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COINCIDENCE AND MAXIMAL ELEMENT THEOREMS IN
ABSTRACT CONVEX SPACES WITH APPLICATIONS

Ming-ge Yang, Nan-jing Huang* and Chin-San Lee

Abstract. In this paper, by using a nonempty intersection lemma due to the
authors, we obtain two coincidence theorems involved RC-maps in abstract
convex spaces, which are actually equivalent. We then derive some maxi-
mal element theorems for set-valued maps in abstract convex spaces. As an
application, we study the existence of solutions for a system of generalized
equilibrium problems in abstract convex spaces. We also give some examples
to illustrate our results.

1. INTRODUCTION

Many problems in nonlinear analysis can be solved by showing the nonemptyness
of the intersection of certain family of subsets of an underlying set. Each point of the
intersection can be a fixed point, a coincidence point, an equilibrium point, a saddle
point, an optimal point, or others of the corresponding equilibrium problems under
consideration. The first remarkable result on the nonempty intersection was the
celebrated Knaster-Kuratowski-Mazurkiewicz theorem (simply, the KKM principle)
in 1929 [10], which concerns with certain types of maps called the KKM maps
later.

At the beginning, the KKM theory was mainly devoted to the study of convex
subsets of topological vector spaces mainly by Ky Fan [5-7]. Later it has been
extended to convex spaces by Lassonde [11], to C-spaces (or H-spaces) by Horvath
[8, 9] and others, and to generalized convex (G-convex) spaces by Park [21-24].
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Recently, Park [16] introduced a new concept of abstract convex spaces which
include convex subsets of topological vector spaces, convex spaces, C-spaces and
G-convex spaces as special cases. Park [16] also introduced certain broad classes
RO and RC of maps (having the KKM property). The class RC(X, Y ) includes
the well-known class KKM(X, Y ) introduced by Chang and Yen [2] as a special
case. With these new concepts, he obtained some coincidence theorems and fixed
point theorems in abstract convex spaces. Very recently, Park [17-20] further studied
KKM theory in abstract convex spaces with applications to fixed points, maximal
elements, equilibria problems and other problems. It is worth mentioning that, in
the KKM theory, there have appeared a number of coincidence theorems with many
significant applications.

On the other hand, Ding and Park [3, 4] and Lin and Chen [14] studied the
following more general equilibrium problems: Find x̄ ∈ X such that one of the
following situations occurs:

F (x̄, z) ⊂ C(x̄) for all z ∈ Z;

F (x̄, z) ∩ C(x̄) �= ∅ for all z ∈ Z;

F (x̄, z) �⊂ C(x̄) for all z ∈ Z;

F (x̄, z) ∩ C(x̄) = ∅ for all z ∈ Z,

where X is a topological space, Z and V are nonempty sets, F : X × Z � V and
C : X � V are two maps.

Motivated and inspired by the works mentioned above, in this paper, by using a
nonempty intersection theorem due to the authors, we obtain two coincidence the-
orems involved RC-maps in abstract convex spaces, which are actually equivalent.
We then derive some maximal element theorems for set-valued maps in abstract
convex spaces. As an application, we study the solvability of the following systems
of generalized equilibrium problems: Find x̄ ∈ X such that one of the following
situations occurs:

Fi(x̄, zi) ⊂ Ci(x̄) for each i ∈ I and zi ∈ Zi;

Fi(x̄, zi) ∩ Ci(x̄) �= ∅ for each i ∈ I and zi ∈ Zi;

Fi(x̄, zi) �⊂ Ci(x̄) for each i ∈ I and zi ∈ Zi;

Fi(x̄, zi) ∩ Ci(x̄) = ∅ for each i ∈ I and zi ∈ Zi,

where X is a topological space, I is an index set, {Zi}i∈I and {Vi}i∈I are two
families of nonempty sets, and Fi : X × Zi � Vi and Ci : X � Vi are two maps
for all i ∈ I . We also give some examples to illustrate our results. The results
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presented in this paper improve and generalize some corresponding results due to
Balaj [1] and Lin, Ansari and Wu [13].

2. PRELIMINARIES

A multimap (or simply a map) T : X � Y is a function from a set X into the
power set 2Y of Y , that is a function with the values T (x) ⊂ Y for x ∈ X . Given a
map T : X � Y , the map T− : Y � X defined by T−(y) = {x ∈ X : y ∈ T (x)}
for y ∈ Y , is called the (lower) inverse of T . For any A ⊂ X , T (A) :=

⋃
x∈A T (x).

For any B ⊂ Y , T−(B) := {x ∈ X : T (x)∩B �= ∅}. For a set X , let 〈X〉 denote
the family of all nonempty finite subsets of X .

If A is a subset of a topological space, we denote by intA and A the interior
and closure of A, respectively.

