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PERSISTENCE OF UNIFORMLY HYPERBOLIC
LOWER DIMENSIONAL INVARIANT TORI

OF HAMILTONIAN SYSTEMS

Lei Jiao

Abstract. In this paper, we prove that the normally uniform-hyperbolic lower
dimensional invariant tori of the un-perturbed system will persist under small
perturbations. The proof is based on the theory of exponentially dichotomous
linear systems and an improved KAM machinery adapted for the perturbations
of angle dependent unperturbed parts.

1. INTRODUCTION

In recent decades, persistence of invariant tori has been extensively studied by
many authors (see, e.g., [5, 6, 9, 8, 13, 15, 20, 21, 25, 27, 28]). The first persistence
result of the hyperbolic lower dimensional tori, given by Moser in [18], was for the
following Hamiltonian system:

H = e + 〈ω, y〉+
1
2
〈y, Ay〉+

1
2
〈z, Mz〉+ P (x, y, z)

where (x, y, z) ∈ T
n × R

n × R
2m, ω ∈ R

n is a fixed Diophantine toral frequency,
A, M are n × n, 2m × 2m non-singular constant matrices respectively, JM (J is
the standard symplectic matrix in the normal phase space) is hyperbolic with all
eigenvalues being real and distinct, and P is a small perturbation. In [10], Graff
generalized Moser’s result under the hyperbolic condition that the eigenvalues of
JM have nonzero real part. For the Lindstedt series approach to the persistence
of hyperbolic tori in Hamiltonian systems, we refer the reader to [7, 12]. In the
papers mentioned above, M is often taken to be a constant matrix. In [29], under
the positive condition
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Re〈Ω(x)ξ, ξ〉 ≥ µ|ξ|2, ξ ∈ C
m, µ > 0,

Zehnder proved the persistence of lower dimensional invariant tori of the Hamilto-
nian system

h(x, y, z+, z−) = e + 〈ω, y〉+ 〈Ω(x)z+, z−〉 + O3(|y|+ |z+| + |z−|),

by implicit function theorem, where (x, y, z) ∈ Tn × Rn × C2m, z = (z+, z−).
In [3] ([4]), under the similar positive condition as that in [29], the persistence
of the lower dimensional hyperbolic invariant tori of the Hamiltonian system (with
degeneracy)

H(x, y, z) = h(y) + 〈z−, Ω(x, y)z+〉 + R(x, y, z)

is achieved by KAM theory. Here the coefficients matrix Ω could depend on the
action variable y, but it’s not essential. In the above three cases, the coefficients
matrix M in the normal direction z = (z+, z−) may be far from x-independent
matrices, but M has the special form

M =
(

0 Ω
ΩT 0

)
.

In 2005, Li and Yi [16] further generalized the Graff-Zehnder result to the following
more general Hamiltonian systems

H = e(λ) + 〈ω(λ), y〉+
1
2

〈(
y

z

)
,M(x, λ)

(
y

z

)〉
+ h(x, y, z, λ)+ P (x, y, z, λ)

where (x, y, z) ∈ T
n × R

n × R
2m, λ is a parameter, the matrix

M(x, λ) =

(
A(x, λ) B(x, λ)

B(x, λ)T M(x, λ)

)

is symmetric and the matrix B and M are close to some constant matrix (i.e., close
to matrices independent on x), h(x, y, z, λ) = O(|(y, z)|3) and P is a small pertur-
bation. The lower dimensional tori considered by Li and Yi in [16] is hyperbolic.
The main innovation of their paper is to define the hyperbolicity by the average of
M(x, λ) instead of M(x, λ) which applies to more general situations.

