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L2-CURVATURE BOUND FOR PSEUDOHOLOMORPHIC CURVES
IN SYMPLECTISATIONS

Shih-Tsai Feng

Abstract. We provide an L2-bound for pseudoholomorphic curves in symplec-
tisation of contact manifolds which is the first step for compactness theorem
in symplectic field theory introduced by Eliashberg, Givental and Hofer.

1. INTRODUCTION

It is now well-known that compactness theorem plays a fundamental rule in the
theory of pseudoholomorphic curves. The Gromov-Witten invariant can be defined
through the intersection of a suitable compactified moduli space of pseudoholomor-
phic curves. If the ambient manifold is closed, compactness result was first proved
by Parker and Wolfson [8], through a detailed bubbling-off analysis. The method
was more systematically treated by Ruan and Tian in [9]. A key step in the bubbling-
off which leads to the structure of degeneration of pseudoholomorphic curves is an
L2 estimate of some geometric quantity of the pseudoholomorphic curves. In the
colsed case, the energy of the pseudoholomorphic curve gives a natural L2-bound,
on which the bubbling-off analysis is based. The situatin is different if the ambient
manifold is non-compact or with boundary. In this paper we provide an L2-bound
for the curvature when the ambient manifold is symplectisation of contact manifold.
The idea of proof is a construction of Hofer et al in [2, 3].

2. PERIODIC ORBITS AND LOCAL CORDINATES NEAR THE ENDS

First, we will introduce necessary preliminaries that is needed for our computa-
tioins in later section. We remark that the notions introduced here are quite general
so that symplectic manifold with contact boundary is a special case.

Received June 30, 2008, accepted September 27, 2008.
Communicated by Shu-Cheng Chang.
2000 Mathematics Subject Classification: 57R17.
Key words and phrases: Symplectisation, Compactness theorem.

1



2 Shih-Tsai Feng

Let (M̃, ξ) be a (2n + 1)-dimensional contact manifold with contact structure
ξ. The manifold is called so-oriented if we can choose an one form λ, called the
contact form, so that ξ = kerλ. By Frobenius’ theorem the contact condition is the
maximal non-integrability of the tangent hyperplane field ξ. This is equivalent to say
that (dλ)n∧λ is a volume form on M̃ and dλ|ξ gives a symplectic structure making
(ξ, dλ|ξ ) a symplectic vector bundle over M̃ . There is a unique nonvanishing vector
field on TM̃ such that ιXλ = 1 and ιXdλ = 0; X = Xλ is called the Reeb vector
field of λ. With this, the tangent bundle T M̃ splits

TM̃ = ξ ⊕ RX.

For each contact manifold (M̃, ξ), we can associate a manifold M = (TM̃/ξ)�

\M̃, called the symplectization of (M̃, ξ). A choice of the contact form λ then
defines a splitting M = M̃ × (R\0).

The sympletization of a contact manifold is an example of a symplectic manifold
with cylindrical ends. A possibly non-compact symplectic manifold (W, ω) is called
a directed symplectic cobordism if the following holds. It has ends of the form
E+ = M̃+× [0,∞) and E− = M̃−×(−∞, 0] such that M̃± are contact manifolds
and ω |M̃±= d(etλ±), where λ± are the contact forms on M̃±. We also denote a

directed symplectic cobordism by
−−−−−→
M̃−M̃+. In particular the ends can be of finite

length and if it has infinite R-length, we will call it a complete directed symplectic
cobordism.
The case which is of particular interest to us is the following. Let (M, ω) be a
symplectic manifold and M̃ ⊂ M be a contact hypersurface dividing M into two
parts W−, W+. Then near M̃ , ω is of the form ω = dβ for some one form β on M ,
and λ = β |M̃ defines a contact form on M̃ . We can construct two new complete
directed symplectic cobordisms from the above situation by setting

(W∞
− , ω∞

− ) = (W−, ω)
⋃

(M̃ × [0,∞], d(etλ))

and
(W∞

+ , ω∞
+ ) = (M̃ × (−∞, 0], d(etλ))

⋃
(W+, ω).

