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GLOBAL APPROXIMATION RESULTS FOR MODIFIED
SZÁSZ-MIRAKJAN OPERATORS

Oktay Duman* and Mehmet Ali Özarslan

Abstract. This study is the continuation of our earlier works [3, 4]. Here,
we mainly investigate the global approximation behavior of modified Sźasz-
Mirakjan operators presented in the papers mentioned above.

1. INTRODUCTION

The classical Szász-Mirakjan operators are defined by

Sn(f ; x) = e−nx
∞∑

k=0

f

(
k

n

)
(nx)k

k!
for x ≥ 0,

and their modified versions has been constructed by the authors (see [3, 4]) as
follows:

(1.1) Dn(f ; x) = e−nun(x)
∞∑

k=0

f

(
k

n

)
(nun(x))k

k!
for x ≥ 0,

where {un(x)} is a sequence of continuous non-negative real-valued functions
on [0,∞). In [3], various uniform and pointwise approximation properties and a
Voronovskaja-type theorem were obtained on the space

E :=
{

f ∈ C[0,∞) : lim
x→+∞

f(x)
1 + x2

< ∞
}

endowed with the norm ‖f‖∗ := supx∈[0,∞)
f(x)
1+x2 , and also on the space
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E∗ :=
{
f ∈ C[0,∞) : lim

x→∞ f(x) exists
}

endowed with usual supremum norm on [0,∞) by taking the sequence {u∗
n(x)}

instead of {un(x)}, which is defined by

(1.2) u∗
n(x) =

−1 +
√

1 + 4n2x2

2n
for x ≥ 0 and n ∈ N := {1, 2, ...}.

In this case, the corresponding modified Szász-Mirakjan operators were denoted by
D∗

n(f ; x), i.e.,

(1.3) D∗
n(f ; x) = e−nu∗

n(x)
∞∑

k=0

f

(
k

n

)
(nu∗

n(x))k

k!
,

where the function sequence {u∗
n(x)} is given by (1.2). Furthermore, in [4], some

local approximation results are obtained for the operators D∗
n defined by (1.3).

Recall that the operator D∗
n provides a better error estimation than the classical

Szász-Mirakjan operators (see [3]).
In this paper, assuming

(1.4) un(0) = 0 and 0 < un(x) ≤ x for x > 0 and n ∈ N,

we obtain global approximation results for the operators Dn given by (1.1) on an
appropriate weighted space mentioned below. We should recall that such global
approximations were established for the Bernstein polynomials by Lorentz [5] and
for the Szász-Mirakjan and the Baskakov operators by Becker [1].

Let p ∈ N0 := {0, 1, ...} and define the weight function µp as follows:

(1.5) µ0(x) := 1 and µp(x) :=
1

1 + xp
for x ≥ 0 and p ∈ N0.

Then, we consider the following (weighted) subspace Cp[0,∞) of C[0,∞) gener-
ated by µp :

Cp[0,∞) := {f ∈ C[0,∞) : µpf is uniformly continuous and bounded on [0,∞)}
endowed with the norm

‖f‖p := sup
x∈[0,∞)

µp(x) |f(x)| for f ∈ Cp[0,∞).

In this case, we will need the following Lipschitz classes:

∆2
hf(x) : = f(x + 2h) − 2f(x + h) + f(x),

ω2
p(f, δ) : = sup

h∈(0,δ]

∥∥∆2
hf
∥∥

p
,

ω1
p(f, δ) : = sup {µp(x) |f(t) − f(x)| : |t − x| ≤ δ and t, x ≥ 0}
Lip2

pα : =
{
f ∈ Cp[0,∞) : ω2

p(f ; δ) = O(δα) as δ → 0+
}

,
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where h > 0 and 0 < α ≤ 2.

With this terminology, we obtain the following main result, which gives the
global approximation behavior of the operators Dn.

