CHARACTERIZATION OF CONVEXITY FOR A PIECEWISE C^{2} FUNCTION BY THE LIMITING SECOND-ORDER SUBDIFFERENTIAL

Nguyen Huy Chieu and Jen-Chih Yao*

Abstract

We prove in this paper that a piecewise C^{2} function $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if for every $(x, y) \in \operatorname{gph} \partial \varphi$, the limiting second-order subdifferential mapping $\partial^{2} \varphi(x, y): \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ has the so-called positive semidefiniteness (PSD) - in analogy with the notion of positive semi-definiteness of symmetric real matrices. As a by-product, characterization for strong convexity of φ is established.

1. Introduction

Due to its important role in mathematical economics, engineering, management science, and optimization theory, convexity of functions and sets has been studied intensively; see $[1,3,5-7,9,11,13,14]$ and the references therein.

First-order characterizations for the convexity of extended real-valued functions via the monotonicity of the Fréchet derivative and the monotonicity of the Fréchet subdifferential mapping or the limiting subdifferential mapping can be found, e.g., in $[6,11,12]$ and $[7$, Theorem 3.56].

The classical second-order characterization of convexity of real-valued functions (see for instance [11, 12]) says that a C^{2} function $\varphi: U \rightarrow \mathbb{R}$ where U is an open convex subset of \mathbb{R}^{n} is convex if and only if for every $x \in U$ the Hessian $\nabla^{2} f(x)$ is a positive semidefinite matrix. To relax the assumption on the C^{2} smoothness of the function under consideration, several authors have characterized the convexity by using various kinds of generalized second-order directional derivatives. The reader is referred to $[1,4,5,13,14]$ for results in this direction.

[^0]Recently, the authors in [3] have found that to a certain extent convexity of functions can be characterized by second-order subdifferential mappings. Among other things, they obtained some characterizations for convexity of piecewise linear functions and of piecewise C^{2} functions of a special type via the limiting secondorder subdifferential. The purpose of this paper is to characterize the convexity of piecewise C^{2} functions by the limiting second-order subdifferential.

We will show that a piecewise C^{2} function $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if for every $(x, y) \in \operatorname{gph} \partial \varphi$, the limiting second-order subdifferential mapping $\partial^{2} \varphi(x, y): \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ has the so-called positive semi-definiteness (PSD) - in analogy with the notion of positive semi-definiteness of symmetric real matrices. Since strong convexity of functions plays a remarkable role in theory of algorithms [12] and stability theory of optimization problems [2], by using the limiting second-order subdifferential we derive a necessary and sufficient condition for strong convexity of piecewise C^{2} functions.

The rest of the paper is organized as follows. Section 2 contains some definitions and results which are needed in the sequel. Section 3 is devoted to the necessary and sufficient condition for convexity of a piecewise C^{2} function by its limiting secondorder subdifferential. As a by-product, the second-order necessary and sufficient condition for strong convexity of piecewise C^{2} functions is given.

2. Preliminaries

We start by recalling some notions related to generalized differentiation. The notions and related results of generalized differentiation can be found in [7].

For a set $\Omega \subset \mathbb{R}^{n}$ and an extended real-valued function $\varphi: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, the symbols $x \xrightarrow{\Omega} \bar{x}$ and $x \xrightarrow{\varphi} \bar{x}$ mean that $x \rightarrow \bar{x}$ with $x \in \Omega$ and $x \rightarrow \bar{x}$ with $\varphi(x) \rightarrow \varphi(\bar{x})$, respectively. Given a set-valued mapping $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$, we denote by

$$
\begin{aligned}
\underset{x \rightarrow \bar{x}}{\operatorname{Limsup}} F(x):=\left\{x^{*} \in \mathbb{R}^{n} \mid \exists\right. & \text { sequences } x_{k} \xrightarrow{\Omega} \bar{x} \text { and } x_{k}^{*} \rightarrow x^{*} \\
& \text { with } \left.x_{k}^{*} \in F\left(x_{k}\right) \text { for all } k \in \mathbb{N}\right\}
\end{aligned}
$$

the sequential Painleve-Kuratowski upper limit of the mapping F as $x \xrightarrow{\Omega} \bar{x}$.
Let $\varphi: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be finite at $\bar{x} \in \mathbb{R}^{n}$ and let $\varepsilon \geqslant 0$. The ε-subdifferential of φ at \bar{x} is the set $\widehat{\partial}_{\varepsilon} \varphi(\bar{x})$ defined by

$$
\widehat{\partial}_{\varepsilon} \varphi(\bar{x})=\left\{x^{*} \in \mathbb{R}^{n}: \liminf _{x \rightarrow \bar{x}} \frac{\varphi(x)-\varphi(\bar{x})-\left\langle x^{*}, x-\bar{x}\right\rangle}{\|x-\bar{x}\|} \geqslant-\varepsilon\right\} .
$$

We put $\widehat{\partial}_{\varepsilon} \varphi(\bar{x})=\emptyset$ if $|\varphi(\bar{x})|=\infty$. When $\varepsilon=0$ the set $\widehat{\partial}_{0} \varphi(\bar{x})$, denoted by $\widehat{\partial} \varphi(\bar{x})$, is called the Frechet subdifferential of φ at \bar{x}. The limiting subdifferential (or Mordukhovich subdifferential) of φ at \bar{x} is given by

$$
\begin{equation*}
\partial \varphi(\bar{x})=\operatorname{Limsup}_{x \xrightarrow{\varphi} \bar{x} ; \varepsilon \downarrow 0} \widehat{\partial}_{\varepsilon} \varphi(x), \tag{2.1}
\end{equation*}
$$

that is, $x^{*} \in \partial \varphi(\bar{x})$ if and only if there exist sequences $\varepsilon_{k} \downarrow 0, x_{k} \xrightarrow{\varphi} \bar{x}$ and $x_{k}^{*} \rightarrow x^{*}$ such that $x_{k}^{*} \in \widehat{\partial}_{\varepsilon_{k}} \varphi\left(x_{k}\right)$. Note that $\widehat{\partial}_{\varepsilon} \varphi(\cdot)$ can be replaced by $\widehat{\partial} \varphi(\cdot)$ in (2.1) when φ is lower semicontinuous around \bar{x}.