For topological spaces X and Y , a map T : X � Y is said to be compact if
T (X) is contained in a compact subset of Y . Let T : X � Y be a map defined
by T (x) = T (x) for x ∈ X .

Definition 2.1. [25]. Suppose that X is a nonempty set and Y is a topological
space. A map T : X � Y is said to be transfer open valued if, for any (x, y) ∈
X × Y with y ∈ T (x), there exists an x

′ ∈ X such that y ∈ int T (x
′
).

Obviously, if T has open values, then T is transfer open valued.

Lemma 2.1. [12]. Let X be a topological space, Z be a nonempty set, and
P : X � Z be a map. Then the following assertions are equivalent:

(i) P− is transfer open valued and P has nonempty values;

(ii) X =
⋃

z∈Z int P−(z).

Definition 2.2. [16]. An abstract convex space (E, D; Γ) consists of a nonempty
set E , a nonempty set D, and a map Γ : 〈D〉 � E with nonempty values. Denote
ΓA := Γ(A) for A ∈ 〈D〉.

In the case E = D, let (E; Γ) = (E, E; Γ). It is obvious that any vector space
E is an abstract convex space with Γ = co, where co is the convex hull in vector
spaces. In specially, (R; co) is an abstract convex space. For more examples of
abstract convex spaces, we refer to [16].

Let (E, D; Γ) be an abstract convex space. For any D′ ⊂ D, the Γ-convex hull
of D′ is denoted and defined by

coΓD′ :=
⋃

{ΓA|A ∈ 〈D′〉} ⊂ E
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(co is reserved for the convex hull in vector spaces). A subset X of E is called a
Γ-convex subset of (E, D; Γ) relative to D′ if for any N ∈ 〈D′〉, we have ΓN ⊂ X ;
that is, coΓD′ ⊂ X . This means that (X, D ′; Γ|〈D′〉) itself is an abstract convex
space called a subspace of (E, D; Γ). When D ⊂ E , the space is denoted by (E ⊃
D; Γ). In such case, a subset X of E is said to be Γ-convex if coΓ(X ∩ D) ⊂ X ;
in other words, X is Γ-convex relative to D′ = X ∩ D. When (E; Γ) = (R; co),
the Γ-convex subset reduces to the ordinary convex subset.

Let (E, D; Γ) be an abstract convex space and Z a set. For a map F : E � Z
with nonempty values, if a map G : D � Z satisfies

F (ΓA) ⊂ G(A), ∀A ∈ 〈D〉,

then G is called a KKM map with respect to F . A classical KKM map G : D � E
is a KKM map with respect to the identity map 1E . A map F : E � Z is said
to have the KKM property and called a R-map if, for any KKM map G : D � Z
with respect to F , the family {G(y)}y∈D has the finite intersection property. We
denote

R(E, Z) := {F : E � Z|F is a R-map}.
Similarly, when Z is a topological space, a RC-map is defined for closed-

valued maps G, and a RO-map is defined for open-valued maps G. Note that if Z

is discrete then three classes R, RC and RO are identical. Some authors use the
notation KKM(E, Z) instead of RC(E, Z).

For more details concerned with the abstract convex spaces with applications,
we refer to [16, 17, 18, 19, 20] and the references therein.

Lemma 2.2. Let X be a topological space and (Y ; Γ) be an abstract convex
space. If T ∈ RC(Y, X) is compact and S : Y � X is a KKM map with respect
to T , then T (Y ) ∩ ⋂

y∈Y S(y) �= ∅.

Proof. Since S is a KKM map with respect to T , we have T (ΓN ) ⊂ S(N )
for each N ∈ 〈Y 〉. It is obvious that T (ΓN) ⊂ T (Y ) and S(N ) ⊂ S(N ). Hence,
T (ΓN ) ⊂ T (Y ) ∩ S(N ). It follows that the map F : Y � X defined by

F (y) = T (Y ) ∩ S(y), ∀y ∈ Y

is a KKM map with respect to T . Note that F has closed values. By the definition of
T ∈ RC(Y, X), we have the family {F (y)}y∈Y has the finite intersection property.
Moreover, T (Y ) is compact. We have the family {F (y)}y∈Y has the nonempty
intersection property, that is T (Y ) ∩ ⋂

y∈Y S(y) �= ∅. This completes the proof.
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Remark 2.1. (a) If Y is a convex subset of a topological vector space and
Γ = co, then Lemma 2.2 reduces to Lemma 3 in [1]; (b) If Y is a convex space
and Γ = co, then by using Lemma 2.2, it is easy to derive Lemma 2.2 in [13].

Definition 2.3. Let (X ; Γ1) and (Y ; Γ2) be two abstract convex spaces. A map
T : X � Y is called quasiconvex if, for each Γ2-convex subset C of Y , T−(C) is
a Γ1-convex subset of X .

Remark 2.2. If X and Y are convex subsets of vector spaces, then Definition
2.3 reduces to the concept of quasiconvexity in [15].