Theorem 1.1. Let Dn be given by (1.1) and (1.4). Assume that u ′
n(x) exists

and u′
n �= 0 on [0,∞). Then, for every p ∈ N0, n ∈ N, f ∈ Cp[0,∞) and

x ∈ [0,∞), there exists an absolute constant M p > 0 such that

µp(x) |Dn (f ; x)− f(x)| ≤ Mpω
2
p

(
f,

√
(un(x) − x)2 +

un(x)
n

)

+ω1
p(f ; x− un(x)),

where µp is the same as in (1.5). Particularly, if f ∈ Lip 2
pα for some α ∈ (0, 2],

then

µp(x) |Dn (f(t); x)− f(x)| ≤ Mp

(
(un(x) − x)2 +

un(x)
n

)α
2

+ω1
p(f ; x− un(x))

holds.

Remark. If the sequence {un(x)} in (1.4) also satisfies

(1.6) lim
n→∞un(x) = x for every x ∈ [0,∞),

then it follows from Theorem 1.1 that

lim
n→∞µp(x) |Dn (f ; x) − f(x)| = 0 for every x ∈ [0,∞)

holds true provided that f ∈ Cp[0,∞) or f ∈ Lip2
pα for some α ∈ (0, 2]. Further-

more, we will see that our operators Dn map Cp[0,∞) into itself (see Lemma 2.5
in the second section). Hence, if the convergence in (1.6) is uniform on [0,∞),
then we have

lim
n→∞ ‖Dnf − f‖p = 0.

2. AUXILIARY RESULTS

In this section, we will get some lemmas which are quite effective in proving
our Theorem 1.1.
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Lemma 2.1. Let {un(x)} be a sequence of continuous positive valued functions
on [0,∞). If u′

n(x) exists and u′
n �= 0 on [0,∞), then we get, for every x ∈ [0,∞),

k ∈ N0 and n ∈ N, that

(2.1)
(

k

n
− x

)
pn,k(x) =

un(x)
nu′

n(x)
p′n,k(x) + (un(x) − x) pn,k(x),

where
pn,k(x) := e−nun(x) (nun(x))k

k!
.

Proof. It is easy to see that

p′n,k(x) = pn,k(x)
(

ku′
n(x)

un(x)
− nu′

n(x)
)

,

or
un(x)
nu′

n(x)
p′n,k(x) = pn,k(x)

(
k

n
− un(x)

)
,

whence the result.

Lemma 2.2. Let {Dn} be given by (1.1) and (1.4), and let ϕ(y) := y − x for
each x ∈ [0,∞). Assume that u′

n(x) exists and u′
n �= 0 on [0,∞). Then, we have,

for each x ∈ [0,∞) and n ∈ N, that

(i) Dn(ϕ0; x) = 1,

(ii) Dn(ϕ1; x) = un(x)− x,

(iii) Dn(ϕ2; x) = (un(x)− x)2 +
un(x)

n
,

(iv) for each r ∈ N0, the following recurrence formula holds:

(2.2)
Dn(ϕr+1; x) =

un(x)
nu′

n(x)
{
D′

n(ϕr; x) + rDn(ϕr−1; x)
}

+(un(x) − x)Dn(ϕr; x),

where D(ϕ−1; x) := 1.

Proof. (i), (ii) and (iii) immediately follow from Lemma 3.1 of [3]. So, we
only prove (iv). By (1.1), we can directly show that

D′
n(ϕr; x) =

d

dx

{ ∞∑
k=0

(
k

n
− x

)r

pn,k(x)

}
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= −r

∞∑
k=0

(
k

n
− x

)r−1

pn,k(x) +
∞∑

k=0

(
k

n
− x

)r

p′n,k(x),

= −rDn(ϕr−1; x) +
∞∑

k=0

(
k

n
− x

)r

p′n,k(x)

and hence

un(x)
nu′

n(x)
{
D′

n(ϕr; x) + rDn(ϕr−1; x)
}

=
∞∑

k=0

(
k

n
− x

)r un(x)
nu′

n(x)
p′n,k(x).

Now using (2.1), we get

un(x)
nu′

n(x)
{
D′

n(ϕr; x) + rDn(ϕr−1; x)
}

= Dn(ϕr+1; x)− (un(x)− x)Dn(ϕr; x),

which completes the proof.

Now we use the test functions er(y) = yr for r ∈ N0. Then, we obtain the
following result.