Now let (Σn, ũn) be a sequence of J-holomorphic maps. Here Σn is a Riemann
surface of genus g with s+ positive punctures x+ = {x+

1 , · · · , x+
s+}, and s− negative

punctures x− = {x−
1 , · · · , x−

s−}, jn is a given complex structures on Σn, and
ũn : Σn −→ M is a J-holomorphic map with finite energy. Here the finite energy
condition is that near the ends of M

(1) E(ũn) = sup
f∈S

∫
Σn

ũ∗
nd(fλ±) < ∞

for each n where S = {f ∈ C∞(R, [0, 1]) | f ′ ≥ 0}.
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For a co-oriented contact manifold (M̃2n+1, ξ, λ) with contact structure ξ and
contact form λ so that ξ = kerλ, let X be the Reeb vector field corresponding to λ,
i.e. ιXλ = 1, ιXdλ = 0. As we have mentioned that ξ = kerλ defines a symplectic
vector bundle over M̃ with symplectic structure dλ | ξ. Since ιXλ = 1 and
ιXdλ = 0, the tangent bundle T M̃ splits into T M̃ = RX ⊕ ξ. Let π : TM̃ −→ ξ

be the projection, then for any h ∈ TM̃ ,

h = λ(h)X + π(h).

Finally choose J̃ to be a dλ | ξ compatible almost complex structure on ξ, so
that

gJ̃(h, k) := dλ | ξ(h, J̃k)

defines a Riemannian metric on ξ.

We will consider the following first order elliptic system for maps:

u = (a, ũ) : C −→ R × M̃

defined by

(2)
πũs + J̃(u)πũt = 0

u�λ ◦ I = da

where z = s + it ∈ C. Introduce an almost complex structure J on R × M̃ , by

J(a,m)(h, k) = (−λm(k), hX(m) + J̃(m)πk)

where (h, k) ∈ T(a,m)(R× M̃). Then it is easy to see that J2 = −1 and hence it is
really an almost complex structure on R × M̃ . For later use we will also consider
the cylindrical coordinates s + it which is given by the biholomorphic map

φ : R × S1 −→ C − {0}
with φ(s + it) = e2π(s+it). The equation (2) is then equivalent to the following
equation.

(3)
u = (a, ũ) : R × S1 −→ R × M̃

us + J(u)ut = 0

As explained above, to get interesting solutions we have to impose the finite
energy condition, and compactness theorem is to consider sequence of maps satisfy-
ing (3) and its convergence property. For this we recall some asymptotic properties
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of maps satisfying due to Hofer et al. In the famous work [ 2 ], Hofer studied
the asymptotic behavior of a J-holomorphic map from an infinite cylinder to the
symplectization of a contact manifold. He showed that for a finite energy map
u = (a, ũ) : R × S1 −→ R × M̃ , there is a sequence Rk −→ ∞ such that
limk→∞ u(Rke

2πit) = x(Tt) in C∞(R). Here T is a period of the Reeb vector
field and x(t) is a T -periodic solutioon of the Reeb vector field. Furthermore if
the solution is non-degenerate then limR→∞ u(Re2πit) = x(Tt) in C∞(R). As a
consequence of this result, we may choose the so-called Darboux coordinate near
the periodic solution x(t) and the computation then becomes a local one.

The above theorem of Hofer is then extended in [ 3 ], they showed that for a finite
energy J-holomorphic map u = (a(s, t), θ(s, t), z(s, t)) from an infinite cylinder,
there is an exponential decay for the components a(s, t),θ(s, t). Furthermore there
is an explicit expression for the component z(s, t) see Theorem 2.8 in [ 3 ]. In the
following computation we will make use of the above two results. Now we begin
the computation of the curvature.

3. L2 ESTIMATE OF THE CURVATURE

Let u = (a, ũ) : R × S1 −→ R × M̃ be a finite energy plane, we want to
compute near the asymptotic limit of u the curvature of R × M̃ restricting to the
image of u, namely we want to compute R(us, ut, us, ut) where R(·, ·, ·, ·) is the
curvature operator and (s, t) is the coordinate on R × S1.

For this purpose, according to Hofer , it is enough to study u = (a, ũ) : [s,∞]×
S1 −→ R × M̃ with s large enough (s ≥ s0 say) in a tubular neighborhood of the
T -periodic solution x(t) of the Reeb vector field, ẋ(t) = X(x(t)).

Choose the so-called Darboux coordinate near x(t) by

S1 × R2n, fλ0

where the positive solution is on S1 × {0}, f is a positive smooth function and
λ = fλ0 is a contact form with

λ0 = dθ +
n∑

i=1

xidyi

being the standard contact form of S1 × R2n. Here we set
(θ, x1, y1, . . .xn, yn) to be the coordinate of M̃ in the tubular neighborhood of

x(t), and (a, θ, x1, y1, . . .xn, yn) to be the coordinates of R × M̃ .
With this coordinate, we compute

dλ =
n∑

i=1

(xifθ − fyi)dθ ∧ dyi +
n∑

i=1

(−fxi)dθ ∧ dxi +
n∑

i=1

(xifxi + f)dxi ∧ dyi
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+
∑
j �=i

xj(fxidxi + fyidyi) ∧ dyj

By considering the equations ιXλ = 1 and ιXdλ = 1 for the Reeb vector field
X , we find

X =
1
f2

[(
f +

n∑
i=1

(xifxi)
∂

∂θ
−

n∑
i=1

((xifθ − fyi)
∂

∂xi
+ fxi

∂

∂yi
)

)]
.