Recall that if X and Y are convex subsets of vector spaces, a map T : X � Y

is called convex if

λT (x1) + (1− λ)T (x2) ⊂ T (λx1 + (1− λ)x2)

for all x1, x2 ∈ X and λ ∈ [0, 1]. We try to provide evidence for the connection
between the two concepts.

Proposition 2.1. Let X and Y be two convex subsets of vector space. Then
any convex map T : X � Y is quasiconvex.

Proof. For any convex subset C of Y , we show that T−(C) is convex. For
any x1, x2 ∈ T−(C) and λ ∈ [0, 1], there exists y1, y2 ∈ C such that y1 ∈ T (x1),
y2 ∈ T (x2). Let y = λy1 + (1 − λ)y2. Obviously, y ∈ C. Since T is convex, we
have

y = λy1 + (1− λ)y2 ∈ λT (x1) + (1− λ)T (x2) ⊂ T (λx1 + (1− λ)x2),

i.e.,
T (λx1 + (1 − λ)x2) ∩ C �= ∅.

Thus, T is quasiconvex. This completes the proof.
The following example shows that the converse of Proposition 2.1 is not true in

general.

Example 2.1. Let X = Y = R and T : X � Y be defined by

T (x) =

{
[−1, 0], x ≤ 0;

(0, 1], x > 0.
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Then T is quasiconvex. In fact, for any subset C of R, we have

T−(C) = {x ∈ R : T (x) ∩ C �= ∅}

=




∅, if C ⊂ R \ [−1, 1];

(−∞, 0], if C ∩ [−1, 0] �= ∅ and C ∩ (0, 1] = ∅;
(0, +∞), if C ∩ [−1, 0] = ∅ and C ∩ (0, 1] �= ∅;
R, if C ∩ [−1, 0] �= ∅ and C ∩ (0, 1] �= ∅.

Hence, T−(C) is convex, and it follows that T is quasiconvex. However, we
know that T is not convex. Indeed, let x1 = −1, x2 = 1 and λ = 1

2 . Then
T (x1) = [−1, 0], T (x2) = (0, 1] and λx1 + (1 − λ)x2 = 0. For y1 = 0 ∈ T (x1)
and y2 = 1 ∈ T (x2), we have

λy1 + (1− λ)y2 =
1
2
· 0 +

1
2
· 1 =

1
2

/∈ T (λx1 + (1− λ)x2) = T (0) = [−1, 0],

which shows that T is not convex.

3. COINCIDENCE THEOREMS

Theorem 3.1. Let X be a topological space and (Y ; Γ) be an abstract convex
space. Let S : X � Y and T : Y � X be two maps satisfying the following
conditions:

(i) X =
⋃

y∈Y int S−(y);
(ii) for each x ∈ X , S(x) is Γ-convex;
(iii) T ∈ RC(Y, X) is compact.

Then there exists (x0, y0) ∈ X × Y such that x0 ∈ T (y0) and y0 ∈ S(x0).

Proof. Suppose the conclusion would be false. Then for each y ∈ Y and
x ∈ T (y), we have y /∈ S(x). Define a map S∗ : Y � X by

S∗(y) = X \ S−(y), ∀y ∈ Y.

We show that S∗ is a KKM map with respect to T . Suppose to the contrary that
there exist a finite subset N = {y1, · · · , yn} of Y and a point x ∈ T (ΓN ) \S∗(N ).
By x ∈ T (ΓN), there exists y ∈ ΓN such that x ∈ T (y), and it follows that
y /∈ S(x). By x /∈ S∗(N ), we have x /∈ S∗(yi) for each yi ∈ N . It follows that
yi ∈ S(x) for each yi ∈ N and so N ∈ 〈S(x)〉. By condition (ii), ΓN ⊂ S(x).
Hence, y ∈ S(x), which is a contradiction.
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By Lemma 2.2, there exists x0 ∈ ⋂
y∈Y S∗(y). By condition (i), there exists

y0 ∈ Y such that x0 ∈ int S−(y0). Hence, there exists a neighborhood V of x0

such that V ⊂ S−(y0). It follows that y0 ∈ S(x) for each x ∈ V . On the other
hand, since x0 ∈ S∗(y0), we know that V ∩S∗(y0) �= ∅. Hence, there exists x ∈ V
such that x ∈ S∗(y0), and it follows y0 /∈ S(x), which is a contradiction. This
completes the proof.

Remark 3.1. (a) If Y is a convex space and Γ = co, then Theorem 3.1 reduces
to Theorem 2.5 in [13]. (b) We would like to point out that the proof of Theorem
3.1 is quite different from the proof of Theorem 2.5 in [13].

Example 3.1. Let X = [1, +∞) be endowed with Euclidean topology, Y =
[0, +∞) with Γ = co, S : X � Y and T : Y � X be two maps defined,
respectively, by

S(x) = (x − 1, x], ∀x ∈ X

and
T (y) = {1}, ∀y ∈ Y.

