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LEARNING BY NONSYMMETRIC KERNELS WITH
DATA DEPENDENT SPACES AND �1-REGULARIZER

Quan-Wu Xiao and Ding-Xuan Zhou

Abstract. We study a learning algorithm for regression. The algorithm is a
regularization scheme with �1 regularizer stated in a hypothesis space trained
from data or samples by a nonsymmetric kernel. The data dependent nature
of the algorithm leads to an extra error term called hypothesis error, which is
essentially different from regularization schemes with data independent hypoth-
esis spaces. By dealing with regularization error, sample error and hypothesis
error, we estimate the total error in terms of properties of the kernel, the input
space, the marginal distribution, and the regression function of the regression
problem. Learning rates are derived by choosing suitable values of the reg-
ularization parameter. An improved error decomposition approach is used in
our data dependent setting.

1. INTRODUCTION

In a regression problem, we work with an input metric space (X, d) and an
output space Y = R. A function f : X → Y makes a prediction of the output
y ∈ Y at x ∈ X by f(x). The prediction accuracy may be measured by the least-
square loss (f(x) − y)2. Let ρ be a probability measure on Z := X × Y . The
prediction ability of f is quantitatively measured by the generalization error

E(f) =
∫

Z
(f(x) − y)2 dρ.
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Decompose ρ into the marginal distribution ρX on X and the conditional distri-
butions ρ(y|x) at x ∈ X . The function minimizing E(f) is called the regression
function given by

fρ(x) =
∫

Y
y dρ(y|x), x ∈ X.

Since ρ is usually unknown, fρ cannot be obtained directly. We can learn fρ from
samples. Throughout the paper we assume that a sample z = {zi = (xi, yi)}m

i=1 of
size m is drawn independently according to the measure ρ.

Kernel method is an important tool in learning theory. A well studied kernel-
based algorithm for the regression problem is the least-square regularization scheme.
If K : X × X → R is a continuous positive semi-definite kernel and (HK , ‖ · ‖K)
is the associated reproducing kernel Hilbert space [1], then the scheme is given by

(1.1) fz,λ = arg min
f∈HK

{Ez(f) + λ‖f‖2
K)
}

,

where Ez(f) is the empirical error

Ez(f) =
1
m

m∑
i=1

(f(xi) − yi)
2 ,

and λ > 0 is a regularization parameter. The hypothesis space HK is data indepen-
dent. Mathematical analysis of learning algorithm (1.1) has been well understood
[4, 13, 7, 8].

In this paper we abandon the symmetry (and of course positive semi-definiteness)
of the kernel and consider a regularization scheme with �1-regularizer which is a
learning algorithm associated with data dependent hypothesis spaces [9]. Here a
kernel function K : X × X → R is a continuous function. The hypothesis space
depends on the sample z and is defined by

(1.2) Fz =

{
m∑

i=1

αiKxi : αi ∈ R

}
,

where Kt(·) = K(·, t). The learning algorithm is given by

(1.3) fz,λ = arg min
f∈Fz

{Ez(f) + λΩz(f)} ,

where

Ωz(f) =
m∑

i=1

|αi| for f =
m∑

i=1

αiKxi .
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Example 1. Let ϕ and ϕ̃ be two continuous functions on R
n bounded by

C0(1 + |x|)−(n+1)/2 with some constant C0. For s > n/2, the kernel

Φ(x, t) =
∞∑

j=0

2j(n−2s)
∑
k∈Zn

ϕ(2jx − k)ϕ̃(2jt − k), x, t ∈ R
n

is applicable to algorithm (1.3) for any X ⊂ R
n. This nonsymmetric kernel appears

naturally in the study of dual wavelets or frames in wavelet analysis [6, 11]. It has the
flexibility of having good representation for fz,λ while keeping strong approximation
ability.

The �1-regularizer often leads to some sparse properties, as shown in [5], which
will be discussed for algorithm (1.3) somewhere else.

In this article, we mainly consider how fast fz,λ approximates fρ as m increases.
Learning rates will be given in terms of properties of the input space X , the measure
ρ, and the kernel K.

Definition 1. The covering number N (X, r) of the metric space X is the
minimal l ∈ N such that there exist l open balls in X with radius r covering X .