Given $\Omega \subset \mathbb{R}^{n}$ with its indicator function $\delta(x ; \Omega)=0$ if $x \in \Omega$ and $\delta(x ; \Omega)=$ ∞ otherwise, the Fréchet normal cone and the limiting normal cone to Ω at x are defined, respectively, by

$$
\widehat{N}(x ; \Omega)=\widehat{\partial} \delta(x ; \Omega) \text { and } N(x ; \Omega)=\partial \delta(x ; \Omega)
$$

Obviously, $\widehat{N}(x ; \Omega) \subset N(x ; \Omega)$ and

$$
x^{*} \in \widehat{N}(x ; \Omega) \Leftrightarrow \limsup _{u \xrightarrow{\Omega} x} \frac{\left\langle x^{*}, u-x\right\rangle}{\|u-x\|} \leq 0
$$

Let $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}$ be a set-valued mapping with the graph

$$
\operatorname{gph} F=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m}: y \in F(x)\right\}
$$

The limiting coderivative $D^{*} F(\bar{x}, \bar{y}): \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{n}$ of F at $(\bar{x}, \bar{y}) \in \operatorname{gph} F$ is defined by

$$
D^{*} F(\bar{x}, \bar{y})\left(y^{*}\right)=\left\{x^{*} \in \mathbb{R}^{n}:\left(x^{*},-y^{*}\right) \in N((\bar{x}, \bar{y}) ; \operatorname{gph} F)\right\}
$$

We omit $\bar{y}=f(\bar{x})$ in the above coderivative notion if $F=f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is single-valued. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is strictly differentiable at \bar{x} in the sense that

$$
\lim _{x, u \rightarrow \bar{x}} \frac{f(x)-f(u)-\langle\nabla f(\bar{x}), x-u\rangle}{\|x-u\|}=0
$$

with the derivative operator $\nabla f(\bar{x}): \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, being linear contiunous, then $D^{*} f(\bar{x})\left(y^{*}\right)=\left\{\nabla f(\bar{x})^{*} y^{*}\right\}$ for all $y^{*} \in \mathbb{R}^{m}$. Therefore, the limiting coderivative is an extension of the adjoint derivative operator of the classical derivative to nonsmooth functions and set-valued mappings.

Let $\varphi: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be an extended real-valued function with a finite value at \bar{x}. Given $\bar{y} \in \partial \varphi(\bar{x})$, the mapping $\partial^{2} \varphi(\bar{x}, \bar{y}): \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ defined by

$$
\partial^{2} \varphi(\bar{x}, \bar{y})(u)=\left(D^{*} \partial \varphi\right)(\bar{x}, \bar{y})(u), \quad u \in \mathbb{R}^{n}
$$

is called the limiting second-order subdifferential of φ at \bar{x} relative to \bar{y}. If φ is twice continuously differentiable at \bar{x} and $\bar{y} \in \partial \varphi(\bar{x})$ (actually, $\bar{y}=\nabla \varphi(\bar{x})$), then

$$
\partial^{2} \varphi(\bar{x}, \bar{y})(u)=\left\{\nabla^{2} \varphi(\bar{x})(u)\right\} \text { for all } u \in \mathbb{R}^{n}
$$

which is known as the symmetric Hessian matrix. The reader can find various properties and calculus rules for the limiting second-order subdifferential with a number of applications in $[7,8,10]$ and the references therein.

Theorem 2.1. (see [3, Theorem 3.2]). Let $\varphi: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be proper lower semicontinuous. If φ is convex, then

$$
\langle z, u\rangle \geq 0 \quad \text { for all } u \in \mathbb{R}^{n} \text { and } z \in \partial^{2} \varphi(x, y)(u) \text { with }(x, y) \in \operatorname{gph} \partial \varphi
$$

that is, for every $(x, y) \in \operatorname{gph} \partial \varphi$, the mapping $\partial^{2} \varphi(x, y): \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is positive semi-definite (PSD).

3. Characterization of Convexity

Recall that a function $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be piecewise C^{2} if there exist families $\left\{P_{1}, \ldots, P_{k}\right\}$ of polyhedral convex sets in \mathbb{R}^{n} and twice continuously differentiable functions $\varphi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\mathbb{R}^{n}=\bigcup_{i=1}^{k} P_{i}, \operatorname{int} P_{i} \cap \operatorname{int} P_{j}=\emptyset$ for all $i \neq j$, and

$$
\begin{equation*}
\varphi(x)=\varphi_{i}(x) \text { for any } x \in P_{i}, \quad i \in\{1, \ldots, k\} \tag{3.1}
\end{equation*}
$$

From (3.1) it follows that $\varphi_{i}(x)=\varphi_{j}(x)$ whenever $x \in P_{i} \cap P_{j}$ and $i, j \in\{1, \ldots, k\}$.
We need the following two lemmas taken from [3].

Lemma 3.1. If $I:=\left\{i \in\{1,2, \ldots, k\} \mid \operatorname{int} P_{i} \neq \emptyset\right\}$, then $\bigcup_{i \in I} P_{i}=\mathbb{R}^{n}$.
Lemma 3.2. Let $[x, y]$ be an interval in $\mathbb{R}^{n}(x \neq y), 0=\tau_{0}<\tau_{1}<\ldots<$ $\tau_{m-1}<\tau_{m}=1(m \in \mathbb{N}, m>1)$, and $x_{i}:=x+\tau_{i}(y-x)(i=0,1, \ldots, m)$. Suppose that φ is nonconvex and continuous on $[x, y]$. Then there must exist $i \in\{0,1, \ldots, m-2\}$ such that φ is nonconvex on $\left[x_{i}, x_{i+2}\right]$.