Then we have the following conclusions.

(i) For each y ∈ Y , S− : Y � X is defined by

S−(y) =




[y, y + 1), y ≥ 1;

[1, y + 1), 0 < y < 1;

∅, y = 0.

Since⋃
y≥1

int S−(y) =
⋃
y≥1

int [y, y + 1) = [1, 2)∪
⋃
y>1

(y, y + 1) = [1, +∞) = X,

we have X =
⋃

y∈Y int S−(y) and so condition (i) of Theorem 3.1 is satisfied.

(ii) Obviously, for each x ∈ X , S(x) = (x−1, x] is convex and so it is Γ-convex.
Thus, condition (ii) of Theorem 3.1 is satisfied.

(iii) For any KKM map F : Y � X with regard to T , we have T (ΓA) ⊂ F (A)
for each A ∈ 〈Y 〉, i.e., 1 ∈ F (A) for each A ∈ 〈Y 〉. Hence 1 ∈⋂

y∈Y F (y),
and it follows that T ∈ R(Y, X) ⊂ RC(Y, X). Since T (Y ) = {1} and {1}
is compact, we know that T is compact. This shows that condition (iii) of
Theorem 3.1 is satisfied.
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From the discussions mentioned above, we know that all the conditions of The-
orem 3.1 are satisfied.

Theorem 3.2. Let X be a topological space, (Y ; Γ) be an abstract convex
space and Z be a nonempty set. Let P : X � Z, Q : Y � Z and T : Y � X be
three maps satisfying the following conditions:

(i) X =
⋃

z∈Q(Y ) int P−(z);
(ii) for each x ∈ X , {y ∈ Y : P (x) ∩ Q(y) �= ∅} is Γ-convex;
(iii) T ∈ RC(Y, X) is compact.

Then there exists (x0, y0) ∈ X × Y such that x0 ∈ T (y0) and P (x0)∩ Q(y0) �= ∅.

Proof. Define a map S : X � Y by

S(x) = {y ∈ Y : P (x) ∩ Q(y) �= ∅}, ∀x ∈ X.

It is easy to see that for a family {Ai}i∈I of subsets of a topological space,⋃
i∈I intAi ⊂ int(

⋃
i∈I Ai). Having this fact in mind we obtain

⋃
y∈Y

int S−(y) =
⋃
y∈Y

int {x ∈ X : P (x) ∩ Q(y) �= ∅}

=
⋃
y∈Y

int


 ⋃

z∈Q(y)

P−(z)




⊃
⋃
y∈Y

⋃
z∈Q(y)

int P−(z)

=
⋃

z∈Q(Y )

int P−(z).

Thus, by condition (i) it follows that X =
⋃

y∈Y int S−(y). By condition (ii), S(x)
is Γ-convex for each x ∈ X . The conclusion follows from Theorem 3.1. This
completes the proof.

When Y = Z and Q(y) = {y} for all y ∈ Y , Theorem 3.2 reduces to Theo-
rem 3.1. Obviously, we know that Theorem 3.1 implies Theorem 3.2. Therefore,
Theorems 3.1 and 3.2 are equivalent.

Remark 3.2. (a) If Y is a convex subset of a topological vector space and
Γ = co, then Theorem 3.2 reduces to Theorem 4 in [1]. (b) We would like to point
out that the proof of Theorem 3.2 is quite different from the proof of Theorem 4 in
[1].
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Example 3.2. Let X = [1, +∞) be endowed with Euclidean topology, Y =
[0, +∞) with Γ = co, and Z = [0, +∞). Let P : X � Z, Q : Y � Z and
T : Y � X be three maps defined, respectively, by

P (x) = (x− 1, x], ∀x ∈ X,

Q(y) = [y, y + 1), ∀y ∈ Y

and
T (y) = {1}, ∀y ∈ Y.

Then we have the following conclusions.
(i) By Example 3.1 (i), X =

⋃
z∈Z int P−(z). Since Q(Y ) = Z, we have

X =
⋃

z∈Q(Y ) int P−(z). Thus, condition (i) of Theorem 3.2 is satisfied.
(ii) For each x ∈ X , it is easy to see that {y ∈ Y : P (x) ∩ Q(y) �= ∅} is

convex. For any y1, y2 ∈ Y with P (x) ∩ Q(y1) �= ∅ and P (x) ∩ Q(y2) �= ∅,
and any λ ∈ [0, 1], we know that P (x) ∩ Q(λy1 + (1 − λ)y2) �= ∅. By
P (x) ∩ Q(y1) �= ∅ and P (x) ∩ Q(y2) �= ∅, there exist z1 ∈ P (x) ∩ Q(y1)
and z2 ∈ P (x) ∩ Q(y2). Obviously, P (x) = (x − 1, x] is convex for each
x ∈ X . Hence, λz1 + (1 − λ)z2 ∈ P (x). By z1 ∈ Q(y1) = [y1, y1 + 1) and
z2 ∈ Q(y2) = [y2, y2 + 1), we have y1 ≤ z1 < y1 + 1 and y2 ≤ z2 < y2 + 1
and so