Covering numbers are used to describe the complexity of X . We shall assume

(1.4) N (X, r) ≤ Cη

(
1
r

)η

∀0 < r ≤ 1

for some η > 0 and Cη > 0.

Definition 2. A probability measure ρX on X is said to satisfy condition Lτ

with 0 < τ < ∞ if there exists some Cτ > 0 such that for any ball B(x, r) = {u ∈
X : d(u, x) < r}, we have

(1.5) ρX (B(x, r)) ≥ Cτ rτ ∀x ∈ X, 0 < r ≤ 1.

Remark 1. When X ⊂ R
n, condition (1.4) is valid with η = n. If moreover,

X satisfies a cone condition given in [2] and ρ is the uniform distribution on X ,
then (1.5) holds with τ = n, and Cτ depends on X .

Definition 3. We say that the kernel K satisfies a Lipschitz condition of order
(α, β) with 0 < α, β ≤ 1 if for some Cα, Cβ > 0, we have

(1.6) |K(x, t)− K(x, t′)| ≤ Cα(d(t, t′))α, ∀x, t, t′ ∈ X

and

(1.7) |K(x, t)− K(x′, t)| ≤ Cβ(d(x, x′))β, ∀t, x, x′ ∈ X.
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The kernel K defines an integral operator LK : L2
ρX

→ L2
ρX

by

LKf(x) =
∫

X

K(x, t)f(t)dρX(t), x ∈ X.

Since X is compact and K is continuous, LK and its dual LT
K are compact operators,

and LKLT
K : L2

ρX
→ L2

ρX
is a self-adjoint positive operator with decreasing eigen-

values {λ2
k}∞k=1 (with λk ≥ 0) and eigenfunctions {φk}∞k=1 forming an orthonormal

basis of L2
ρX

.
Define |LK |s = (LKLT

K)
s
2 to be the operator on L2

ρX
given by

|LK|s(
∞∑

k=1

ckφk) =
∞∑

k=1

ckλ
s
kφk, {ck}k ∈ �2.

We shall assume a regularity condition that fρ lies in the range of |LK|s for some
s > 0.

Now we can state our main result. Throughout the paper we assume |y| ≤ M

almost surely.

Theorem 1. Suppose X satisfies (1.4) with η > 0, the kernel K satisfies a
Lipschitz condition of order (α, β) with 0 < α, β ≤ 1, ρ X satisfies condition L τ

with τ > 0, and fρ lies in the range of |LK |s for some 0 < s ≤ 2. Let λ = m−θ

with θ > 0. Denote

Θ = min
{

1
1+η/β

− 2θ, 1− 2θ(2−s)
s+2

,
1
2
− 2θ(1−s)

s+2
,
α

τ
− 2θ(2−s)

s+2
,

2θs

s+2

}
.

Then for any 0 < δ < 1, with confidence 1 − δ it holds that

‖fz,λ − fρ‖2
L2

ρX
≤ C

(
log

4
δ

+ log(m + 1)
)max{1, α

τ }
m−Θ.

where C is a constant independent of m or δ.

The proof of Theorem 1 will be given in Section 6 where the constant C is given
explicitly. Note that E(f) − E(fρ) = ‖f − fρ‖2

L2
ρX

for any measurable function f .
A special case of Theorem 1 is the following learning rate when K is Lipschitz

on X × X (α = β = 1) and fρ lies in the range of LKLT
K (s = 2).

Corollary 1. Assume K is Lipschitz and f ρ lies in the range of LKLT
K . Suppose

X satisfies (1.4) with η > 0 and ρX satisfies condition L τ with τ ≥ 1. Then with
confidence 1 − δ,

‖fz,λ − fρ‖2
L2

ρX
≤ C

(
log

4
δ

+ log(m + 1)
)

m−Θ,
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where

Θ =


1

3(1 + η)
, if τ ≤ 3(1 + η), λ = m

− 1
3(1+η) ,

1
τ
, if τ > 3(1 + η), λ = m−θ with 1

τ
≤ θ ≤ τ − (1 + η)

2τ(1 + η)
.