In this paper, we give a persistence result of lower dimensional invariant tori
of Hamiltonian systems with more general form of M by assuming that the un-
perturbed tori are uniformly hyperbolic (or exponentially dichotomous in the other
terminology). For simplicity, we consider the real analytic Hamiltonian systems of
the form



Invariant Tori of Hamiltonian Systems 1743

(1.1) H = e(λ) + 〈ω(λ), y〉+
1
2
〈z, M(x, λ)z〉+ P (x, y, z, λ),

where (x, y, z) ∈ T
n ×R

n ×R
2m, λ is a parameter in a bounded closed connected

domain O ⊂ Rk. The functions e, ω, M and P are real analytic on O. The
matrix function M is symmetric, real analytic in x ∈ D(s) = {x ∈ C

n/(2πZ
n) :

|Im x| ≤ s} and the perturbation P is real analytic in a complex neighborhood
D(s, r) = {(x, y, z) : |Im x| ≤ s, |y| ≤ r2, ‖z‖ ≤ r} of Tn×{0}×{0}. we remark
that (1.1) can not be reduced to the special case considered by Zehnder in [29], and
the proof in this paper is valid for a more general case as that considered by Li and
Yi.

In the present paper, we shall use the symbol ‖ · ‖ to denote the Eulidean norm
of vectors and the operator norm of matrices, the symbol | · | to denote the standard
l1-norm in the lattice Zn and the Lebesgue measure of some set in Rk and [·] to
denote the average of a function on the torus. For any two complex vectors ξ, ζ of
the same dimension, 〈ξ, ζ〉 is the standard inner product. Expand P as

P =
∑
k,p,q

Pk,p,q(λ)e
√−1〈k,x〉ypzq.

Define:

|P |lD(s,r) = sup|y|≤r2,‖z‖≤r

∣∣∣∣∣∣
∑
k,p,q

|Pk,p,q(λ)|les|k|ypzq

∣∣∣∣∣∣ ,
where | · |l denotes Cl norm. The Hamiltonian vector field of P is XP = (Py,−Px,
JPz), where J is the 2m × 2m standard symplectic matrix. Define |Py|lD(s,r) =

max1≤i≤n|Pyi |lD(s,r) and ‖Pz‖l
D(s,r) = (

∑2m
j=1(|Pzj |lD(s,r))

2)1/2. |Px|lD(s,r) is sim-
ilarly defined. A weight norm of XP is defined by:

‖XP‖l
r;D(s,r) = |Py|lD(s,r) +

1
r2

|Px|lD(s,r) +
1
r
‖Pz‖l

D(s,r).

The equations of motion associated to (1.1) read

(1.2)


ẋ = ω(λ) + ∂yP

ẏ = −1
2
∂x〈z, M(x, λ)z〉− ∂xP

ż = JMz + J∂zP

Thus, the unperturbed system associated to (1.1) admits an invariant torus Tn ×
{0}×{0} with toral frequencies ω(λ) for each λ ∈ O. The normal behavior of the
invariant torus is determined by the linear skew product systems
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(1.3)
dz

dt
= JM(x, λ)z,

dx

dt
= ω(λ),

To consider the perturbation of this torus, we assume that

(H1) (Hyperbolicity): The invariant tori Tn×{0}×{0} of the unperturbed system
is uniformly hyperbolic, i.e., (1.3) is uniformly hyperbolic for all λ with
uniform constants K and β independent of λ.
Precise definition will be given in the next section.

(H2) (Non-degeneracy): The frequency map ω(λ) satisfies the Rüssmann’s condi-
tion

maxλ∈O rank{∂αω(λ) : |α| ≤ n − 1} = n.

The Rüssmann condition is known to be the weakest non-degenerate condition
for the persistence of maximal dimensional invariant tori in nearly integrable analytic
Hamiltonian systems [1, 22, 23, 26].

The main result of this paper is the following

Theorem 1. Consider (1.1). Assume that the conditions (H1), (H2) hold, l 0 ≥
max{m, 2} and there is a constant µ = µ(s, r, l0, M, ω) sufficiently small such that

(1.4) ‖XP‖l
D(s,r) < γ3l0+4µ, |l| ≤ l0.

Then there is a Cantor-like set Oγ ⊂ O, with |O \ Oγ | = O(γ l0−1) for which
the following holds. There is a C l0−1 Whitney smooth family of real analytic,
symplectic transforms

Φ = Φλ : D(
s

2
,
r

2
) → D(s, r), λ ∈ O,

which are C l0 uniformly closed to the identity such that

H ◦ Φ = e∗ + 〈ω∗, y〉+
1
2
〈z, M∗(x, λ)z〉+ P∗(x, y, z, λ),

where

|e∗ − e|lOγ
= O(γn+1µr2),

|ω∗ − ω|lOγ
= O(γn+1µ

5
8 r2),

‖M∗ − M‖l
D( s

2
)×Oγ

= O(γn+1µ
1
4 r2)

for all |l| ≤ l0. Moreover,
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‖∂p
y∂q

zP∗‖(y,z)=(0,0) ≡ 0, |2p|+ |q| ≤ 2.