λy1 + (1 − λ)y2 ≤ λz1 + (1− λ)z2 < λ(y1 + 1) + (1 − λ)(y2 + 1)

= λy1 + (1− λ)y2 + 1,

i.e.,

λz1 + (1 − λ)z2 ∈ [λy1 + (1 − λ)y2, λy1 + (1− λ)y2 + 1)

= Q(λy1 + (1− λ)y2).

Thus, there exists z = λz1 + (1 − λ)z2 ∈ Z such that z ∈ P (x) ∩ Q(λy1 +
(1 − λ)y2) and so λy1 + (1 − λ)y2 ∈ {y ∈ Y : P (x) ∩ Q(y) �= ∅}. This
shows that condition (ii) of Theorem 3.2 is satisfied.

(iii) By Example 3.1 (iii), T ∈ RC(Y, X) is compact. Thus condition (iii) of
Theorem 3.2 is satisfied.

From the discussions mentioned above, we know that all the conditions of The-
orem 3.2 are satisfied.

Corollary 3.1. Let X be a topological space, (Y ; Γ1) and (Z; Γ2) be two
abstract convex spaces. Let P : X � Z, Q : Y � Z and T : Y � X be three
maps satisfying conditions (i) and (iii) of Theorem 3.2. If P has Γ 2-convex values
and Q is quasiconvex, then there exists (x0, y0) ∈ X × Y such that x0 ∈ T (y0)
and P (x0) ∩ Q(y0) �= ∅.
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Proof. Since P has Γ2-convex values and Q is quasiconvex, Q−(P (x)) =
{y ∈ Y : P (x)∩Q(y) �= ∅} is Γ1-convex for each x ∈ X . The conclusions follows
from Theorem 3.2. This completes the proof.

4. MAXIMAL ELEMENT THEOREMS

Theorem 4.1. Let X be a topological space, (Y ; Γ) be an abstract convex
space and Z be a nonempty set. Let P : X � Z, Q : Y � Z and T : Y � X be
three maps satisfying the following conditions:

(i) P− is transfer open-valued;
(ii) for each x ∈ X , {y ∈ Y : P (x) ∩ Q(y) �= ∅} is Γ-convex;
(iii) T ∈ RC(Y, X) is compact;
(iv) for each y ∈ Y and each x ∈ T (y), P (x) ∩ Q(y) = ∅;
(v) for each z ∈ Z, Q−(z) �= ∅.

Then there exists x0 ∈ X such that P (x0) = ∅.

Proof. Suppose that the conclusion would be false. Then P has nonempty
values. By condition (v), Q(Y ) = Z. Thus, by Lemma 2.1, we have

X =
⋃
z∈Z

int P−(z) =
⋃

z∈Q(Y )

int P−(z),

and hence condition (i) of Theorem 3.2 is fulfilled. According to Theorem 3.2,
there exist y0 ∈ Y and x0 ∈ T (y0) such that P (x0) ∩ Q(y0) �= ∅. This contradicts
condition (iv). This completes the proof.

Remark 4.3. If Y is a convex subset of a topological vector space and Γ = co,
then Theorem 4.1 reduces to Theorem 6 in [1].

Example 4.1. Let X = [1, +∞) be endowed with Euclidean topology, Y =
[0, +∞) with Γ = co, and Z = [0, +∞). Let P : X � Z, Q : Y � Z and
T : Y � X be three maps defined, respectively, by

P (x) =

{
∅, if x = 1,

(x − 1, x), if x > 1

Q(y) = [y, y + 1), ∀y ∈ Y

and
T (y) = {1}, ∀y ∈ Y.

Then we have the following conclusions.
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(i) For each z ∈ Z,

P−(z) = {x ∈ X : z ∈ P (x)} = {x ∈ (1, +∞) : z ∈ (x − 1, x)}
= {x ∈ (1, +∞) : z < x < z + 1} = (1, +∞) ∩ (z, z + 1)

=




(z, z + 1), if z ≥ 1,

(1, z + 1), if 0 < z < 1,

∅, if z = 0.

Obviously, P− has open values, and consequently is transfer open valued.
Thus, condition (i) of Theorem 4.1 is satisfied.

(ii) Note that P (x) is convex for each x > 1. Using the same argument as
Example 3.2 (ii), we know that, for each x ∈ X , {y ∈ Y : P (x)∩Q(y) �= ∅}
is convex and so condition (ii) of Theorem 4.1 is satisfied.