We are now ready to state and prove the main result of this paper.
Theorem 3.3. Suppose that $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a piecewise C^{2} function. Then φ is convex if and only if

$$
\begin{equation*}
\langle z, u\rangle \geq 0 \text { for all } u \in \mathbb{R}^{n}, z \in \partial^{2} \varphi(x, y)(u) \text { with }(x, y) \in \operatorname{gph} \partial \varphi \tag{3.2}
\end{equation*}
$$

Proof. The necessary condition is due to Theorem 2.1. It remains to prove the sufficient condition. By Lemma 3.1, we can assume that $\operatorname{int} P_{i} \neq \emptyset$ for all $i \in\{1,2, \ldots, k\}$. Suppose that (3.2) holds but φ is nonconvex. Since φ is twice continuously differentiable on $\operatorname{int} P_{i}, \partial^{2} \varphi(x, y)(u)=\left\{\nabla^{2} \varphi(x)(u)\right\}$ for all $x \in$ $\operatorname{int} P_{i}, y \in \partial \varphi(x)$ and $u \in \mathbb{R}^{n}$. Together with (3.2) this implies that $\nabla^{2} \varphi(x)$ is positive semi-definite on $\operatorname{int} P_{i}$. By the classical result on characterizing the convexity of C^{2} functions, φ is convex on $P_{i}(i=1,2, \ldots, k)$. We consider the following two cases.

Case 1. $k=2$. Let $P_{1}=\left\{x \in \mathbb{R}^{n}:\langle a, x\rangle \leq \alpha\right\}, P_{2}=\left\{x \in \mathbb{R}^{n}:\langle a, x\rangle \geq\right.$ $\alpha\}\left(a \in \mathbb{R}^{n} \backslash\{0\}, \alpha \in \mathbb{R}\right), P_{12}=P_{1} \cap P_{2}$ and

$$
\varphi(x)= \begin{cases}\varphi_{1}(x) & \text { if } x \in P_{1} \\ \varphi_{2}(x) & \text { if } x \in P_{2}\end{cases}
$$

where $\varphi_{1}, \varphi_{2} \in C^{2}$ and $\varphi_{1}(x)=\varphi_{2}(x)$ for all $x \in P_{12}$. Observe that \mathbb{R}^{n} is the union of disjoint nonempty sets $\operatorname{int} P_{1}, \operatorname{int} P_{2}, P_{12}$, and

$$
\partial \varphi(x)=\widehat{\partial} \varphi(x)= \begin{cases}\left\{\nabla \varphi_{1}(x)\right\} & \text { if } x \in \operatorname{int} P_{1} \tag{3.3}\\ \left\{\nabla \varphi_{2}(x)\right\} & \text { if } x \in \operatorname{int} P_{1}\end{cases}
$$

Since φ is convex on each one of the convex sets P_{1} and P_{2} but it is nonconvex on $\mathbb{R}^{n}=P_{1} \cup P_{2}$, there exist $x_{0} \in \operatorname{int} P_{1}, y_{0} \in \operatorname{int} P_{2}$ and $t_{1} \in(0,1)$ such that

$$
\begin{equation*}
\varphi\left(z_{1}\right)>\left(1-t_{1}\right) \varphi\left(x_{0}\right)+t_{1} \varphi\left(y_{0}\right), \tag{3.4}
\end{equation*}
$$

where $z_{1}=\left(1-t_{1}\right) x_{0}+t_{1} y_{0}$. We will prove that

$$
\begin{equation*}
\varphi\left(z_{0}\right)>\left(1-t_{0}\right) \varphi\left(x_{0}\right)+t_{0} \varphi\left(y_{0}\right) \tag{3.5}
\end{equation*}
$$

with $z_{0}=\left(1-t_{0}\right) x_{0}+t_{0} y_{0} \in P_{12}\left(t_{0} \in(0,1)\right)$. If $t_{0}=t_{1}$ then (3.5) follows from (3.4), because $z_{1}=z_{0}$. If $t_{0} \in\left(0, t_{1}\right)$ then $z_{1}=(1-\lambda) y_{0}+\lambda z_{0}$ with $\lambda=\left(1-t_{1}\right) /\left(1-t_{0}\right) \in(0,1)$. Since φ is convex on $\left[z_{0}, y_{0}\right] \subset P_{2}, \varphi\left(z_{1}\right) \leq$ $(1-\lambda) \varphi\left(y_{0}\right)+\lambda \varphi\left(z_{0}\right)$. Combining this fact with (3.4), we obtain

$$
\begin{aligned}
\varphi\left(z_{0}\right) & >\lambda^{-1}\left[\left(1-t_{1}\right) \varphi\left(x_{0}\right)+t_{1} \varphi\left(y_{0}\right)-(1-\lambda) \varphi\left(y_{0}\right)\right] \\
& =\left(1-t_{0}\right) \varphi\left(x_{0}\right)+t_{0} \varphi\left(y_{0}\right)
\end{aligned}
$$

which gives (3.5). Similarly, (3.5) is also valid if $t_{0} \in\left(t_{1}, 1\right)$. Therefore (3.5) holds. Since $x_{0} \in P_{1}, y_{0} \in P_{2}$ and $z_{0} \in P_{12}$, by (3.5), we have

$$
\left(1-t_{0}\right) \varphi_{1}\left(z_{0}\right)+t_{0} \varphi_{2}\left(z_{0}\right)>\left(1-t_{0}\right) \varphi_{1}\left(x_{0}\right)+t_{0} \varphi_{2}\left(y_{0}\right)
$$

or in other words,

$$
\begin{equation*}
\left(1-t_{0}\right)\left(\varphi_{1}\left(z_{0}\right)-\varphi_{1}\left(x_{0}\right)\right)+t_{0}\left(\varphi_{2}\left(z_{0}\right)-\varphi_{2}\left(y_{0}\right)>0\right. \tag{3.6}
\end{equation*}
$$