Remark 2. By restricting to the support of ρX , condition (1.4) with τ < ∞
is a reasonable assumption. The index τ measures the degree of uniformality of
the distribution ρX on X . When η = n and τ = n, we see that the learning
rate in Corollary 1 is O(m− 1

3(1+n) ) which is very low. This is mainly due to an
error term called hypothesis error below, caused by the data dependent nature of
algorithm (1.3). The estimate for this error term we obtain in Section 4 is based on
the Lipschitz-α regularity of the kernel K , which might be improved when higher
order regularities of K are imposed (as for bounding covering numbers in [14] and
estimating local approximation error for scattered data interpolation [10]). This is
an interesting topic for further study.

2. ERROR DECOMPOSITION

A useful approach for getting learning rates for regularization schemes with
sample independent hypothesis spaces is error decomposition [8] which decomposes
the total error ‖fz,λ−fρ‖L2

ρX
into the sum of a sample error and a regularization

error (or approximation error). The main difficulty with algorithm (1.3) is the
dependence of the hypothesis space Fz on the data z. This was pointed out in [9]
where a modified error decomposition technique is introduced by means of an extra
hypothesis error. Our setting here is more general than that in [9] because the kernel
K here is not necessarily symmetric. Our purpose is to complete the error analysis
of algorithm (1.3) in this more general setting. Estimates for the regularization error
and sample error are new while key ideas for bounding the hypothesis error are
from [9].

We consider the Banach space F0 consisting of all functions of this form

f =
∞∑

j=1

αjKxj , {αj} ∈ �1, {xj} ⊂ X

with the norm

‖f‖ = inf


∞∑

j=1

|αj| : f =
∞∑

j=1

αjKxj

 .

Since X is compact, F0 can be regarded as a subset of C(X) with the inclusion
map I : F0 → C(X) bounded as
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(2.1) ‖f‖∞ ≤ κ‖f‖ ∀f ∈ F0

with κ = ‖K‖C(X×X). Note that Fz ⊂ F0 for any z ∈ Zm.
To formulate the error decomposition for algorithm (1.3), we introduce a regu-

larizing function as

(2.2) fλ = arg min
f∈F0

{E(f) + λ‖f‖} .

We can always replace fλ by a sequence of approximating functions in our analysis
if a minimizer of (2.2) does not exist.

Definition 4. The sample error for algorithm (1.3) is defined as

S(z, λ) = E(fz,λ)− Ez(fz,λ) + Ez(fλ) − E(fλ).

The hypothesis error takes the form

P(z, λ) = {Ez(fz,λ) + λΩz(fz,λ)} − {Ez(fλ) + λ‖fλ‖} ,

while the regularization error is given by

D(λ) = E(fλ) − E(fρ) + λ‖fλ‖ = inf
f∈F0

{E(f) − E(fρ) + λ‖f‖} .

Then we have the following error decomposition.

Lemma 1. Let fz,λ be defined by (1.3) with λ > 0. Then

(2.3) ‖fz,λ − fρ‖2
L2

ρX
≤ S(z, λ) + P(z, λ) + D(λ).

Proof. A simple computation shows that

S(z, λ) + P(z, λ)+ D(λ) = E(fz,λ) − E(fρ) + λΩz(fz,λ).

But Ωz(fz,λ) ≥ 0. So the desired bound (2.3) follows from the identity E(fz,λ) −
E(fρ) = ‖fz,λ − fρ‖2

L2
ρX

.

3. ESTIMATING THE REGULARIZATION ERROR

Since K is not assumed to be symmetric, the regularization error needs to be
bounded in a way different from that for positive definite kernels [7, 8].
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Lemma 2. Let λ2
k be the positive eigenvalues of LKLT

K , and φk be the corre-
sponding normalized eigenfunctions in L 2

ρX
. Then,∑

k

λ2
k ≤ κ2 and ‖φk‖ ≤ 1

λk
.

Proof. Define a kernel K̃ : X × X → R by

K̃(u, v) =
∫

X

K(u, x)K(v, x)dρX(x).