Thus all unperturbed tori Tλ ({y = 0, z = 0} at given λ) with λ ∈ Oγ will persist
and give rise to a C l0−1 Whitney smooth family of slightly deformed analytic, quasi-
periodic, exponentially dichotomous invariant n-tori of the perturbed system with
Diophantine toral frequency ω∗(λ).

Theorem 1 implies the following persistence result of uniformly hyperbolic lower
dimensional tori of the analytic Hamiltonian system

(1.5) H = H0(y) +
1
2
〈z, M(x)z〉+ P (x, y, z),

where (x, y, z) ∈ T
n × Σ × R

2m ⊂ T
n × R

n × R
2m.

Theorem 2. Assume that H0 is Rüssmann degenerate, i.e.,

maxy∈D rank{∂α∇H0(y) : |α| ≤ n − 1} = n,

and the invariant cylinder z = 0 is uniformly hyperbolic when P = 0. Then most
of invariant tori of the unperturbed system persist under small perturbations P .

2. THE HOMOLOGICAL EQUATION

The result will be proved by the KAM iteration. A key ingredient in each KAM
iteration step is to solve the homological equation

(2.1) ∂ωF 01 + MJF 01 = P 01,

where ∂ω = 〈ω, ∂x〉 and P 01 is the coefficient of z of the perturbation P . As M

may depend on the angular variable x and may not be close to a constant, it is
almost impossible to solve (2.1) by the Fourier series expansion method. We will
show that the equation (2.1) has a real analytic solution with some estimations under
the assumption (H1) in this sections.

Firstly, let’s state precisely the hypothesis (H1). Let A(x, λ) = M(x, λ)J in
the following for simplicity. Consider a family of quasi-periodic linear systems
(parameterized by λ)

(2.2)
dz

dt
= A(x + ω(λ)t, λ)z,

associated to (1.3). Let Ψt
s(x, λ) be the fundamental matrix of (2.2), i.e.,

∂Ψt
s(x, λ)
∂t

= A(x + ω(λ), λ)Ψt
s(x, λ), Ψs

s(x, λ) ≡ I2m.
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Definition 2.1. (1.3) is uniformly hyperbolic if there are projections C(x, λ) :
C

2m → C
2m dependent continuously on x ∈ D(s), λ ∈ O and positive constants

K and β independent of x ∈ D(s), λ ∈ O, such that

‖Ψt
0(x)C(x)Ψ0

τ (x)‖ ≤ K e−β(t−τ ), τ ≤ t,

‖Ψt
0(x)(I2m − C(x))Ψ0

τ (x)‖ ≤ K e−β(t−τ ), τ > t,

where I2m is the 2m× 2m identity matrix.

Define

(2.3) G0(τ, x, λ) =

{
Ψ0

τ (x, λ)C(x + ωτ, λ), τ ≤ 0,

−Ψ0
τ (x, λ)(I2m − C(x + ωτ, λ)), τ > 0.

Then,

(2.4) Gt(τ, x, λ) = Ψt
0(x, λ)G0(τ, x, λ),

and

(2.5) ‖Gt(τ, x, λ)‖ ≤ K e−β|t−τ |,

uniformly for x ∈ D(s), λ ∈ O; t, τ ∈ R. Hence, G0(τ, x, λ) can be referred as
the Green’s function of the system (2.2). Moreover,

(2.6)
∫ ∞

−∞
‖G0(τ, x, λ)‖ dτ ≤ 2K

β
= K1 < ∞.

From [17], we know that the system (2.2) has an unique Green’s function G0(τ, x)
under the assumption (H1) and the matrix C(x) = limt→0− Gt(τ, x) = G0−(τ, x)
satisfies C2(x) = C(x) for any x ∈ D(s), which is real for the real system (2.2).
As the fundamental matrix Ψt

s(x, s, λ) is also real for the real system (2.2), from
(2.3), the Green’s function G0(τ, x) and the projecting matrix C(x) are real for real
x ∈ Tn.