According to the mean value theorem, we have
$\varphi_{1}\left(z_{0}\right)-\varphi_{1}\left(x_{0}\right)=\left\langle\nabla \varphi_{1}\left(a_{1}\right), z_{0}-x_{0}\right\rangle$ and $\varphi_{2}\left(z_{0}\right)-\varphi_{1}\left(y_{0}\right)=\left\langle\nabla \varphi_{2}\left(a_{2}\right), z_{0}-y_{0}\right\rangle$,
for some $a_{1} \in\left(x_{0}, z_{0}\right)$ and $a_{2} \in\left(z_{0}, y_{0}\right)$. Note that $z_{0}=\left(1-t_{0}\right) x_{0}+t_{0} y_{0}$ and $t_{0} \in(0,1)$. By (3.6),

$$
\begin{equation*}
\left\langle\nabla \varphi_{1}\left(a_{1}\right)-\nabla \varphi_{2}\left(a_{2}\right), y_{0}-x_{0}\right\rangle>0 \tag{3.7}
\end{equation*}
$$

Our next task is to show

$$
\begin{equation*}
\left\langle\nabla \varphi_{1}\left(z_{0}\right)-\nabla \varphi_{2}\left(z_{0}\right), y_{0}-x_{0}\right\rangle>0 \tag{3.8}
\end{equation*}
$$

Assume by contradiction that $\left\langle\nabla \varphi_{1}\left(z_{0}\right)-\nabla \varphi_{2}\left(z_{0}\right), y_{0}-x_{0}\right\rangle \leq 0$. Since φ_{1} is convex on $\left[a_{1}, z_{0}\right]$,

$$
\left\langle\nabla \varphi_{1}\left(z_{0}\right)-\nabla \varphi_{1}\left(a_{1}\right), z_{0}-a_{1}\right\rangle \geq 0
$$

from which we get

$$
\left\langle\nabla \varphi_{1}\left(z_{0}\right)-\nabla \varphi_{1}\left(a_{1}\right), y_{0}-x_{0}\right\rangle \geq 0
$$

Similarly, $\left\langle\nabla \varphi_{2}\left(a_{2}\right)-\nabla \varphi_{2}\left(z_{0}\right), y_{0}-x_{0}\right\rangle \geq 0$. Hence

$$
\begin{aligned}
\left\langle\nabla \varphi_{1}\left(a_{1}\right)-\nabla \varphi_{2}\left(a_{2}\right), y_{0}-x_{0}\right\rangle & \leq\left\langle\nabla \varphi_{1}\left(z_{0}\right)-\nabla \varphi_{2}\left(z_{0}\right), y_{0}-x_{0}\right\rangle \\
& \leq 0
\end{aligned}
$$

This contradicts (3.7) and thus (3.8) is valid.
We claim that $\widehat{\partial} \varphi\left(z_{0}\right)=\emptyset$. Suppose that it is not true. Then there exists $x^{*} \in \mathbb{R}^{n}$ satisfying

$$
\begin{equation*}
\liminf _{u \rightarrow z_{0}} \frac{\varphi(u)-\varphi\left(z_{0}\right)-\left\langle x^{*}, u-x\right\rangle}{\left\|u-z_{0}\right\|} \geq 0 \tag{3.9}
\end{equation*}
$$

Let $u_{j}:=z_{0}-\frac{1}{j}\left(y_{0}-x_{0}\right)$. Then $u_{j} \rightarrow z_{0}$ as $j \rightarrow \infty$. It is easy to see that $u_{j} \in P_{1}$ for all $j \in \mathbb{N}$. Together with (3.9) this gives

$$
\liminf _{j \rightarrow \infty} \frac{\varphi_{1}\left(u_{j}\right)-\varphi_{1}\left(z_{0}\right)-\left\langle x^{*}, u_{j}-z_{0}\right\rangle}{\left\|u_{j}-z_{0}\right\|} \geq 0
$$

By the mean value theorem,

$$
\liminf _{j \rightarrow \infty} \frac{\left\langle\nabla \varphi_{1}\left(\xi_{j}\right),-\frac{1}{j}\left(y_{0}-x_{0}\right)\right\rangle-\left\langle x^{*},-\frac{1}{j}\left(y_{0}-x_{0}\right)\right\rangle}{\frac{1}{j}\left\|y_{0}-x_{0}\right\|} \geq 0
$$

where $\xi_{j} \in\left(u_{j}, z_{0}\right)$. Since $\nabla \varphi_{1}(\cdot)$ is continuous and $\xi_{j} \rightarrow z_{0}$ as $j \rightarrow \infty$, we have

$$
\left\langle\nabla \varphi_{1}\left(z_{0}\right), y_{0}-x_{0}\right\rangle \leq\left\langle x^{*}, y_{0}-x_{0}\right\rangle
$$

Similarly, by taking $u_{j}=z_{0}+\frac{1}{j}\left(y_{0}-x_{0}\right)$ we obtain

$$
\left\langle x^{*}, y_{0}-x_{0}\right\rangle \leq\left\langle\nabla \varphi_{2}\left(z_{0}\right), y_{0}-x_{0}\right\rangle
$$

Consequently, $\left\langle\nabla \varphi_{1}\left(z_{0}\right)-\nabla \varphi_{2}\left(z_{0}\right), y_{0}-x_{0}\right\rangle \leq 0$ which contradicts (3.8). Hence $\widehat{\partial} \varphi\left(z_{0}\right)=\emptyset$ and $\nabla \varphi_{1}\left(z_{0}\right) \neq \nabla \varphi_{2}\left(z_{0}\right)$ by (3.8). By virtual of (3.5), we can find a positive number γ such that for each $u \in P_{12} \cap\left(z_{0}+\gamma \mathbb{B}\right)$ there exist $x_{u} \in \operatorname{int} P_{1}$, $y_{u} \in \operatorname{int} P_{2}$ satisfying $u=\left(1-t_{0}\right) x_{u}+t_{0} y_{u}$ and

$$
\varphi(u)>\left(1-t_{0}\right) \varphi\left(x_{u}\right)+t_{0} \varphi\left(y_{u}\right)
$$