For later use, we will also write X = (Xθ, X1, X
′
1, . . . , Xn, X ′

n), namely

Xi = −xifθ − fyi

f2

X ′
i = −fxi

f2

Xθ =

f +
n∑

i=1

xifxi

f2

Now let ξ = kerλ. To go further, we will introduce a new coordinate system in
the tubular neighborhood of x(t) such that in this coordinate, dλ | ξ takes a simple
form. Set

ei =
∂

∂xi
, e′i = −xi

∂

∂θ
+

∂

∂yi

i=1,2,. . . ,n, then we find

dλ | ξ(ei, e
′
j) =

{
f if i = j

0 otherwise

and dλ | ξ(ei, ej) = dλ | ξ(e′i, e
′
j) = 0, i.e. in {ei, e

′
i}, i = 1, 2, . . . , n

dλ | ξ = f




0 1
−1 0

0 1 0
−1 0

·
·

0 ·
0 1
−1 0




For simplicity, we take the compatible almost complex structure J̃ on ξ to be

J̃ei = e′i
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and
J̃e′i = −ei

i.e. in terms of {ei, e
′
i}, i = 1, 2, . . . , n

J̃ =




0 1
−1 0

0 1 0
−1 0

·
·

0 ·
0 1
−1 0




We also have a simple expression for the metric on TM̃ = RX ⊕ ξ in terms of
coordinates X, e1, e

′
1, . . . , en, e′n. Recall that the metric is defined to be

〈h, k〉 = λ(h)λ(k) + gJ̃(πh, πk)

for h, k ∈ TM̃ , where gJ̃(·, ·) = dλ | ξ(·, J̃·). Now the matrix for 〈·, ·〉 is simply



1
f

f 0
f

·
·

0 ·
f

f




Now we compute R(us, ut, us, ut) mentioned above. For a finite energy cylinder
u = (a, ũ) : R × S1 −→ R × M̃ , where

u(s, t) = (a(s, t), θ(s, t), x1(s, t), y1(s, t), · · · , xn(s, t), yn(s, t)) and R × M̃
has the complete metric < (α, h), (β, h) >= αβ +λ(h)λ(k)+ gJ̃(πh, πk), we first
represent ũs, ũt in terms of the coordinates X, e1, e

′
1, · · · , en, e′n. Recall first that

the equation (3) is equivalent to

(4)

as − λ(ũt) = 0

at + λ(ũs) = 0

πũs + J̃(ũ)πũt = 0.
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Write

(5)
ũs = λ(ũs)X +

n∑
i=1

Aiei +
n∑

i=1

Cie
′
i

ũt = λ(ũt)X +
n∑

i=1

Biei +
n∑

i=1

Die
′
i,

then

(6)

Ai = xi,s + atXi

Ci = yi,s + atX
′
i

Bi = xi,t − asXi

Di = yi,t − asX
′
i

for i = 1, · · · , n. Now (4) is equivalent to

(7)
(xi,s + atXi) + (yi,t − asX

′
i) = 0

−(xi,t − asXi) + (yi,s + atX
′
i) = 0

i = 1, · · · , n.

We begin with the computation of the curvature tensor of R × M̃ with the
complete metric < (α, h), (β, h) >= αβ + λ(h)λ(k)+ gJ̃(πh, πk). Note that most
of the tensors are zero except the following: Rαiαi, Rαi′αi′ , Rαiji, Rαi′ji′ , Rαij′i,
Rαi′j′i′ , Rijij , Ri′ji′j , Rij′ij′ , Ri′j′i′j′ , Rijik, Ri′ji′k, Rij′ik , Ri′j′i′k, Rijik′ , Ri′ji′k′ ,
Rij′ik′ , Ri′j′i′k′ . Here we use the following convention of indices : the index α
always means the direction of X , the index i belongs to {e1, · · · , en} and the index
i′ belongs to {e′1, · · · , e′n}. We then find

(8)

