(k(∆ã)k+1

ãk+1
ãk+1AMk+1 +

k(∆b̃)k+1

b̃k+1

b̃k+1BMk+1

)

+ b̃kBMk+1

(k2(∆2ã)k

ãk
ãkAMk+1 +

k2(∆2b̃)k

b̃k

b̃kBMk+1

)

+ b̃kBMk+1

(k(∆ã)k

ãk
ãkAMk+1 +

k2(∆b̃)k

b̃k

b̃kBMk+1

)

·
(k(∆ã)k

ãk
ãkAMk +

k2(∆b̃)k

b̃k

b̃kBMk

)
.

Therefore supk∈Z ‖k2(∆2N )k‖ < ∞ by assumption and (3.3). Hence (Nk)k∈Z is
a Bs

p,q-multiplier by Theorem 2.2 as we have shown that (Nk)k∈Z satisfies (2.1)
and (2.2). Similar argument shows that (ãkAMk)k∈Z is also a Bs

p,q-multiplier. This
completes the proof.

Remark 3.3. It is clear from Theorem 2.2 and the proof of Theorem 3.2 that
when the underlying Banach space X is B-convex, then we may replace the as-
sumption that (ãk)k∈Z and (b̃k)k∈Z are 2-regular sequences in Theorem 3.2 by the
weaker assumption that (ãk)k∈Z and (b̃k)k∈Z are 1-regular.

The following is the main result of this paper.

Theorem 3.4. Let a, b ∈ L1(R+) be such that (ãk)k∈Z and (b̃k)k∈Z are 2-
regular, 1 ≤ p, q ≤ ∞, s > 0, and let A, B be closed operators in a complex
Banach space X . Then the following assertions are equivalent:

(i) (3.1) has Bs
p,q-maximal regularity.

(ii) ρa,b(A, B) = Z.

Proof. (ii)⇒(i): Assume that ρa,b(A, B) = Z. For k ∈ Z we let Mk :=
(I− ãkA− b̃kB)−1. Then (Mk)k∈Z is a Bs

p,q-multiplier by Theorem 3.2. Therefore,
for f ∈ Bs

p,q(T, X), there exists u ∈ Bs
p,q(T, X) such that

(3.7) û(k) = Mkf̂(k)

when k ∈ Z.
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The sequence (b̃k)k∈Z is bounded sequence by Riemann-Lebesgue Lemma as
b ∈ L1(R+). This fact together with the assumption that ( b̃k)k∈Z is 2-regular implies
that (b̃kI)k∈Z is a Bs

p,q-multiplier by Theorem 2.2. We conclude that (b̃kMk)k∈Z

is a Bs
p,q-multiplier as the product of two Bs

p,q-multipliers is still a B s
p,q-multiplier.

Hence there exists v ∈ Bs
p,q(T, X) such that

v̂(k) = b̃kMk f̂(k), (k ∈ Z).

This implies by (3.7) that v̂(k) = b̃kû(k) when k ∈ Z. We conclude that v = b ∗ u

by (2.4) and thus b ∗ u ∈ Bs
p,q(T, X)

(b̃kBMk)k∈Z is a Bs
p,q-multiplier by assumption and Theorem 3.2. There exists

h ∈ Bs
p,q(T, X), such that

ĥ(k) = b̃kBMk f̂(k), (k ∈ Z).

One deduces that ĥ(k) = b̃kBû(k) when k ∈ Z by (3.7). Thus (b ∗ u)(t) ∈ D(B)
and h(t) = B(b ∗ u)(t) for a.e. t ∈ T by [2, Lemma 3.1] and (2.4). We have
shown that b ∗ u ∈ Bs

p,q(T, X) and B(b ∗ u) ∈ Bs
p,q(T, X). Consequently, b ∗ u ∈

Bs
p,q(T, D(B)). A similar argument shows that a ∗ u ∈ Bs

p,q(T, D(A)).
Now from (3.7) we have (I − ãkA− b̃kB)û(k) = f̂ (k) or equivalently û(k) =

ãkAû(k) + b̃kBû(k) + f̂ (k) for k ∈ Z. We deduce that

u(t) = A(a ∗ u)(t) + B(b ∗ u)(t) + f(t)

for a.e. t ∈ T by the Uniqueness Theorem in [2, page 314]. This shows that a mild
Bs

p,q-solution of (3.1) exists.
It remains to show that the mild Bs

p,q-solution of (3.1) is unique. For this
we assume that u ∈ Bs

p,q(T, X) is such that a ∗ u ∈ Bs
p,q(T, D(A)), b ∗ u ∈

Bs
p,q(T, D(B)) and u(t) = A(a ∗u)(t)+B(b ∗u)(t) for a.e. t ∈ T. Taking Fourier

transform on both sides, we obtain that (I − ãkA − b̃kB)û(k) = 0 for k ∈ Z. We
conclude that û(k) = 0 as ρa,b(A, B) = Z by assumption. Thus u = 0. This
implies that for each f ∈ Bs

p,q(T, X), the mild Bs
p,q-solution of (3.1) is unique. We

have shown that (3.1) has Bs
p,q-maximal regularity.