where $\mathbb{B}:=\left\{x \in \mathbb{R}^{n} \mid\|x\|<1\right\}$. Then as in the proof of the claim $\widehat{\partial} \varphi\left(z_{0}\right)=\emptyset$, we can show that $\widehat{\partial} \varphi(u)=\emptyset$ and $\nabla \varphi_{1}(u) \neq \nabla \varphi_{2}(u)$ for all $u \in P_{12} \cap\left(z_{0}+\gamma \mathbb{B}\right)$. By the continuity of $\nabla \varphi_{1}(\cdot)$ and of $\nabla \varphi_{2}(\cdot)$, together with (3.3) this gives

$$
\begin{aligned}
& \partial \varphi(x)=\operatorname{Limsup}_{u \rightarrow x} \widehat{\partial} \varphi(u) \\
& =\stackrel{\operatorname{Limsup}}{u \rightarrow x} \widehat{\partial} \varphi(u) \cup \operatorname{Limsup} \widehat{\partial} \varphi(u) \cup \operatorname{Limsup} \widehat{\partial} \varphi(u) \\
& =\left\{\nabla \varphi_{1}(x), \nabla \varphi_{2}(x)\right\} \xrightarrow{\stackrel{i n}{u} \xrightarrow{u} \xrightarrow{\text { int } P_{2}} x} x \quad u \xrightarrow{P_{12}} x
\end{aligned}
$$

for all $x \in P_{12} \cap\left(z_{0}+\gamma \mathbb{B}\right)$. Hence

$$
\partial \varphi(x)= \begin{cases}\left\{\nabla \varphi_{1}(x)\right\} & \text { if } x \in \operatorname{int} P_{1}, \tag{3.10}\\ \left\{\nabla \varphi_{2}(x)\right\} & \text { if } x \in \operatorname{int} P_{2}, \\ \left\{\nabla \varphi_{1}(x), \nabla \varphi_{2}(x)\right\} & \text { if } x \in P_{12} \cap\left(z_{0}+\gamma \mathbb{B}\right) .\end{cases}
$$

For $x \in P_{12} \cap\left(z_{0}+\gamma \mathbb{B}\right), y=\nabla \varphi_{1}(x)$, and $u \in \mathbb{R}^{n}$, it holds

$$
\partial^{2} \varphi(x, y)(u)=\nabla^{2} \varphi_{1}(x)(u)+\mathbb{R}_{+} a
$$

Indeed, let $z=\nabla^{2} \varphi_{1}(x)(u)+\lambda a$ for some $\lambda \geq 0$. Since $\nabla \varphi_{1}(\cdot), \nabla \varphi_{2}(\cdot)$ are continuous and $y=\nabla \varphi_{1}(x) \neq \nabla \varphi_{2}(x)$, by (3.10) for all $\left(x^{\prime}, y^{\prime}\right) \in \operatorname{gph} \partial \varphi$ near
(x, y) we have $x^{\prime} \in P_{1}$ and $y^{\prime}=\nabla \varphi_{1}\left(x^{\prime}\right)$. Hence

$$
\begin{aligned}
& \limsup _{\left(x^{\prime}, y^{\prime}\right) \xrightarrow{\operatorname{ghh} \partial \varphi}(x, y)} \frac{\left\langle z, x^{\prime}-x\right\rangle-\left\langle u, y^{\prime}-y\right\rangle}{\left\|x^{\prime}-x\right\|+\left\|y^{\prime}-y\right\|} \\
& =\underset{x^{\prime} \xrightarrow{P_{1}} x}{\lim \sup } \frac{\left\langle z, x^{\prime}-x\right\rangle-\left\langle u, \nabla \varphi_{1}\left(x^{\prime}\right)-\nabla \varphi_{1}(x)\right\rangle}{\left\|x^{\prime}-x\right\|+\left\|\nabla \varphi_{1}\left(x^{\prime}\right)-\nabla \varphi_{1}(x)\right\|} \\
& =\underset{x^{\prime} \rightarrow x}{\limsup } \frac{\left\langle z-\nabla^{2} \varphi_{1}\left(\xi_{x^{\prime}}\right)(u), x^{\prime}-x\right\rangle}{\left\|x^{\prime}-x\right\|+\left\|\nabla \varphi_{1}\left(x^{\prime}\right)-\nabla \varphi_{1}(x)\right\|} \\
& =\limsup _{x^{\prime} P_{1} x} \frac{\left\langle\nabla^{2} \varphi_{1}(x)(u)-\nabla^{2} \varphi_{1}\left(\xi_{x^{\prime}}\right)(u), x^{\prime}-x\right\rangle+\lambda\left\langle a, x^{\prime}-x\right\rangle}{\left\|x^{\prime}-x\right\|+\left\|\nabla \varphi_{1}\left(x^{\prime}\right)-\nabla \varphi_{1}(x)\right\|} \\
& \leq\|u\| \lim \sup \left\|\nabla^{2} \varphi_{1}(x)-\nabla^{2} \varphi_{1}\left(\xi_{x^{\prime}}\right)\right\|=0, \\
& x^{{ }^{P_{1}}} \xrightarrow{P_{x}}
\end{aligned}
$$

where $\xi_{x^{\prime}} \in\left(x^{\prime}, x\right)$. This implies that $z \in \partial^{2} \varphi(x, y)(u)$ and thus,

$$
\nabla^{2} \varphi_{1}(x)(u)+\mathbb{R}_{+} a \subset \partial^{2} \varphi(x, y)(u)
$$