Lemma 2.3. Let {Dn} be given by (1.1) and (1.4). Assume that u ′
n(x) exists

and u′
n �= 0 on [0,∞). Then, we have, for each x ∈ [0,∞) and n ∈ N, that

(i) Dn(e0; x) = e0(x),
(ii) Dn(e1; x) = un(x),

(iii) Dn(e2; x) = u2
n(x) +

un(x)
n

,

(iv) for each r ∈ N, the following recurrence formula holds:

(2.3) Dn(er+1; x) =
un(x)
nu′

n(x)
D′

n(er; x) + un(x)Dn(er; x).

Proof. As in the proof of Lemma 2.2, it is enough to prove (iv). Since

D′
n(er; x) =

∞∑
k=0

(
k

n

)r

p′n,k(x),

it follows from (2.1) that

un(x)
nu′

n(x)
D′

n(er; x) =
∞∑

k=0

(
k

n

)r (k

n
− x

)
pn,k(x)

−(un(x)− x)Dn(er; x)

= Dn(er+1; x)− xDn(er; x)

−(un(x)− x)Dn(er; x),
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which gives (2.3).

Furthermore, using Lemmas 2.1-2.3, one can get the next result by an induction.

Lemma 2.4. Let {Dn} be given by (1.1) and (1.4). Assume that u ′
n(x) exists

and u′
n �= 0 on [0,∞). Then, we have, for each x ∈ [0,∞) and r, n ∈ N, that

(2.4)
Dn(er; x) =

r∑
j=1

br,ju
j
n(x)nj−r :

= ur
n(x) +

r(r − 1)
2n

ur−1
n (x) + ... + n1−run(x),

where bj,r’s are positive coefficients.

Lemma 2.5. Let {Dn} be given by (1.1) and (1.4). Assume that u ′
n(x) exists

and u′
n �= 0 on [0,∞). Then, for each p ∈ N0, there exists a constant Mp such that

(2.5) µp(x)Dn

(
1
µp

; x
)
≤ Mp

holds for all x ∈ [0,∞) and n ∈ N, where µp is given by (1.5). Moreover, for all
f ∈ Cp[0,∞), we have

(2.6) ‖Dn(f)‖p ≤ Mp ‖f‖p .

Proof. By (1.5) and (2.4), we get

µp(x)Dn

(
1
µp

; x
)

= µp(x) {Dn(e0; x) + Dn(ep; x)}

= µp(x)
{

1 + up
n(x) +

p(p− 1)
2n

up−1
n (x) + ... + n1−pun(x)

}

≤ µp(x)
{

1 + xp +
p(p− 1)

2n
xp−1 + ... +

1
np−1

x

}

Then, using (1.4), we obtain that

(2.7) µp(x)Dn

(
1
µp

; x
)
≤ µp(x)

{
1 + xp +

p(p− 1)
2n

xp−1 + ... +
1

np−1
x

}

Now, we can find a constant Cp depending on p such that

1
1 + xp

≤ Cp,
xp

1 + xp
≤ Cp,

p(p− 1)xp−1

2n(1 + xp)
≤ Cp, ...,

x

np−1(1 + xp)
≤ Cp
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holds for every x ∈ [0,∞), p ∈ N0 and n ∈ N. So, letting Mp := (p + 1)Cp, we
get from (2.7) that

µp(x)Dn

(
1
µp

; x
)
≤ Mp,

which gives (2.5). On the other hand, for all f ∈ Cp[0,∞) and every x ∈ [0,∞),
it follows from (2.5) that

µp(x) |Dn(f ; x)| ≤ µp(x)e−nun(x)
∞∑

k=0

µ
(

k
n

) ∣∣f ( k
n

)∣∣
µ
(

k
n

) (nun(x))k

k!

≤ ‖f‖p µp(x)Dn

(
1
µp

; x
)

≤ Mp ‖f‖p .

Now taking supremum over x ∈ [0,∞), the last inequality implies (2.6).

Remark. We easily see from (2.6) that our operators Dn map Cp[0,∞) into
itself.