(iii) By Example 3.1 (iii), T ∈ RC(Y, X) is compact. Thus, condition (iii) of
Theorem 4.1 is satisfied.

(iv) For each y ∈ Y and each x ∈ T (y), we have P (x) = P (1) = ∅ and so P (x)
∩Q(y) = ∅. This shows that condition (iv) of Theorem 4.1 is satisfied.

(v) Obviously, Q(Y ) = Z, i.e., for each z ∈ Z, Q−(z) �= ∅. Thus condition (v)
of Theorem 4.1 is satisfied.

From the discussions mentioned above, we know that all the conditions of The-
orem 4.1 are satisfied.

Corollary 4.2. Let X be a topological space, (Y ; Γ1) and (Z; Γ2) be two
abstract convex spaces. Let P : X � Z, Q : Y � Z and T : Y � X be three
maps satisfying conditions (i), (iii), (iv) and (v) of Theorem 4.1. If P has Γ2-convex
values and Q is quasiconvex, then there exists x 0 ∈ X such that P (x0) = ∅.

Theorem 4.2. Let X be a topological space, (Y ; Γ) be an abstract convex
space, and T ∈ RC(Y, X) be a compact map. Let I be any index set, {Z i}i∈I be
a family of nonempty sets. For each i ∈ I , if P i : X � Zi and Qi : Y � Zi are
two maps satisfying the following conditions:

(i) P−
i is transfer open valued;

(ii) for each x ∈ X , {y ∈ Y : Pi(x) ∩ Qi(y) �= ∅} is Γ-convex;
(iii) for each y ∈ Y and each x ∈ T (y), Pi(x) ∩ Qi(y) = ∅;
(iv) Qi(Y ) = Zi.
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Then there exists x̄ ∈ X such that Pi(x̄) = ∅ for each i ∈ I .

Proof. Put Z =
∏

i∈I Zi. Define two maps P : X � Z and Q : Y � Z by

P (x) =
∏
i∈I

Pi(x), ∀x ∈ X

and
Q(y) =

∏
i∈I

Qi(y), ∀y ∈ Y,

respectively. We show that P and Q satisfy all the conditions of Theorem 4.1.

(a) P− : Z � X is transfer open valued. For each z ∈ Z and x ∈ P−(z), we
have zi ∈ Zi for each i ∈ I . Note that

P−(z) = {x ∈ X : z ∈ P (x)}
= {x ∈ X : zi ∈ Pi(x) for all i ∈ I}
= {x ∈ X : x ∈ P−

i (zi) for all i ∈ I}

=
⋂
i∈I

P−
i (zi).

We have x ∈ P−
i (zi) for each i ∈ I . For each i ∈ I , since P−

i is transfer
open valued, there exist a point z

′
i ∈ Zi and a neighborhood Ni(x) of x

such that Ni(x) ⊂ P−
i (z

′
i). Let z

′
= (z

′
i)i∈I and N (x) =

⋂
i∈I Ni(x). It

is obviously that z
′ ∈ Z and N (x) is also a neighborhood of x satisfying

N (x) ⊂ ⋂
i∈I P−

i (z
′
i) = P−(z

′
). It follows that P− : Z � X is transfer

open valued. Thus condition (i) of Theorem 4.1 is satisfied.
(b) For each x ∈ X , we have

{y ∈ Y : P (x) ∩ Q(y) �= ∅} = {y ∈ Y :
∏
i∈I

Pi(x) ∩
∏
i∈I

Qi(y) �= ∅}

= {y ∈ Y : Pi(x) ∩ Qi(y) �= ∅ for all i ∈ I}

=
⋂
i∈I

{y ∈ Y : Pi(x) ∩ Qi(y) �= ∅}.

By condition (ii), for each i ∈ I , {y ∈ Y : Pi(x) ∩ Qi(y) �= ∅} is Γ-
convex. By the definition of Γ-convex subsets, we have the intersection of
a family of Γ-convex subsets is also a Γ-convex subset. Hence,

⋂
i∈I{y ∈

Y : Pi(x) ∩ Qi(y) �= ∅} is Γ-convex, that is {y ∈ Y : P (x) ∩ Q(y) �= ∅} is
Γ-convex. Thus condition (ii) of Theorem 4.1 is satisfied.
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(c) For each y ∈ Y and each x ∈ T (y), we have

P (x) ∩ Q(y) =
∏
i∈I

Pi(x) ∩
∏
i∈I

Qi(y) =
∏
i∈I

(Pi(x) ∩ Qi(y)) .

By condition (iii), we have P (x)∩Q(y) = ∅. Thus condition (iv) of Theorem
4.1 is satisfied.

(d) By condition (iv), Q(Y ) =
∏

i∈I Qi(Y ) =
∏

i∈I Zi = Z. Thus condition (v)
of Theorem 4.1 is satisfied.