To prove the reverse inclusion, take any $z \in \partial^{2} \varphi(x, y)(u)$. Then there exist $\left(z_{i}, u_{i}\right) \rightarrow$ (z, u) and $\left(x_{i}, y_{i}\right) \rightarrow(x, y)$ with $\left(x_{i}, y_{i}\right) \in \operatorname{gph} \partial \varphi$ such that $\left(z_{i},-u_{i}\right) \in \widehat{N}$ $\left(\left(x_{i}, y_{i}\right) ; \operatorname{gph} \partial \varphi\right)$ for all i. Note that $\nabla \varphi_{1}(\cdot), \nabla \varphi_{2}(\cdot)$ are continuously differentiable functions satisfying $\nabla \varphi_{1}(x) \neq \nabla \varphi_{2}(x)$ for all $x \in P_{12} \cap\left(z_{0}+\gamma \mathbb{B}\right)$. By (3.10), we may assume that $x_{i} \in P_{1} \cap\left(z_{0}+\gamma \mathbb{B}\right), y_{i}=\nabla \varphi_{1}\left(x_{i}\right)$ for all i. Hence,

$$
\begin{aligned}
& \left(z_{i},-u_{i}\right) \in \widehat{N}\left(\left(x_{i}, y_{i}\right) ; \operatorname{gph} \partial \varphi\right) \\
\Leftrightarrow & \limsup _{x^{\prime} \xrightarrow{P_{1}} x_{i}} \frac{\left\langle z_{i}, x^{\prime}-x_{i}\right\rangle-\left\langle u_{i}, \nabla \varphi_{1}\left(x^{\prime}\right)-\nabla \varphi_{1}\left(x_{i}\right)\right\rangle}{\left\|x^{\prime}-x_{i}\right\|+\left\|\nabla \varphi_{1}\left(x^{\prime}\right)-\nabla \varphi_{1}\left(x_{i}\right)\right\|} \leq 0 \\
\Rightarrow & \limsup _{x^{\prime} \xrightarrow{P_{1}} x_{i}} \frac{\left\langle z_{i}-\nabla^{2} \varphi_{1}\left(\xi_{x^{\prime}}\right)\left(u_{i}\right), x^{\prime}-x_{i}\right\rangle}{\left(1+\sup _{\xi \in z_{0}+\gamma \mathbb{B}}\left\|\nabla^{2} \varphi_{1}(\xi)\right\|\right)\left\|x^{\prime}-x_{i}\right\|} \leq 0 \quad\left(\text { for some } \xi_{x^{\prime}} \in\left(x^{\prime}, x_{i}\right)\right) \\
\Rightarrow & \left\langle z_{i}-\nabla^{2} \varphi_{1}\left(x_{i}\right)\left(u_{i}\right), x^{\prime}\right\rangle \leq 0 \quad \text { whenever }\left\langle a, x^{\prime}\right\rangle \leq 0 .
\end{aligned}
$$

Taking $i \rightarrow \infty$, we have $\left\langle z-\nabla^{2} \varphi_{1}(x)(u), x^{\prime}\right\rangle \leq 0$ if $\left\langle a, x^{\prime}\right\rangle \leq 0$. By the Farkas lemma, there exists $\lambda \geq 0$ such that $z-\nabla^{2} \varphi_{1}(x)(u)=\lambda a$ which proves $\partial^{2} \varphi(x, y)(u) \subset \nabla^{2} \varphi_{1}(x)(u)+\mathbb{R}_{+} a$. Therefore, $\partial^{2} \varphi(x, y)(u)=\nabla^{2} \varphi_{1}(x)(u)+\mathbb{R}_{+} a$ for all $x \in P_{12} \cap\left(z_{0}+\gamma \mathbb{B}\right), y=\nabla \varphi_{1}(x)$ and $u \in \mathbb{R}^{n}$. Let $x \in P_{12} \cap\left(z_{0}+\gamma \mathbb{B}\right), y=$ $\nabla \varphi_{1}(x), z=-\nabla^{2} \varphi_{1}(x)(a)+t a(t \geq 0)$ and $u=-a$. We have $z \in \partial^{2} \varphi(x, y)(u)$ and $\langle z, u\rangle=\left\langle\nabla^{2} \varphi_{1}(x)(a), a\right\rangle-t\|a\|^{2}<0$ for $t \geq 0$ large enough. This contradicts (3.2).