Through out this section, (H1) is always assumed.

Lemma 2.1. Suppose that A and f are continuous in D(s) × O. Then the
quasi-pereiodic non-homogeneous linear equation

(2.7)
dz

dt
= A(x + ωt, λ)z + f(x + ωt, λ),

has an unique solution continuously depending on x, λ, and bounded by K 1‖f‖.
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Denote by C0
ω(D(s)) the space of all those F ∈ C0(D(s), C2m), which admits

a continuous directional derivative in the direction ω, and set ‖F‖0,ω = ‖F‖ +
‖DωF‖. Although the function u is in general not differentiable, it does admit a
directional derivative in the direction ω, which we denote by Dωu. Consider the
following partial differential equations of the first order

(2.8) Dωu − Au − f = 0,

where A and f are continuous functions on T n × D(s)×O.
Lemma 2.1 implies that (2.8) has a solution in C0

ω(D(s)). Similar to Lemma
2.3 and Corollary 2.4 in [19], we have the following regularity result:

Lemma 2.2. Suppose that A and f are analytic in D(s)×O. Then the equation
(2.8) has an unique solution

u(x) =
∫ ∞

−∞
G0(τ, x)f(x + ωτ) dτ

which is real analytic in D(s), and ‖u‖D(s) ≤ K1‖f‖D(s).

Proof. Denote the coordinate of the 2m× 2m dimensional matrix N by

N = (n11, · · · , n1,2m, · · · , n2m,1, · · · , n2m,2m).

Consider the analytic map Ψ from C0(D(s), C2m×2m)×C0(D(s), C2m)×C0
ω(D(s),

C
2m) into C0(D(s), C

2m) given by (N, g, v)→ Dωv−Nv− g, which vanishes at
(A, f). For any h ∈ C0(D(s), C2m), the linear map taking F ∈ C0

ω into

(2.9) DωF − AF = h

has a bounded inverse, since under the assumption (H1) the equation (2.9) has an
unique solution F ∈ C0

ω which can be written in the form

F (x) = GAh(x) =
∫ ∞

−∞
G0(τ, x)h(x + ωτ) dτ.

By the implicit function theorem, there exists a neighborhood U(ε0) of (A, f) and
an unique analytic map

Φ : U(ε0) → C0
ω(D(s), C

2m), Φ(A, f) = u,

such that for all (N, h) ∈ U(ε0), v = Φ(N, h) satisfies the equation Dωv −
Nv − h = 0. Write x = a +

√−1b, where |b| < s and a, b ∈ Rn. Then
u(x) = u(a +

√−1b) = Φ(A(· +
√−1b), f(· +

√−1b))(a). Denote by x =
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(x1, · · · , xn)T , u(x)=(u1(x), · · · , u2m(x))T , f(x) = (f1(x), · · · , f2m)T , A(x) =
(a11, · · · , a1,2m, · · · , a2m,1, · · · , a2m,2m), and Φ = (Φ1, · · · , Φ2m)T . Let ui(x) =
Φi(A, f) = φi(a11(x), · · · , a1,2m(x), · · · , a2m,1(x), · · · , a2m,2m(x), f1(x), · · · ,

f2m(x)), i = 1, · · · , 2m. If A and f are real analytic in D(s), so are akl and
fi, where k, l = 1, · · · , 2m, i = 1, · · · , 2m. Then u is continuously differentiable
in aj and bj , and

∂ui(x)
∂xj

=
∑
k,l

∂φi

∂akl

∂akl(x)
∂xj

+
∑

k

∂φi

∂fk

∂fk

∂xj
= 0,

where j = 1, · · · , n; i = 1, · · · , 2m. Hence u satisfies the Cauchy- Riemann
equations and is analytic in D(s). As the Green function G0(τ, x) is real for real
x, u(x) is real analytic in D(s) and

‖u(x)‖D(s) = ‖
∫ ∞

−∞
G0(τ, x)f(x + ωτ) dτ‖

≤
∫ ∞

−∞
‖G0(τ, x)‖ dτ · ‖f‖D(s)

≤ K1‖f‖D(s).