Lemma 2.6. Let {Dn} be given by (1.1) and (1.4). Assume that u ′
n(x) exists

and u′
n �= 0 on [0,∞). Then, for each p ∈ N0, there exists a constant Mp such

that, for all x ∈ [0,∞) and n ∈ N, we have

(2.8) µp(x)Dn

(
ϕ2

µp
; x
)
≤ Mp

{
(un(x) − x)2 +

un(x)
n

}
,

where ϕ(y) = y − x as stated before.

Proof. For p = 0, it is (iii) of Lemma 2.2. Now consider the case p = 1. By
(2.2), (1.4), and (iii) of Lemma 2.2, we see that

Dn(ϕ3; x) =
un(x)
nu′

n(x)
{
D′

n(ϕ2; x) + 2Dn(ϕ; x)
}

+ (un(x)− x)Dn(ϕ2; x)

=
un(x)
nu′

n(x)

{
2(un(x) − x)

(
u′

n(x)− 1
)

+
u′

n(x)
n

+ 2(un(x)− x)
}

+(un(x)− x)
{

(un(x) − x)2 +
un(x)

n

}

=
un(x)

n2
+ 3(un(x)− x)

un(x)
n

+ (un(x)− x)3

≤ un(x)
n2

,
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and hence

µ1(x)Dn

(
ϕ2

µ1
; x
)

= µ1(x)
{
(1 + x)Dn(ϕ2; x) + Dn(ϕ3; x)

}
≤ (un(x)− x)2 +

un(x)
n

+
un(x)

(1 + x)n2

≤ (un(x)− x)2 +
2un(x)

n

≤ 2
{

(un(x)− x)2 +
un(x)

n

}
,

which shows (2.8) with M1 = 2 for p = 1. Finally, assume that p ≥ 2. Then, we
obtain from (2.4) that

Dn

(
ϕ2 · ep; x

)
= Dn (ep+2; x)− 2xDn (ep+1; x) + x2Dn (ep; x)

= up+2
n (x) +

(p + 2) (p + 1)
2n

up+1
n (x) + ... +

un(x)
np+1

−2x

(
up+1

n (x) +
p(p + 1)

2n
up

n(x) + ... +
un(x)

np

)

+x2

(
up

n(x) +
p(p− 1)

2n
up−1

n (x) + ... +
un(x)
np−1

)

= (un(x) − x)2up
n(x) +

un(x)
n

{
(p + 2) (p + 1)

2
up

n(x)

−p(p + 1)
2

xup−1
n (x) +

p(p− 1)
2

x2up−2
n (x) + ... +

1
np−2

}
.

Thus, we have

µp(x)Dn

(
ϕ2

µp
; x
)

= µp(x)(un(x) − x)2 (1 + up
n(x))

+
µp(x)un(x)

n

{
1

1 + xp
+

(p + 2) (p + 1)
2

up
n(x)

−p(p + 1)
2

xup−1
n (x) +

p(p− 1)
2

x2up−2
n (x) + ... +

1
np−2

}

≤ (un(x)− x)2 +
un(x)

n

{
1 +

(p + 2) (p + 1)
2

xp

1 + xp

+
p(p + 1)

2
xp

1 + xp
+

|p(p − 1)|
2

xp

1 + xp
+ ... +

1
np−2

}
.

Now we can find a positive constant Mp depending on p such that

µp(x)Dn

(
ϕ2

µp
; x
)
≤ Mp

{
(un(x)− x)2 +

un(x)
n

}
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holds. Lemma is proved.

Now, for p ∈ N, consider the space

C2
p [0,∞) :=

{
f ∈ Cp[0,∞) : f ′′ ∈ Cp[0,∞)

}
Lemma 2.7. Let {Dn} be given by (1.1) and (1.4), and let g ∈ C 2

p [0,∞).
Assume that u′

n(x) exists and u′
n �= 0 on [0,∞). If Ωn(f ; x) := Dn(f ; x) −

f(un(x)) + f(x), there exists a constant Mp such that, for all x ∈ [0,∞) and
n ∈ N, we have

(2.9) µp(x) |Ωn (g; x)− g(x)| ≤ Mp

∥∥g′′∥∥
p

{
(un(x) − x)2 +

un(x)
n

}
.