(i)⇒(ii): We assume that (3.1) has Bs
p,q-maximal regularity and let k ∈ Z be

fixed. We are going to show that k ∈ ρa,b(A, B).
Assume that ãk 
= 0 and b̃k 
= 0. Let y ∈ X and let f ∈ Bs

p,q(T, X) given
by f = ek ⊗ y. By assumption, there exists u ∈ Bs

p,q(T, X), such that a ∗ u ∈
Bs

p,q(T, D(A)), b ∗ u ∈ Bs
p,q(T, D(B)) and

(3.8) u(t) = A(a ∗ u)(t) + B(b ∗ u)(t) + f(t)

for a.e. t ∈ T. Taking Fourier transform on both sides of (3.8), one obtains that
û(k) ∈ D(A) ∩ D(B) and by [2, Lemma 3.1]

(3.9) û(k) − ãkAû(k)− b̃kBû(k) = y
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and

(3.10) û(n) − ãnAû(n) − b̃nBû(n) = 0

when n 
= k. This implies that I − ãkA− b̃kB is surjective from D(A)∩D(B) to
X .

In order to show that I − ãkA − b̃kB is also injective, we assume that x ∈
D(A) ∩ D(B) is such that (I − ãkA − b̃kB)x = 0. Then it is easy to verify that
u = ek ⊗ x is the unique mild Bs

p,q-solution of (3.1) when taking f = 0. Thus
x = 0 by uniqueness. We have shown that I − ãkA − b̃kB is injective. Hence
I − ãkA − b̃kB is bijective from D(A) ∩ D(B) to X .

It remains to show that (I − ãkA− b̃kB)−1, b̃kB(I − ãkA− b̃kB)−1 ∈ L(X).
Let y ∈ X , f = ek ⊗ y ∈ Bs

p,q(T, X) and let u be the unique mild B s
p,q-solution

of (3.1). Then

û(n) =

{
(I − ãkA − b̃kB)−1y, if n = k

0, if n 
= k

by (3.9) and (3.10). This gives u = ek ⊗ (I − ãkA − b̃kB)−1y. By (3.2), there
exists a constant C ≥ 0 independent from f and u such that

‖u‖Bs
p,q

+ ‖A(a ∗ u)‖Bs
p,q

+ ‖B(b ∗ u)‖Bs
p,q

≤ C‖f‖Bs
p,q

.

Consequently

‖(I − ãkA − b̃kB)−1y‖+ ‖ãkA(I − ãkA − b̃kB)−1y‖
+‖b̃kB(I − ãkA − b̃kB)−1y‖ ≤ C‖y‖.

This implies that k ∈ ρa,b(A, B).
The same argument shows that in case when ãk = 0 or b̃k = 0, we still have

k ∈ ρa,b(A, B). The proof is completed.

Periodic Hölder continuous function space is a particular case of periodic Besov
space Bs

p,q(T, X). From [3, Theorem 3.1], we have Bα∞,∞(T, X) = Cα
per(T, X)

whenever 0 < α < 1, where Cα
per(T, X) is the space of all X-valued functions

f defined on T satisfying f(0) = f(2π) and supx �=y
‖f(x)−f(y)‖

|x−y|α < ∞. Moreover

the norm ‖f‖Cα
per

:= maxt∈T ‖f(t)‖ + supx �=y
‖f(x)−f(y)‖

|x−y|α on Cα
per(T, X) is an

equivalent norm of Bα∞,∞(T, X). If 0 < α < 1, we say that the problem (3.1)
has Cα

per-maximal regularity if for every f ∈ Cα
per(T, X), there exists a unique

u ∈ Cα
per(T, X) such that a ∗ u ∈ Cα(T, D(A)), b ∗ u ∈ Cα(T, D(B)) and

equation (3.1) holds true for all t ∈ T. Theorem 3.4 and Theorem 2.2 have the
following immediate corollary.
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Corollary 3.5. Let a, b ∈ L1(R+), 1 ≤ p, q ≤ ∞, s > 0, and let A, B be
closed operators in a complex Banach space X . Then

(i) if (ãk)k∈Z and (b̃k)k∈Z are 2-regular, the (3.1) has Cα
per-maximal regularity

if and only if ρa,b(A, B) = Z.
(ii) when X is B-convex, (ãk)k∈Z and (b̃k)k∈Z are 1-regular, then (3.1) has

Cα
per-maximal regularity if and only if ρ a,b(A, B) = Z.

Remarks 3.6.

(i) We notice that the assertion (ii) in Theorem 3.4 is independent from the choice
of 1 ≤ p, q ≤ ∞ and s > 0. Therefore, under the assumptions of Theorem
3.4, (3.1) has Bs

p,q-maximal regularity for some 1 ≤ p, q ≤ ∞ and s > 0
if and only if (3.1) has Bs

p,q-maximal regularity for all 1 ≤ p, q ≤ ∞ and
s > 0.

(ii) When the underlying Banach space X is B-convex, we may replace the as-
sumption that (ãk)k∈Z and (b̃k)k∈Z are 2-regular sequences in Theorem 3.4,
by the weaker assumption that (ãk)k∈Z and (b̃k)k∈Z are 1-regular sequences.
This follows from Remark 3.3 and the proof of Theorem 3.4.

(iii) Lp-maximal regularity of (3.1) has been studied by Lizama and Poblete [8],
they gave a characterization of Lp-maximal regularity for (3.1) under some
suitable conditions on the kernels a, b and the operators A, B [8, Theorem
3.5]. Using the same argument used in the proof of Theorem 3.4, it is easy
to verify that the assumption in [8, Theorem 3.5] that (ãkA, b̃kB) is coercive
pair is not needed.

(iv) We may also consider the maximal regularity for (3.1) in periodic Triebel-
Lizorkin spaces F s

p,q(T, X). Using operator-valued Fourier multiplier results
established in [4], similar argument used in the proofs of Theorem 3.2 and
Theorem 3.4 gives a characterization of Fs

p,q-maximal regularity for (3.1), but
in this case the appropriate assumptions on a, b will be that the corresponding
sequences (ãk)k∈Z and (b̃k)k∈Z are 3-regular sequences.
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