This completes the proof of the lemma.
Note that the hyperbolicity of (1.3) implies the hyperbolicity of

(2.10)
dz

dt
= −JM(x, λ)z,

dx

dt
= ω(λ).

For simplicity, we denote by G0(τ, x, λ) the Green function of the system (2.10) in
the following.

Corollary 1. For all λ ∈ O the homological equation (2.1) has an unique real
analytic solution

(2.11) F 01(x, λ) = −
∫ ∞

−∞
JG0(τ, x, λ)JP 01 dτ

in x ∈ D(s).

Proof. Let’s first consider the linear equation

dz

dt
= −JM(x + ω(λ)t, λ)z − JP 01,

where x ∈ D(s). From the above analysis, it has an unique real analytic solution

f01(x) = −
∫ ∞

−∞
G0(τ, x, λ)JP 01 dτ
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in x ∈ D(s). Then, it is easy to verify that the real analytic function F01 = Jf01

solves the homological equation (2.1). This completes the proof.
As the homological equations in each KAM step is a small perturbation of the

first step, we will point out that the hypotheses (H1) is kept if the initial perturbation
is sufficiently small and the related positive constants K, β of the Green function
G0(τ, x, λ) in the form of the inequality (2.5) at each step can be controlled. The
following two lemmas are deduced from [17].

Lemma 2.3. Assume (H1) and the matrix M̃ is analytic in D(s). Then the
system

(2.12)
dz

dt
= JM̃ (x + ω̃t)z

is also exponentially dichotomous on R, if |ω̃−ω|, M̃ −M‖D(s) ≤ ε1 = ε1(M, ω)
for some positive ε1 small enough.

Lemma 2.4. The assumption (H1) is equivalent to the following: there exists a
non-degenerate symmetric matrix S(x) ∈ C 1(D(s)), for which the matrix Ŝ(x) =
∂ωS(x) + S(x)(JM(x)) + (JM(x))∗S(x) is negative definite for all x ∈ D(s),
where (JM)∗ is the conjugate transpose of JM . Moreover, if

(2.13) 〈Ŝ(x)z, z〉 ≤ −b‖z‖2,

where b is a constant ≥ 0, then the positive constants K and β in the estimate (2.5)
can be represented by the inequality:

(2.14) K = (2 +
√

2)
(‖JM‖D(s)‖S‖D(s)

b

)3
2

, β =
b

2‖S‖D(s)
.

With the above two lemmas, we prove that the hyperbolic is preserved under
small perturbations. Let ̂̃S(x) = ∂ωS(x)+S(x)(JM(x))+ (JM(x))∗S(x), where
ω̃ = ω + ω̂, M̃ = M + M̂ and ‖ω‖, ‖M‖D(s) ≤ ε1. Then

〈Ŝ(x)z, z〉
= 〈Ŝ(x)z, z〉+ 〈∂ω̂S(x)z, z〉+ 〈S(x)JM̂(x)z, z〉+ 〈(JM)∗S(x)z, z〉
≤ −b‖z‖2 + 2ε1‖S(x)‖1 · ‖z‖2

≤ −(b − 2ε1‖S(x)‖1)‖z‖2,

where ‖S(x)‖1 −‖S(x)‖+ ‖∂S(x)
∂x ‖. As S(x) ∈ C1(D(s)), there exists a constant

c1 ≥ 0 such that ‖S(x)‖1 ≤ c1 for all x ∈ D(s). If

(2.15) ε1 ≤ b

4c1
,
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then 〈 ̂̃S(x)z, z〉 ≤ −1
2‖z‖2. So the constants K , β corresponding to the Green

function G̃0(t, x) of the system (2.12) have the following estimates:

K̃ = (2 +
√

2)

(
‖JM̃‖D(s)‖S‖D(s)

b
2

) 3
2

≤ 2
√

2
(

1 +
ε1

‖M‖D(s)

)3
2

K, β̃ =
1
2
β.

If

(2.16) ε1 ≤ ( 3
√

2 − 1)‖M‖D(s),

then we have

(2.17) K̃ ≤ 4K, β̃ =
1
2
β.

At the end of this section we consider the continuity and differentiability of
the solution F 01(x, λ) in the parameter λ ∈ O. From the expression of F01 in
(2.11), the continuity and differentiability of F 01(x, λ) in λ depends on that’s of
the perturbation P and the Green function G0(τ, x, λ). And for the Green function
G0(τ, x, λ) we have the following result [17].