It is easy to verify that K̃ is a Mercer kernel with ‖K̃‖C(X×X) ≤ κ2, and LK̃ =
LKLT

K .
By Mercer’s Theorem (e.g. [3]) we know that∑

k

λ2
k =

∑
k

λ2
k

∫
X

φk(x)2dρX(x) =
∫

X
K̃(x, x)dρX(x) ≤ κ2.

Observe that

φk =
1
λ2

k

LKLT
Kφk =

1
λ2

k

LK̃φk =
1
λ2

k

∫
X

∫
X

K(·, x)K(v, x)φk(v)dρX(v)dρX(x).

Then φk can be written as

φk =
∫

X

{
1
λ2

k

∫
X

K(v, x)φk(v)dρX(v)
}

KxdρX(x),

a linear combination of the functions Kx(x ∈ X) with coefficients
∫
X K(v, x)φk(v)

dρX(v). So by the definition of the norm ‖ · ‖ we have

‖φk‖ ≤
∫

X

∣∣∣∣ 1
λ2

k

∫
X

K(v, x)φk(v)dρX(v)
∣∣∣∣dρX(x) =

1
λ2

k

∫
X

∣∣LT
Kφk(x)

∣∣dρX(x).

By the Schwarz inequality,

‖φk‖ ≤ 1
λ2

k

‖LT
Kφk‖L2

ρX
=

1
λ2

k

√
〈LKLT

Kφk, φk〉L2
ρX

=
1
λk

.

This proves the desired bounds.

The first inequality above can be easily seen from the trace of the integral
operator LK̃ associated with the symmetric kernel K̃, while the second inequality
cannot since the norm ‖ · ‖ is different from ‖ · ‖K̃ .

The regularization error D(λ) can now be bounded as follows.
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Proposition 1. If fρ = |LK |sg for some 0 < s ≤ 2 and g ∈ L2
ρX

, then

(3.1) D(λ) ≤ C1λ
2s

s+2 ∀λ > 0,

where C1 = ‖g‖2
L2

ρX

+ κ‖g‖L2
ρX

.

Proof. By annihilating eigenfunctions with zero eigenvalues, we may write
g =

∑
λk>0 akφk. Then ‖g‖2

L2
ρX

=
∑

λk>0 a2
k < ∞ and fρ =

∑
λk>0 akλ

s
kφk.

If 0 < λ ≤ λs+2
1 , then there exists some N ∈ N such that λN+1 < λ

1
s+2 ≤ λN .

Choose f =
∑N

k=1 akλ
s
kφk. For 1 ≤ k ≤ N , we have λk ≥ λN ≥ λ

1
s+2 . So by

Lemma 2 and the Schwarz inequality we obtain

‖f‖ ≤
N∑

k=1

|ak|λs
k‖φk‖ ≤

N∑
k=1

|ak|λs−1
k

=
N∑

k=1

|ak|λs−2
k λk ≤ λ

s−2
s+2

N∑
k=1

|ak|λk ≤ κ‖g‖L2
ρX

λ
s−2
s+2 .

On the other hand,

‖f − fρ‖2
L2

ρX
=

∥∥∥∥∥∑
k>N

akλ
s
kφk

∥∥∥∥∥
2

L2
ρX

=
∑
k>N

a2
kλ2s

k ≤ λ
2s

s+2‖g‖2
L2

ρX
.

Then

(3.2) D(λ) ≤ ‖f − fρ‖2
L2

ρX
+ λ‖f‖ ≤

(
‖g‖2

L2
ρX

+ κ‖g‖L2
ρX

)
λ

2s
s+2 .

If λ > λs+2
1 , by taking f = 0 ∈ F0 we still have

D(λ) ≤ ‖fρ‖2
L2

ρX
=
∑
λk>0

a2
kλ2s

k ≤
∑
λk>0

a2
kλ2s

1 ≤ ‖g‖2
L2

ρX
λ

2s
s+2 .

This in connection with (3.2) tells us that (3.1) holds true.

Notice from Proposition 1 that if fρ = |LK |sg for some 0 < s ≤ 2 and g ∈ L2
ρX

,
then

(3.3) ‖fλ‖ ≤ C1λ
s−2
s+2 ∀λ > 0.
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4. ESTIMATING THE HYPOTHESIS ERROR

In this section we bound the hypothesis error P(z, λ) by using ideas of Propo-
sition 11 and Theorem 9 in [9].