Remark. As can be seen from the above proof, we also obtain the contradiction if it is only supposed that φ is nonconvex on some ball $\bar{x}+\varepsilon \mathbb{B}\left(\bar{x} \in \mathbb{R}^{n}, \varepsilon>0\right)$ and (3.2) is replaced by the condition:
$\langle z, u\rangle \geq 0$ for all $u \in \mathbb{R}^{n}, z \in \partial^{2} \varphi(x, y)(u)$ with $(x, y) \in \operatorname{gph} \partial \varphi$ and $x \in \bar{x}+\varepsilon \mathbb{B}$.
This remark will be used in the sequel.
Case 2. $k>2$. Since φ is nonconvex on $\mathbb{R}^{n}=\bigcup_{j=1}^{k} P_{j}$ but it is convex on each one of the polyhedrals $P_{j}(j=1,2, \ldots, k)$, there exist $x, y \in \mathbb{R}^{n}(x \neq y)$, $0=\tau_{0}<\tau_{1}<\ldots<\tau_{m-1}<\tau_{m}=1(m \in \mathbb{N}, m>1)$, and $x_{i}:=x+\tau_{i}(y-x)$ $(i=0,1, \ldots, m)$ such that φ is convex on $\left[x_{i}, x_{i+1}\right](i=0,1, \ldots, m-1)$ but it is nonconvex on $[x, y]$. By Lemma 3.2 we can find $i \in\{0,1, \ldots, m-2\}$ such that φ is nonconvex on $\left[x_{i}, x_{i+2}\right]$. Thus, without loss of generality we can assume that there exists $\bar{x} \in(x, y)$ such that φ is convex on each one of intervals $[x, \bar{x}]$ and $[\bar{x}, y]$ but it is nonconvex on $[x, y]$. For each $u \in \mathbb{R}^{n}$, we put $I(u)=\{i \in\{1,2, \ldots, k\}$: $\left.u \in P_{i}\right\}$. Let $\varepsilon>0$ such that $(\bar{x}+\varepsilon \mathbb{B}) \cap P_{i}=\emptyset$ for all $i \in\{1,2, \ldots, k\} \backslash I(\bar{x})$. We may assume that $x, y \in \mathbb{B}(\bar{x}, \varepsilon)$. Since φ is convex on $[x, \bar{x}]$ and on $[\bar{x}, y]$ and it is nonconvex on $[x, y],|I(\bar{x})| \geq 2$ and $\bar{x} \notin \operatorname{int} P_{i}$ for all i. If $|I(\bar{x})|=2$, then we obtain a contradiction by using the above remark. If $|I(\bar{x})|>2$, then $\operatorname{dim} L<n-1$ where $L:=\operatorname{aff}\left(\bigcap_{i \in I(\bar{x})} P_{i}\right)$ denotes the affine hull of $\bigcap_{i \in I(\bar{x})} P_{i}$. Indeed, without loss of generality we may assume that $\{1,2,3\} \subset I(\bar{x})$. Since int $P_{i} \neq \emptyset, \operatorname{int} P_{j} \neq \emptyset$ and $\operatorname{int} P_{i} \cap \operatorname{int} P_{j}=\emptyset(\forall i \neq j)$, by the separation theorem, there exists a hyperplane $L_{i j}$ separating the sets $\operatorname{int} P_{i}$ and $\operatorname{int} P_{j}(1 \leq i<j \leq 3)$. Since it is impossible that $L_{12}=L_{13}=L_{23}, \operatorname{dim}\left(L_{12} \cap L_{13} \cap L_{23}\right)<n-1$. Noting that $L \subset\left(L_{12} \cap L_{13} \cap L_{23}\right)$, we have $\operatorname{dim} L<n-1$. In the case where $y \in L$, by invoking the last property we can find $\tilde{y} \in \mathbb{R}^{n} \backslash L$ as close to y as desired. Let $t \in(0,1)$ be such that $\bar{x}=(1-t) x+t y$. Define $\tilde{x}_{\tilde{y}}$ by the condition $\bar{x}=(1-t) \tilde{x}_{\tilde{y}}+t \tilde{y}$. Clearly, $\tilde{x}_{\tilde{y}} \notin L$ and $\tilde{x}_{\tilde{y}} \rightarrow x$ as $\tilde{y} \rightarrow y$. Since φ is continuous and nonconvex on $[x, y]$, there exists $\tilde{y} \in \mathbb{R}^{n} \backslash L$ as close to y as desired such that φ is nonconvex on $[\tilde{x} \tilde{y}, \tilde{y}]$. Thus, replacing (x, y) by $\left(\tilde{x}_{\tilde{y}}, \tilde{y}\right)$ if necessary, we can assume that $y \notin L$ and $x \notin L$. (Note that such replacement may destroy the property of φ of being convex on each one of the segments $[x, \bar{x}]$ and $[\bar{x}, y]$. But this property will not be employed in the sequel.) Take $\rho>0$ such that $(y+\rho \mathbb{B}) \subset(\bar{x}+\varepsilon \mathbb{B}),(y+\rho \mathbb{B}) \cap L=\emptyset, x \notin(y+\rho \mathbb{B})$, and φ is nonconvex on $[x, z]$ for each $z \in(y+\rho \mathbb{B})$. Our aim now is to show that there exists $z \in(y+\rho \mathbb{B})$ such that $[x, z] \cap L=\emptyset$. Suppose that this is not true. Then $[x, z] \cap L \neq \emptyset$ for all $z \in(y+\rho \mathbb{B})$. Choose $y_{i} \in(y+\rho \mathbb{B})(i=1,2, \ldots, n-1)$ such that $\left\{x-y, y_{1}-y, \ldots, y_{n-1}-y\right\}$ is linearly independent. For each $i \in\{1,2, \ldots, n-1\}$, we can take a vector $\bar{x}_{i} \in\left[x, y_{i}\right] \cap L$ because $[x, z] \cap L \neq \emptyset$ for all $z \in(y+\rho \mathbb{B})$ and $y_{i} \in(y+\rho \mathbb{B})(i=1,2, \ldots, n-1)$. Note that $\bar{x}_{i}-\bar{x}=\alpha_{i}(x-y)+\beta_{i}\left(y_{i}-y\right)$ for
some $\alpha_{i} \in \mathbb{R}, \beta_{i} \in \mathbb{R} \backslash\{0\}$ and $\left\{x-y, y_{1}-y, \ldots, y_{n-1}-y\right\}$ is linearly independent. Hence the system $\left\{\bar{x}_{1}-\bar{x}, \ldots, \bar{x}_{n-1}-\bar{x}\right\}$ is linearly independent from which we get $\operatorname{dim} L \geq n-1$. This contradicts the fact $\operatorname{dim} L<n-1$ derived above and thus there exists $z \in(y+\rho \mathbb{B})$ satisfying $[x, z] \cap L=\emptyset$. Since φ is nonconvex on $[x, z]$, we can find $\left[x^{\prime}, y^{\prime}\right] \subset[x, z]$ and $\bar{x}^{\prime} \in\left(x^{\prime}, y^{\prime}\right)$ such that φ is convex on each of the two intervals $\left[x^{\prime}, \bar{x}^{\prime}\right]$ and $\left[\bar{x}^{\prime}, y^{\prime}\right]$ and it is nonconvex on $\left[x^{\prime}, y^{\prime}\right]$. Observing that $\bar{x}^{\prime} \in(\bar{x}+\varepsilon \mathbb{B}) \backslash\left[\bigcap_{i \in I(\bar{x})} P_{i}\right]$ and $(\bar{x}+\varepsilon \mathbb{B}) \cap P_{i}=\emptyset$ for all $i \in\{1,2, \ldots, k\} \backslash I(\bar{x})$, we have $\left|I\left(\bar{x}^{\prime}\right)\right|<|I(\bar{x})|$. Hence if $|I(\bar{x})|>2$, then there exist $\left[x^{\prime}, y^{\prime}\right]$ and $\bar{x}^{\prime} \in\left(x^{\prime}, y^{\prime}\right)$ such that φ is convex on each of the segments $\left[x^{\prime}, \bar{x}^{\prime}\right]$ and $\left[\bar{x}^{\prime}, y^{\prime}\right]$ but it is nonconvex on $\left[x^{\prime}, y^{\prime}\right]$ and $\left|I\left(\bar{x}^{\prime}\right)\right|<|I(\bar{x})|$. Thus, by repeating this procedure after finitely many times, we can reduce the case where $|I(\bar{x})|=2$ and obtain a contradiction. The proof is now completed.