Lemma 2.5. Assume (H1) and that the matrix function M(x, λ) is C l0 differen-
tiable in the parameter λ ∈ O. Then the Green function G 0(τ, x, λ) of the equation
(2.1) is continuously differentiable in the parameter λ up to order l 0. Moreover,
for any constant 0 < α < β

4l0
such that β

2 − |l|α > β
4 , the estimate

(2.18) ‖G0(τ, x, λ)‖l
D(s)×O ≤ c(K, l0)e−(β−lα)|τ |

is valid, where 1 ≤ l ≤ l0, c(K, l0) is a constant independent of τ , x and λ ∈ O.

By (2.11) and (2.18), we have

(2.19)

‖F 01(x, λ)‖l
D(s)×O

≤ ‖
∫ ∞

−∞

l∑
k=0

∂k
λG0(τ, x, λ) ∂l−k

λ P 01(x + ωτ) dτ‖D(s)×O

≤
∫ ∞

−∞

l∑
k=0

‖∂k
λG0(τ, x, λ)‖D(s)×O · ‖∂l−k

λ P 01(x+ωτ, λ)‖D(s)×O dτ

≤
∫ ∞

−∞
c(m, k, l0)e−(β−lα)|τ | dτ ‖P 01‖l

D(s)×O

≤ c(m, K, β, l0)‖P 01‖l
D(s)×O,

for any 1 < l ≤ l0, where c(m, K, β, l0) are positive constants independent of
x ∈ D(s) and λ ∈ O.
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3. PROOF OF THEOREM 1

With the above preparation, the main results of this paper can be proved by
standard KAM iteration. Fix τ ≥ max{n(n − 1) − 1, 0}. For simplicity, we set
l0 = n.

3.1. Outline of KAM steps

Below we give the ideas of one KAM step. In the following, all the quantities
represent the quantities in the νth KAM step. The quantities with subscript +
represent the quantities in the (ν + 1)th KAM step.
At each KAM step, we will consider a Hamiltonian of the form:

H = N + P,

where
N = e(λ) + 〈ω(λ), y〉+

1
2
〈z, Mz〉,

P is a small perturbation.
Moreover, we assume that

(3.1) ‖XP‖l
D(s) ≤ γn+1µ, |l| ≤ n.

Truncate P as P = R + P̃ , where

R =
∑

k,2|p|+|q|≤2

Pk,p,qe
√−1〈k,x〉ypzq , P̃ = P − R.

It follows that ‖XR‖l
D(s) ≤ γn+1r2µ. We further write R as

(3.2) R = P 0 + 〈P 10, y〉+ 〈P 01, z〉+
1
2
〈z, Mz〉,

where P 10 is n-dimensional vector, P01 is 2m-dimensional vector, P02 is 2m×2m

matrix.
At each KAM step, we will construct a symplectic map Φ such that H+ =

H ◦ Φ = N+ + P+ with P+ being much smaller.

3.2. The symplectic change of variables

As usual, we construct the desired symplectic map Φ by the time 1-map of the
flow X t

F of a Hamiltonian vector field XF .
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Let

F = F 0(x) + 〈F 10(x), y〉+ 〈F 01(x), z〉

=
∑

0 
=k∈Zn

F 0
k e

√−1〈k,x〉 +
∑

0 
=k∈Zn

〈F 10
k , y〉e

√−1〈k,x〉 + 〈F 01(x), z〉,(3.3)

where F 10
k is a n-dimensional vector, F01

k is a 2m-dimensional vector.

It follows that

H ◦ Φ = N + R + {N, F}+
∫ 1

0
(1− t){{N, F}+ R, F} ◦ X t

F dt + P̃ ◦ X1
F

= N+ + {N, F}+ R̃ + P+

where

N+ = N + [P 0] + 〈[P 10], y〉+
1
2
〈z, P 02z〉,(3.4)

R̃ = P 0 − [P 0] + 〈P 10 − [P 10], y〉+ 〈P 01, z〉+
1
2
〈〈z, ∂xMz〉, F 10〉,(3.5)

(3.6)
P+ =

∫ 1

0

{(1−t){N, F}+R, F} ◦ X t
F dt+P̃ ◦ X1

F +
1
2
〈〈z, ∂xMz〉, F 10〉

=
∫ 1

0
{Rt, F} ◦ X t

F dt + P̃ ◦X1
F +

1
2
〈〈z, ∂xMz〉, F 10〉,

where
Rt = R + (1− t){N, F}.