Definition 5. A point set {x1, . . . , xm} ⊂ X is said to be ∆-dense if for every
x ∈ X there exists some 1 ≤ i ≤ m such that d(x, xi) ≤ ∆.

Lemma 3. If ρX satisfies condition L τ with τ > 0, and {xi}m
i=1 is a sample

independently drawn from ρX , then for any 0 < δ < 1, with confidence 1 − δ
2 ,

{xi}m
i=1 is ∆-dense provided that ∆ > 0 satisfies

(4.1) logN (X,
∆
2

) − mCτ

2τ
∆τ ≤ log

δ

2
.

Proof. Let {Bj, j = 1, . . . ,N = N (X, ∆
2 )} be balls with radius ∆

2 covering
X . By the definition of condition Lτ , ρX(Bj) ≥ Cτ

(
∆
2

)τ holds for each j. Hence
the probability for the event {xi}m

i=1

⋂
Bj = ∅ is at most

(
1 − Cτ

(
∆
2

)τ)m
. So

the probability for {xi}m
i=1

⋂
Bj = ∅ to be true for at least one j ∈ {1, . . . , m} is

at most

N
(

1 − Cτ

(
∆
2

)τ)m

≤ N exp
{
−mCτ

(
∆
2

)τ}
.

It follows that with confidence at least 1 − N exp
{
−mCτ

(
∆
2

)τ}, none of the
events {xi}m

i=1

⋂
Bj = ∅ with j = 1, . . . ,N happens. That means, each ball Bj

contains at least one sample point, which implies that {x i}m
i=1 is ∆-dense in X .

This proves our conclusion.

Lemma 4. If {xi}m
i=1 is ∆-dense in X , fρ lies in the range of |LK |s for some

0 < s ≤ 2, and the kernel K satisfies (1.6), then

P(z, λ) ≤ 2Cα

(
C2

1κλ
2(s−2)

s+2 + C1Mλ
s−2
s+2

)
∆α.

Proof. Since fλ ∈ F0 satisfies ‖fλ‖ ≤ C1λ
s−2
s+2 by (3.3), for any ι > 0, it can

be written as fλ =
∑∞

j=1 βjKtj with tj ∈ X and

(4.2) ‖fλ‖ ≤
∞∑

j=1

|βj| ≤ ‖fλ‖ + ι ≤ C1λ
s−2
s+2 + ι.
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Then there exists some N0 ∈ N such that
∑∞

j=N0+1 |βj| ≤ ι and

(4.3)

∥∥∥∥∥∥
N0∑
j=1

βjKtj − fλ

∥∥∥∥∥∥
∞

≤ κ

∥∥∥∥∥∥
∞∑

j=N0+1

βjKtj

∥∥∥∥∥∥ ≤ κι.

Since {xi}m
i=1 is ∆-dense in X , for every tj , there exists some x(tj) ∈ {xi}m

i=1

such that d(x(tj), tj) ≤ ∆. Then from (1.6) and (4.2) we have∥∥∥∥∥∥
N0∑
j=1

βjKx(tj) −
N0∑
j=1

βjKtj

∥∥∥∥∥∥
∞

≤ Cα

N0∑
j=1

|βj|∆α ≤ Cα

(
C1λ

s−2
s+2 + ι

)
∆α.

Combining with (4.3), we have∥∥∥∥∥∥
N0∑
j=1

βjKx(tj) − fλ

∥∥∥∥∥∥
∞

≤ κι + Cα

(
C1λ

s−2
s+2 + ι

)
∆α.

For any f1, f2 ∈ L∞(X) and (x, y) ∈ Z, it holds almost surely

|(f1(x) − y)2 − (f2(x)− y)2| ≤ (‖f1‖∞ + ‖f2‖∞ + 2M)‖f1 − f2‖∞.

Since both L∞(X) norms of
∑N0

j=1 βjKx(tj) and fλ are bounded by κ
(
C1λ

s−2
s+2 + ι

)
,

we have ∣∣∣∣∣∣Ez

 N0∑
j=1

βjKx(tj)

− Ez (fλ)

∣∣∣∣∣∣
≤ 2
(
κC1λ

s−2
s+2 + κι + M

)(
κι + Cα

(
C1λ

s−2
s+2 + ι

)
∆α
)

.