Hence, P, Q satisfy all the conditions of Theorem 4.1. It follows from Theorem
4.1 that there exists x̄ ∈ X such that P (x̄) = ∅, i.e., Pi(x̄) = ∅ for each i ∈ I .
This completes the proof.

Remark 4.4. If I is a singleton, Theorem 4.2 reduces to Theorem 4.1.

Corollary 4.3. Let X be a topological space, (Y ; Γ) be an abstract convex
space, and T ∈ RC(Y, X) be a compact map. Let I be any index set, {(Z i; Γi)}i∈I

be a family of abstract convex spaces. For each i ∈ I , let P i : X � Zi and
Qi : Y � Zi be two maps satisfying conditions (i), (iii) and (iv) of Theorem 4.2.
If Pi has Γi-convex values and Qi is quasiconvex for each i ∈ I , then there exists
x̄ ∈ X such that Pi(x̄) = ∅ for each i ∈ I .

5. SYSTEM OF GENERALIZED EQUILIBRIUM PROBLEMS

Let X be a topological space, I be any index set, {Zi}i∈I and {Vi}i∈I be two
families of nonempty sets. For each i ∈ I , let Fi : X × Zi � Vi and Ci : X � Vi

be two maps. We consider the systems of generalized equilibrium problems: Find
x̄ ∈ X such that one of the following situations occurs:

Fi(x̄, zi) ⊂ Ci(x̄) for each i ∈ I and zi ∈ Zi;

Fi(x̄, zi) ∩ Ci(x̄) �= ∅ for each i ∈ I and zi ∈ Zi;

Fi(x̄, zi) �⊂ Ci(x̄) for each i ∈ I and zi ∈ Zi;

Fi(x̄, zi) ∩ Ci(x̄) = ∅ for each i ∈ I and zi ∈ Zi.

Theorem 5.3. Let X be a topological space, (Y ; Γ) be an abstract convex
space, and T ∈ RC(Y, X) be a compact map. Let I be any index set, {Z i}i∈I and
{Vi}i∈I be two families of nonempty sets. For each i ∈ I , let F i : X × Zi � Vi,
Ci : X � Vi and Qi : Y � Zi be three maps satisfying the following conditions:
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(i) for each x ∈ X , {zi ∈ Zi : Fi(x, zi) �⊂ Ci(x)} �= ∅ implies that there exist
a neighborhood N i(x) of x and z ′i ∈ Zi such that Fi(x′, z′i) �⊂ Ci(x′) for all
x′ ∈ Ni(x);

(ii) for each x ∈ X , {y ∈ Y : Fi(x, zi) �⊂ Ci(x), for some zi ∈ Qi(y)} is
Γ-convex;

(iii) for each y ∈ Y , x ∈ T (y) and zi ∈ Qi(y), we have Fi(x, zi) ⊂ Ci(x);
(iv) Qi(Y ) = Zi.

Then there exists x̄ ∈ X such that Fi(x̄, zi) ⊂ Ci(x̄) for each i ∈ I and zi ∈ Zi.

Proof. For each i ∈ I , define Pi : X � Zi by

Pi(x) = {zi ∈ Zi : Fi(x, zi) �⊂ Ci(x)}, ∀x ∈ X.

By condition (i), for each x ∈ X , Pi(x) �= ∅ implies that there exist a neighborhood
Ni(x) of x and z′i ∈ Zi such that x′ ∈ P−

i (z′i) for all x′ ∈ Ni(x). Hence, P−
i

is transfer open valued. By condition (ii), for each x ∈ X , {y ∈ Y : Pi(x) ∩
Qi(y) �= ∅} is Γ-convex. By condition (iii), for each y ∈ Y and each x ∈ T (y),
Pi(x) ∩ Qi(y) = ∅. Thus all the conditions of Theorem 4.2 are satisfied. Thus,
Theorem 4.2 shows that there exists x̄ ∈ X such that Pi(x̄) = ∅ for each i ∈ I ,
i.e., Fi(x̄, zi) ⊂ Ci(x̄) for each i ∈ I and zi ∈ Zi. This completes the proof.

Theorem 5.4. Let X be a topological space, (Y ; Γ) be an abstract convex
space, and T ∈ RC(Y, X) be a compact map. Let I be any index set, {Z i}i∈I and
{Vi}i∈I be two families of nonempty sets. For each i ∈ I , let F i : X × Zi � Vi,
Ci : X � Vi and Qi : Y � Zi be three maps satisfying the following conditions:

(i) for each x ∈ X , {zi ∈ Zi : Fi(x, zi) ∩ Ci(x) = ∅} �= ∅ implies that there
exist a neighborhood N i(x) of x and z ′i ∈ Zi such that Fi(x′, z′i)∩Ci(x′) = ∅
for all x′ ∈ Ni(x);

(ii) for each x ∈ X , {y ∈ Y : Fi(x, zi) ∩ Ci(x) = ∅, for some zi ∈ Qi(y)} is
Γ-convex;

(iii) for each y ∈ Y , x ∈ T (y) and zi ∈ Qi(y), we have Fi(x, zi) ∩ Ci(x) �= ∅;
(iv) Qi(Y ) = Zi.