Recall that a function $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is said to be strongly convex on a convex subset $\Omega \subset \operatorname{dom} \varphi$ if there exists a constant $\rho>0$ such that

$$
\varphi((1-t) x+t y) \leq(1-t) \varphi(x)+t \varphi(y)-\rho t(1-t)\|x-y\|^{2}
$$

for any $x, y \in \Omega$ and $t \in(0,1)$. It is well known (see e.g. [12, Lemma 1, p. 184]) that the above condition is fulfilled if and only if the function $\widetilde{\varphi}(x):=\varphi(x)-\rho\|x\|^{2}$ is convex on Ω.

We now have the following characterization of strong convexity for piecewise C^{2} functions.

Theorem 3.4. Suppose that $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a piecewise C^{2} function. Then φ is strongly convex on \mathbb{R}^{n} with the constant $\rho>0$ if and only if for any $(x, y) \in$ $\operatorname{gph} \partial \varphi$ the second-order subdifferential mapping $\partial^{2} \varphi(x, y): \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ satisfies the condition

$$
\begin{equation*}
\langle z, u\rangle \geq 2 \rho\|u\|^{2} \text { for all } u \in \mathbb{R}^{n} \text { and } z \in \partial^{2} \varphi(x, y)(u) \text { with }(x, y) \in \operatorname{gph} \partial \varphi . \tag{3.11}
\end{equation*}
$$

Proof. It is well-known that φ is strongly convex on \mathbb{R}^{n} with the constant $\rho>0$ if and only if the function $\widetilde{\varphi}:=\varphi+\psi$ where $\psi(x)=-\rho\|x\|^{2}$ is convex. By [7, Proposition 1.107(ii)],

$$
\begin{equation*}
\partial \widetilde{\varphi}(x)=\partial \varphi(x)-2 \rho x \quad \forall x \in \mathbb{R}^{n} \tag{3.12}
\end{equation*}
$$

Now, applying the coderivative sum rule with equality [7, Proposition 1.62(ii)] to the case where $F(x)=\partial \varphi(x)$ and $f(x)=-2 \rho x$, we have

$$
D^{*}(F+f)(x, y)(u)=D^{*} F(x, y-f(x))(u)-2 \rho u
$$

for any $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n}$ with $y-f(x) \in F(x)$ and for any $u \in \mathbb{R}^{n}$. Together with (3.12) this gives

$$
\begin{equation*}
\partial^{2} \widetilde{\varphi}(x, y)(u)=\partial \varphi^{2}(x, y)(u)-2 \rho u \quad \forall x \in \mathbb{R}^{n}, \forall y \in \partial \varphi(x) \tag{3.13}
\end{equation*}
$$

According to Theorem 3.3, the convexity of $\widetilde{\varphi}$ is equivalent to the PSD of the secondorder subdifferential mapping $\partial^{2} \widetilde{\varphi}(\cdot)$. Hence, by (3.13) we obtain $\langle v-2 \rho u, u\rangle \geq 0$ for any $v \in \partial \varphi^{2}(x, y)(u)$ which yields (3.11).

References

1. D. Bednarik and K. Pastor, On characterizations of convexity for regularly locally Lipschitz functions, Nonlinear Anal. 57 (2004), 85-97.
2. J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000.
3. N. H. Chieu, T. D. Chuong, J.-C. Yao and N. D. Yen, Characterizing convexity of a function by its Frechet and limiting second-order subdifferentials, Submitted.
4. R. Cominetti and R. Correa, A generalized second-order derivative in nonsmooth optimization, SIAM J. Control Optim. 28 (1990), 789-809.
5. I. Ginchev and V. I. Ivanov, Second-order characterizations of convex and pseudoconvex functions, J. Appl. Anal. 9 (2003), 261-273.
6. N. Hadjisavvas, S. Komlosi, S. and S. Schaible (Eds.), Handbook of Generalized Convexity and Generalized Monotonicity, Springer, New York, 2005.
7. B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory, Vol. II: Applications, Springer, Berlin, 2006.
8. B. S. Mordukhovich and J. V. Outrata, On second-order subdifferentials and their applications, SIAM J. Optim. 12 (2001), 139-169.
9. R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364, Springer, Berlin, 1993.
10. R. A. Poliquin and R. T. Rockafellar, Tilt stability of a local minimum, SIAM J. Optim. 8 (1998), 287-299.
11. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.
12. F. P. Vasilev, Numerical Methods for Solving Extremal Problems, Second edition, Nauka, Moscow, 1988, (in Russian).
13. X. Q. Yang, Generalized second-order characterizations of convex functions, J. Optim. Theory Appl. 82 (1994), 173-180.
14. X. Q. Yang, On relations and applications of generalized second-order directional derivatives, Nonlinear Anal. 36 (1999), 595-614.

Nguyen Huy Chieu
Department of Mathematics,
Vinh University,
Vinh, Nghe An,
Vietnam
E-mail: nghuychieu@vinhuni.edu.vn nghuychieu@gmail.com.

Jen-Chih Yao
Department of Applied Mathematics,
National Sun Yat-Sen University,
Kaohsiung 804,
Taiwan
E-mail: yaojc@math.nsysu.edu.tw.

[^0]: Received May 18, 2009.
 2000 Mathematics Subject Classification: 49K40, 49J40, 49J52, 49J53.
 Key words and phrases: Convexity, Strong convexity, Positive semi-definite property, Limiting secondorder subdifferential.
 This work was supported by the National Sun Yat-Sen University, National Foundation for Science and Technology Development (Vietnam) and the National Science Council of ROC under grant NSC 99-2221-E-110-038-MY3.
 *Corresponding author.