Notice that
∑N0

j=1 βjKx(tj) ∈ Fz. By the definition of fz,λ, we see that

Ez(fz,λ) + λΩz(fz,λ) ≤ Ez

(∑N0
j=1 βjKx(tj)

)
+ λ

∑N0
i=j |βj| can be bounded by

Ez(fλ) + 2
(
κC1λ

s−2
s+2 + κι + M

)(
κι + Cα

(
C1λ

s−2
s+2 + ι

)
∆α
)

+ λ(‖fλ‖+ ι).

Letting ι → 0, we have

Ez(fz,λ)+ λΩz(fz,λ) ≤ Ez(fλ)+ λΩ0(fλ)+ 2Cα

(
C2

1κλ
2(s−2)

s+2 + C1Mλ
s−2
s+2

)
∆α.

This completes the proof of Lemma 4.

The final confidence-based estimation for the hypothesis error is now obtained.
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Proposition 2. If X satisfies (1.4), ρX satisfies condition L τ with τ > 0, fρ

lies in the range of |LK |s for some 0 < s ≤ 2, and K satisfies (1.6), then for any
0 < δ < 1, with confidence 1 − δ

2 it holds

(4.4) P(z, λ) ≤ C2(λ
2(s−2)

s+2 + λ
s−2
s+2 )

(
log(2/δ) + log(m + 1)

m

)α
τ

,

where C2 is a constant independent of λ, m or δ.

Proof. We need to find a solution ∆ to (4.1) in order to bound the hypothesis
error by Lemma 4. To this end, we consider the strictly decreasing function h on
(0,∞) defined by

h(t) = logN
(

X,
t

2

)
− mCτ

2τ
tτ .

Take

∆ = Ã

(
log(2/δ) + log(m + 1)

mCτ

) 1
τ

where
Ã = 2

(
1 +
(η

τ

) 1
τ + C

1
η
η C

1
τ
τ

)
.

Then we apply bound (1.4) for the covering number and see that

h(∆) ≤ log
(

Cη

(
2
Ã

)η)

+
η

τ
log
(

mCτ

log(2/δ) + log(m + 1)

)
− Ãτ

2τ
(log(2/δ) + log(m + 1)) .

From the definition of Ã, we see that Ã ≥ 2, η
τ ≤ ( Ã

2 )τ , and Ãη ≥ Cη2ηC
η
τ
τ . It

follows that

h(∆) ≤ log
Cη2ηC

η
τ
τ

Ãη

+
η

τ
logm − η

τ
log log

[
2
δ
(m + 1)

]
− log

2
δ
− Ãτ

2τ
log(m + 1) ≤ log

δ

2
.

That is, ∆ satisfies inequality (4.1). By Lemma 3, with confidence at least 1 − δ
2 ,

{xi}m
i=1 is ∆-dense. Then desired bound (4.4) follows from Lemma 4 with the

constant C2 given by

C2 = 2Cα(C2
1κ + C1M)ÃαC

−α
τ

τ .

The proof of Proposition 2 is complete.
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5. ESTIMATING THE SAMPLE ERROR

Let S1(z, λ) = {Ez(fλ) − Ez(fρ)}−{E(fλ) − E(fρ)} and S2(z, λ) = {E(fz,λ)
−E(fρ)} − {Ez(fz,λ) − Ez(fρ)}, then S(z, λ) = S1(z, λ) + S2(z, λ). We bound
these two parts of the sample error below.

Let ξ(z) = ξ(x, y) = (fλ(x) − y)2 − (fρ(x) − y)2 be a random variable on
Z. Then S1(z, λ) = 1

m

∑m
i=1 ξ(zi)− Eξ. Bounding ‖fλ‖∞ by (3.3) and (2.1), and

bounding the variance of ξ by (3.1), a direct application of the one-side Bernstein
inequality as in [8, 12] yields the following estimation.