Rαiαi = Rαi′αi′ = f

(
X

(
Xf

2f

)
+
(

Xf

2f

)2
)

Rαiji = Rαi′ji′ = fX

(
ejf

2f

)

Rαij′i = Rαi′j′i′ = fX

(
e′jf
2f

)

Rijij = f

(
ei

(
eif

2f

)
+ ej

(
ejf

2f

))

Ri′ji′j = f

(
e′i

(
e′if
2f

)
+ ej

(
ejf

2f

))

Rij′ij′ = f

(
ei

(
eif

2f

)
+ e′j

(
e′jf
2f

))
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Ri′j′i′j′ = f

(
e′i

(
e′if
2f

)
+ e′j

(
e′jf
2f

))

Rijik = Ri′ji′k = f

(
ej

(
ekf

2f

)
− 2

ejf

2f

ekf

2f

)

Rij′ik = Ri′j′i′k = f

(
e′j

(
ekf

2f

)
− 2

e′jf
2f

ekf

2f

)

Rijik′ = Ri′ji′k′ = f

(
ej

(
e′kf

2f

)
− 2

ejf

2f

e′kf

2f

)

Rij′ik′ = Ri′j′i′k′ = f

(
e′j

(
e′kf
2f

)
− 2

e′jf
2f

e′kf
2f

)

Now we can compute R(us, ut, us, ut). According to the above results about
the curvature tensors, we have to care of the following four kinds of terms Rαkαk,
Rαklk, Rklkl, and Rklkm where the index α still denotes the X direction and k, l,
and m belong to {e1, · · · , en} or {e′1, · · · , e′n}. After some computation, we write
the summatiions corresponding to the above four kinds of terms to be K, L, M and
N and compute them separately. We have

K =
n∑

j=1

f

[
X

(
Xf

2f

)
+
(

Xf

2f

)2
]

· {(−at)Bj(−at)Bj − Aj(as)(−at)Bj − (−at)BjAj(as) + AjasAjas

+ (−at)Dj(−at)Dj − Cj(as)(−at)Dj − (−at)DjCj(as) + CjasCjas}.
Here we have used (6). Take into account of (7), we can further simplify K to

get

K =
n∑

j=1

(
A2

j + C2
j

) (
a2

s + a2
t

)
f

[
X

(
Xf

2f

)
+
(

Xf

2f

)2
]

.

To simplify expression further, we introduce the notation

(9)

| π̃ũs |2 =
n∑

j=1

(A2
j + C2

j )

=
n∑

j=1

[(xj,s + atXj)2 + (yj,s + atX
′
j)

2].

In terms of this, K can be expressed simply as

(10) K =| π̃ũs |2 (a2
s + a2

t )f

[
X

(
Xf

2f

)
+
(

Xf

2f

)2
]

.
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Now we can do the similar computation for L, M and N . For L, we have

L = 2
n∑

i,j=1

fX

(
ejf

2f

)
{(−at)BiAjBi − AiasAjBi + atBiAiBj + AiasAiBj

+ (−at)DiAjDi − CiasAjDi + atDiCiBj + CiasCiBj}

+2
n∑

i,j=1

fX

(
e′jf
2f

)
{(−at)BiCjBi − AiasCjBi + atBiAiDj + AiasAiDj

+ (−at)DiCjDi − CiasCjDi + atDiCiDj + CiasCiDj}

Using (6) and (9), we may further simplify to get

(11) L=2 | π̃ũs |2
n∑

j=1

[
(asCj−atAj) fX

(
ejf

2f

)
−(asAj +atCj) fX

(
e′jf
2f

)]
.

Using the same idea, we may compute the remaining terms M and N . For M ,

M =
n∑

i,j=1

f

(
ei

(
eif

2f

)
+ ej

(
ejf

2f

))

{AiBjAiBj − AjBiAiBj − AiBjAjBi + AjBiAjBi}

+
n∑

i,j=1

f

(
e′i

(
e′if
2f

)
+ ej

(
ejf

2f

))

{CiBjCiBj − AjDiCiBj − CiBjAjDi + AjDiAjDi}

+
n∑

i,j=1

f

(
ei

(
eif

2f

)
+ e′j

(
e′jf
2f

))

{AiDjAiDj − CjBiAiDj − AiDjCjBi + CjBiCjBi}

+
n∑

i,j=1

f

(
e′i

(
e′if
2f

)
+ e′j

(
e′jf
2f

))

{CiDjCiDj − CjDiCiDj − CiDjCjDi + CjDiCjDi}

Using (6) and (9) to get

(12) M = 2 | π̃ũs |2
n∑

j=1

(
A2

j + C2
j

)
f

(
ej

(
ejf

2f

)
+ e′j

(
e′jf
2f

))
.