Then there exists x̄ ∈ X such that Fi(x̄, zi)∩Ci(x̄) �= ∅ for each i ∈ I and zi ∈ Zi.

Proof. For each i ∈ I , define Pi : X � Zi by

Pi(x) = {zi ∈ Zi : Fi(x, zi) ∩ Ci(x) = ∅}, ∀x ∈ X.

Similar to the proof of Theorem 5.3, we can verify that all the conditions of Theorem
4.2 are satisfied. Thus, Theorem 4.2 shows that there exists x̄ ∈ X such that
Pi(x̄) = ∅ for each i ∈ I , i.e., Fi(x̄, zi) ∩ Ci(x̄) �= ∅ for each i ∈ I and zi ∈ Zi.
This completes the proof.
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Theorem 5.5. Let X be a topological space, (Y ; Γ) be an abstract convex
space, and T ∈ RC(Y, X) be a compact map. Let I be any index set, {Z i}i∈I and
{Vi}i∈I be two families of nonempty sets. For each i ∈ I , let F i : X × Zi � Vi,
Ci : X � Vi and Qi : Y � Zi be three maps satisfying the following conditions:

(i) for each x ∈ X , {zi ∈ Zi : Fi(x, zi) ⊂ Ci(x)} �= ∅ implies that there exist
a neighborhood N i(x) of x and z ′i ∈ Zi such that Fi(x′, z′i) ⊂ Ci(x′) for all
x′ ∈ Ni(x);

(ii) for each x ∈ X , {y ∈ Y : Fi(x, zi) ⊂ Ci(x), for some zi ∈ Qi(y)} is
Γ-convex;

(iii) for each y ∈ Y , x ∈ T (y) and zi ∈ Qi(y), we have Fi(x, zi) �⊂ Ci(x);
(iv) Qi(Y ) = Zi.

Then there exists x̄ ∈ X such that Fi(x̄, zi) �⊂ Ci(x̄) for each i ∈ I and zi ∈ Zi.

Proof. For each i ∈ I , define Pi : X � Zi by

Pi(x) = {zi ∈ Zi : Fi(x, zi) ⊂ Ci(x)}, ∀x ∈ X.

Similar to the proof of Theorem 5.3, we can verify that all the conditions of Theorem
4.2 are satisfied. Thus, Theorem 4.2 shows that there exists x̄ ∈ X such that
Pi(x̄) = ∅ for each i ∈ I , i.e., Fi(x̄, zi) �⊂ Ci(x̄) for each i ∈ I and zi ∈ Zi. This
completes the proof.

Theorem 5.6. Let X be a topological space, (Y ; Γ) be an abstract convex
space, and T ∈ RC(Y, X) be a compact map. Let I be any index set, {Z i}i∈I and
{Vi}i∈I be two families of nonempty sets. For each i ∈ I , let F i : X × Zi � Vi,
Ci : X � Vi and Qi : Y � Zi be three maps satisfying the following conditions:

(i) for each x ∈ X , {zi ∈ Zi : Fi(x, zi) ∩ Ci(x) �= ∅} �= ∅ implies that there
exist a neighborhood N i(x) of x and z ′i ∈ Zi such that Fi(x′, z′i)∩Ci(x′) �= ∅
for all x′ ∈ Ni(x);

(ii) for each x ∈ X , {y ∈ Y : Fi(x, zi) ∩ Ci(x) �= ∅, for some zi ∈ Qi(y)} is
Γ-convex;

(iii) for each y ∈ Y , x ∈ T (y) and zi ∈ Qi(y), we have Fi(x, zi) ∩ Ci(x) = ∅;
(iv) Qi(Y ) = Zi.

Then there exists x̄ ∈ X such that Fi(x̄, zi)∩Ci(x̄) = ∅ for each i ∈ I and zi ∈ Zi.

Proof. For each i ∈ I , define Pi : X � Zi by

Pi(x) = {zi ∈ Zi : Fi(x, zi) ∩ Ci(x) �= ∅}, ∀x ∈ X.
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Similar to the proof of Theorem 5.3, we can verify that all the conditions of Theorem
4.2 are satisfied. Thus, Theorem 4.2 shows that there exists x̄ ∈ X such that
Pi(x̄) = ∅ for each i ∈ I , i.e., Fi(x̄, zi) ∩ Ci(x̄) = ∅ for each i ∈ I and zi ∈ Zi.
This completes the proof.

Remark 5.5. If Y is a convex subset of a topological vector space, Γ = co and
I is a singleton, then Theorems 5.3, 5.4, 5.5 and 5.6 reduce to Theorem 9 in [1].
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