Lemma 5. Let 0 < λ ≤ 1. For any 0 < δ < 1, with confidence 1− δ
4 , it holds

that

(5.1) S1(z, λ) ≤ C3

λ
2(s−2)

s+2

m
+

λ
2(s−1)

s+2√
m

 log
4
δ

where C3 = 2
(
κ2C2

1 + 4M2 +
√

κC1(κC1 + 2M)
)
.

It is more difficult to bound S2(z, λ) because it involves the sample z through
fz,λ. We use a probability inequality that handles a class of functions in F0. Such an
inequality uses covering numbers in F0 to describe the complexity of F0. We bound
the covering numbers in F0 firstly, and the following lemma plays an important role.

Lemma 6. Suppose the kernel K satisfies (1.7). For any f ∈ F 0 and ∆ > 0,
we have

|f(x)− f(x′)| ≤ Cβ‖f‖(d(x, x′))β ∀x, x′ ∈ X.

Proof. Let ι > 0. The function f can be written as f =
∑∞

j=1 αjKtj such
that tj ∈ X and

‖f‖ ≤
∞∑

j=1

|αj| ≤ ‖f‖ + ι.

Then for x, x′ ∈ X , we have

|f(x)−f(x′)|=
∣∣∣∣∣∣
∞∑

j=1

αjK(x, tj)−
∞∑

j=1

αjK(x, tj)

∣∣∣∣∣∣≤sup
t∈X

|K(x, t)−K(x′, t)|
∞∑

j=1

|αj|.

This in connection with (1.7) implies

|f(x)− f(x′)| ≤ Cβ(d(x, x′))β(‖f‖+ ι).
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Letting ι → 0, we get what the lemma states.

Denote BR = {f ∈ F0 : ‖f‖ ≤ R}. Recall that I(B1) is a subset of C(X).
We are interested in its covering numbers N (I(B1), r).

Lemma 7. Let K satisfy (1.7) and X satisfy (1.4). Then for any 0 < r ≤ 1,

logN (I(B1), r) ≤ Cη

(
4Cβ

r

) η
β

log
(

2 +
4κ

r

)
.

Proof. Let ∆ = (r/4Cβ)
1
β . Take x = {xi}N

i=1 with N = N (X, ∆) such that
x is ∆-dense in X .

Any function f ∈ B1 is continuous and

‖f‖C(X) ≤ κ‖f‖ ≤ κ.

So −κ ≤ f(xi) ≤ κ for each i. Hence, (vi − 1)r/2 ≤ f(xi) ≤ vir/2 for some
vi ∈ J = {−n + 1, . . . , n} where n = [2κ/r] is the smallest integer larger than
2κ/r.

For v = (v1, . . . , vN) ∈ JN , define

Vv = {f ∈ B1 | (vi − 1)r/2 ≤ f(xi) ≤ vir/2, ∀ i = 1, . . . , N} .

Then I(B1) =
⋃

v∈JN I(Vv). If f, g ∈ Vv, then by Lemma 6, for each i ∈
{1, . . . , N},

max
d(x,xi)≤∆

|f(x)− g(x)| ≤ |f(xi) − g(xi)| + max
d(x,xi)≤∆

|f(x)− f(xi)|

+ max
d(x,xi)≤∆

|g(x)− g(xi)|

≤ r/2 + 2Cβ∆β = r.

But
‖f − g‖C(X) = max

1≤i≤N
max

d(x,xi)≤∆
|f(x) − g(x)|.

Therefore, I(Vv) has radius at most r as a subset of C(X). That is, {I(Vv)}v∈JN

is an r-covering of I(B1). Therefore N (I(B1), r) is bounded by the number of
sets of type Vv with v ∈ JN . Hence,

logN (I(B1), r) ≤ N log(2n) ≤ N (X, ∆) log
(

2 +
4κ

r

)
,

and the desired estimate holds true.
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For every ε > 0 and R ≥ M , the following inequality as a uniform law of large
numbers for a class of functions can be easily seen as Proposition 8.15 in [3]

(5.2)
Prob

{
sup

f∈BR

E(f) − E(fρ) − (Ez(f) − Ez(fρ))√E(f)− E(fρ) + ε
≤ √

ε

}

≥ 1 −N
(

I(B1),
ε

(κ + 3)2R2

)
exp
{
− mε

54(κ + 3)2R2

}
.