Finally for N ,
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N = 2
∑
i,j �=k

f

(
ej

(
ekf

2f

)
−2
(

ejf

2f

)(
ekf

2f

))
{A2

i BjBk−AiBi (AjBk+AkBj)

+B2
i AjAk+C2

i BjBk−CiDi (AjBk+AkBj)+D2
i AjAk}

+2
∑
i,j �=k

f

(
e′j

(
ekf

2f

)
−2
(

e′jf
2f

)(
ekf

2f

))
{A2

i DjBk−AiBi (CjBk+AkDj)

+B2
i CjAk+C2

i DjBk−CiDi (CjBk+AkDj)+D2
i CjAk}

+2
∑
i,j �=k

f

(
ej

(
e′kf

2f

)
−2
(

ejf

2f

)(
e′kf
2f

))
{A2

i BjDk−AiBi (AjDk+CkBj)

+B2
i AjCk+C2

i BjDk−CiDi (AjDk+CkBj)+D2
i AjCk}

+2
∑
i,j �=k

f

(
e′j

(
e′kf

2f

)
−2
(

e′jf
2f

)(
e′kf
2f

))
{A2

i DjDk−AiBi (CjDk+CkDj)

+B2
i CjCk +C2

i DjDk−CiDi (CjDk+CkDj)+D2
i CjCk}.

Using (6) and (9), we get

(13)

N = 2 | π̃ũs |2
∑
j �=k

(AjAk + CjCk)

f

(
ej

(
ekf

2f

)
−2
(

ejf

2f

)(
ekf

2f

)
+e′j

(
e′kf

2f

)
−2
(

e′jf
2f

)(
e′kf
2f

))

Now by Theorem 2.8 in [ 3 ], each term Ai, Bi, Ci and Di in the expression
(6) is of exponential decay as s −→ ∞. Hence the leading coefficient | π̃ũs |2
in each term K, L, M and N is of exponential decay as s −→ ∞. Namely by
taking some large positive s0, we have for any J-holomorphic finite energy cylinder
u = (a, ũ) : R+ × S1 −→ M̃ × R+ with asymptotic limit x(t) a fixed T -periodic
solution of the Reeb vector field,

(14) | π̃ũs |2≤ C1e
−C2s

where s ≥ s0 and C1, C2 are constants depending only on the geometry of M̃×R+.
From this we see that for any J-holomorphic finite energy cylinder with asymp-

totic limit x(t), the integral of R(us, ut, us, ut) over [s0,∞) × S1 for large s0 is
bounded by a universal constant CT depending only on the geometry of M̃ × R

+.
Now we have proved the main theorem of the paper.

Theorem 1. Let u = (a, ũ) : R
+×S1 −→ M̃×R

+ be a finite energy cylinder
with asymptotic limit x(t) a T -periodic solution of the Reeb vector field. We have
the expression for the curvature R = R(us, ut, us, ut).
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(15)

R = K + L + M + N

= | π̃ũs |2 {(a2
s + a2

t )f

[
X

(
Xf

2f

)
+
(

Xf

2f

)2
]

+2
n∑

j=1

[
(asCj − atAj)fX

(
ejf

2f

)
− (asAj + atCj)fX

(
e′jf
2f

)]

+2
n∑

j=1

(
A2

j + C2
j

)
f

(
ej

(
ejf

2f

)
+ e′j

(
e′jf
2f

))

+2
∑
j �=k

(AjAk + CjCk) f(ej

(
ekf

2f

)
− 2

(
ejf

2f

)(
ekf

2f

)

+e′j

(
e′kf
2f

)
− 2

(
e′jf
2f

)(
e′kf

2f

)

Fruthermore, there exists an s0 � 1 and a constant CT such that

(16)
∫

[s0,∞)×S1

R(us, ut, us, ut) dµ ≤ CT .

Finally using the Gauss-Bonnet theorem in bundle version we have∫
Σ
| B |2=

∫
Σ

R(us, ut, us, ut) − χ(Σ).

Here B is the square of the second fundamental form for embedded surfaces in a
Riemannian manifold. Note that the origional formula has a term about integral of
the mean curvature on the right hand side. Since in our case the J-holomorphic
map is naturally a minimal surface that term vanishes, and χ(Σ) is the Euler class
of a section of a bundle. Now apply theorem 2, we finally get an L2-estimate for
the square of the second fundamental form B.
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