Proof. By Lemma 2.2 (ii) we have Ωn(ϕ; x) = 0 with ϕ(y) = y − x. Using
the expression

g(y)− g(x) = (y − x)g′(x) +

y∫
x

(y − t)g′′(t)dt for y ∈ [0,∞),

we get

(2.10)

|Ωn (g; x)− g(x)|

= Dn



∣∣∣∣∣∣

y∫
x

(y − t)g′′(t)dt

∣∣∣∣∣∣ ; x

+

∣∣∣∣∣∣∣
x∫

un(x)

(un(x)− t)g′′(t)dt

∣∣∣∣∣∣∣ .
Since ∣∣∣∣∣∣

y∫
x

(y − t)g′′(t)dt

∣∣∣∣∣∣ ≤
‖g′′‖p ϕ2(y)

2

(
1

µp(x)
+

1
µp(y)

)

and ∣∣∣∣∣∣∣
x∫

un(x)

(un(x) − t)g′′(t)dt

∣∣∣∣∣∣∣ ≤
‖g′′‖p (un(x) − x)2

2µp(x)
,

we obtain from Lemma 2.2 (iii), (2.8) and (2.10) that

µp(x) |Ωn (g; x)− g(x)| ≤ ‖g′′‖p

2

{
Dn

(
ϕ2; x

)
+ Dn

(
ϕ2

µp
; x
)}

+
‖g′′‖p

2
(un(x)− x)2

≤ Mp

∥∥g′′∥∥
p

{
(un(x)− x)2 +

un(x)
n

}
,
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whence the result.

3. THE PROOF OF THEOREM 1.1

We first consider the modified Steklov means (see [1, 2]) of a function f ∈
Cp[0,∞) as follows:

fh(x) :=
4
h2

h/2∫
0

h/2∫
0

{2f(x + s + t) − f(x + 2(s + t))} dsdt for h > 0 and x ≥ 0.

In this case, it is clear that

f(y) − fh(y) =
4
h2

h/2∫
0

h/2∫
0

∆2
s+tf(y)dsdt,

which guarantees that

(3.1) ‖f − fh‖p ≤ ω2
p(f ; h).

Furthermore, we have

f ′′
h (x) =

1
h2

(
8∆2

h/2f(x) − ∆2
hf(x)

)
,

which implies

(3.2)
∥∥f ′′

h

∥∥
p
≤ 9

h2
ω2

p(f ; h).

Then, combining (3.1) with (3.2) we conclude that the Steklov means fh corre-
sponding to f ∈ Cp[0,∞) belongs to C2

p [0,∞).
Now we are ready to prove our Theorem 1.1.

Proof of Theorem 1.1. For x = 0, the proof immediately follows from the fact
that un(0) = 0. Now let p ∈ N0, f ∈ Cp[0,∞) and x ∈ (0,∞) be fixed. Assume
that, for h > 0, fh denotes the Steklov means of f. For any n ∈ N, the following
inequality holds:

|Dn(f ; x)− f(x)| ≤ Ωn (|f(y) − fh(y)| ; x) + |f(x) − fh(x)|

+ |Ωn (fh; x)− fh(x)|+ |f(un(x))− f(x)| .

Since fh ∈ C2
p [0,∞), it follows from (2.9) and (3.1) that
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µp(x) |Dn(f ; x)− f(x)| ≤ ‖f − fh‖p

{
µp(x)Ωn

(
1
µp

; x
)

+ 1
}

+Mp

∥∥f ′′
h

∥∥
p

{
(un(x) − x)2 +

un(x)
n

}
+µp(x) |f(un(x))− f(x)| .

By (2.5), (3.1) and (3.2), the last inequality yields that

µp(x) |Dn(f ; x)− f(x)| ≤ Mpω
2
p(f ; h)

{
1 +

1
h2

(
(un(x)− x)2 +

un(x)
n

)}
+ω1

p(f ; x− un(x)).

Thus, choosing h =

√
(un(x) − x)2 +

un(x)
n

, the proof is completed.
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