With this inequality, we have the following bound for S2(z, λ).

Lemma 8. Let K satisfy (1.7) and X satisfy (1.4). If 0 < λ ≤ 1, then with
confidence 1 − δ

4 , it holds that

(5.3) S2(z, λ) ≤ 1
2

(E(fz,λ)− E(fρ)) +
C4(log(4/δ) + log(m + 1))

λ2
m

− 1
1+η/β ,

where C4 is independent of m, λ or δ.

Proof. Let g : R+ → R be the function given by

g(r) = logN (I(B1), r)− mr

54
.

Then g is strictly decreasing and for each 0 < δ ≤ 1 there is a unique minimum
r = ε∗(m, δ/4) satisfying g(r) ≤ log(δ/4).

Take
r̃ = max

{
108 log(4/δ)

m
, B̃m

− 1
1+η/β log(m + 1)

}
where

B̃ =
{

108Cη(4Cβ)η/β[log(2 + 4κ) + 1]
} 1

1+η/β + 2.

Then mr̃
108 ≥ log 4

δ and by Lemma 7,

g(r̃) ≤ Cη

(
4Cβ

r̃

) η
β

log
(

2 +
4κ

r̃

)
− mr̃

108
− log

4
δ

≤ Cη

(
4Cβ

r̃

) η
β

{
log
(

2 +
4κ

r̃

)
− mr̃1+ η

β

108Cη(4Cβ)
η
β

}
− log

4
δ
.

The definition of r̃ tells us that log 1
r̃ ≤ log

[
1

B̃ log(m+1)
m

1
1+η/β

]
≤ 1

1+η/β
logm.

Then

g(r̃) ≤ Cη

(
4Cβ

r̃

) η
β
{

log (2 + 4κ) +
1

1 + η/β
log m

− B̃
1+ η

β

108Cη(4Cβ)η/β
(log(m + 1))1+η

β

}
+ log

δ

4
≤ log

δ

4
.
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Therefore ε∗(m, δ/4) ≤ r̃.
By taking f = 0 in the definition (1.3) of fz,λ, we see that

λ‖fz,λ‖ ≤ Ez(fz,λ) + λΩz(fz,λ) ≤ Ez(0) ≤ M2.

So fz,λ ∈ BR with R = M 2/λ. Take ε = (κ + 3)2R2ε∗(m, δ/4) in (5.2). With
confidence 1 − δ

4 , we have

S2(z, λ) ≤ 1
2

(E(fz,λ) − E(fρ)) + (κ + 3)2R2ε∗(m, δ/4)

≤ 1
2

(E(fz,λ) − E(fρ)) +
(κ + 3)2M4

λ2
r̃.

Thus the desired bound holds true with C4 := (κ + 3)2M4 max{108, B̃}.

6. DERIVING THE LEARNING RATE

We can now derive the learning rate by combining the results obtained in Propo-
sition 1, Proposition 2, Lemma 5 and Lemma 8.

Proof. [Proof of Theorem 1]. Let λ = m−θ with θ > 0. We have 0 < λ ≤ 1.
From (3.1) of Proposition 1, we know that D(λ) ≤ C1m

− 2θs
s+2 .

By Proposition 2, with confidence 1− δ
2 ,

P(z, λ) ≤ 2C2

(
log

2
δ

+ log(m + 1)
)α

τ

m
2θ(2−s)

s+2
−α

τ .

By Lemma 5, with confidence 1 − δ
4 ,

S1(z, λ) ≤ C3 log
4
δ
m

−min
{

1− 2θ(2−s)
s+2

, 1
2
− 2θ(1−s)

s+2

}
.

Combining the above estimates with Lemma 8 and Lemma 1, we see that with
confidence 1 − δ,

‖fz,λ − fρ‖2
L2

ρX
≤ 1

2
‖fz,λ − fρ‖2

L2
ρX

+ C

(
log

4
δ

+ log(m + 1)
)max{1, α

τ }
m−Θ,

where C = C3 + C4 + 2C2 + C1 is a constant independent of m or δ. The proof
of Theorem 1 is complete.
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