We shall prove that

(3.7) {N, F}+ R̃ = 0

is solvable and P+ is much smaller. Taking F as the solution of the above equation,
the time 1-map of the flow X t

F is the desired map.

(3.8)
−{N, F}
= ∂ωF 0

(3.9) +〈∂ωF 10, y〉



Invariant Tori of Hamiltonian Systems 1753

(3.10) +〈∂ωF 01 + MJF 01, z〉

(3.11) −1
2
〈〈z, ∂xMz〉, F 10〉

By (3.5) (3.7) and (3.8), we have:

(3.12) ∂ωF 0 = P 0 − [P 0],

i.e.,
F 0

k =
1√−1〈ω, k〉P

0
k , k �= 0

If the small divisor conditions

(3.13) |〈ω, k〉| ≥ γ

|k|τ , k �= 0

hold, by Lemma A.2. in [25], we have

|F 0
k |l ≤

|k|(l+1)τ+l

γ l+1
|P 0

k |l, k �= 0

Thus we have

1
r2

|F 0|lD(s−ρ) ≤
c

r2γ l+1ρv
|P 0|lD(s) ≤

cµ

ρv
,(3.14)

with v ≥ (l + 1)τ + n + l.
Now we consider the terms of degree one with respect to z. By (3.5) (3.7) and

(3.10), we have:
∂ωF 01 + MJF 01 = P 01.

By Corollary 1, the above equation has an unique real analytic solution defined by
(2.11)

F 01(x) = −
∫ ∞

−∞
JG0(τ, x)JP 01 dτ,

in D(s). Moreover, by (2.19) there exists a constant c = c(m, K, β, l0) such that

(3.15)
1
r
‖F 01‖l

D(s−ρ) ≤ c‖P 01‖l
D(s) ≤ cγn+1µ,

where the constants K and β is the same constants as in Definition 2.1.
By (3.5), (3.9), we have

∂ωF 10 = P 10 − [P 10],
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i.e.,
F 10

k =
1√−1〈ω, k〉P

10
k , k �= 0.

If (3.13) holds, we have:

(3.16)
1
r2

‖F 10‖l
D(s−ρ) ≤

c

r2γ l+1ρv
‖P 10‖l ≤ cµ

ρv
.

Combining (3.14)–(3.16), we find a function F such that

{N, F}+ R̃ = 0.

And

(3.17)
‖XF‖l

r,D(s−2ρ) =
1
r2

|Fx|lD(s−2ρ) + |Fy|lD(s−2ρ) +
1
r
‖Fz‖l

D(s−2ρ)

≤ c(
1

ρr2
|F 0|lD(s−ρ) + |F 10|lD(s−ρ) +

1
r
‖F 01‖l

D(s−ρ)) ≤
cµ

ρv
,

if λ ∈ O+ satisfies (3.13).
Moreover,

(3.18) |e+ − e|l = |[P 0]|l ≤ cγn+1r2µ,

(3.19) |ω+ − ω|l = |[P 10]|l ≤ cγn+1rµ,

(3.20) ‖M+ − M‖l
D(s) = ‖P 02‖l

D(s) ≤ cγn+1µ.

Remark 3.1. By the Whitney’s extension theorem in [24], a function defined
on Oγ can be extended to O such that all the estimates still hold on O. So we
always regard all functions of λ in the KAM steps to be defined on O and ignore
the domain in the estimates, but it makes sense only for λ ∈ Oγ .

3.3. Estimates for the new perturbation

To complete the KAM step, we have to estimate the new perturbation P+.
For small constant δ > 0,

(3.21) ‖XP̃‖l
r1+δ,D(s,2r1+δ) ≤ cγn+1µrδ.

If the inequality

(3.22) ‖M(x)‖l
D(s) ≤ 2‖M0(x)‖l

D(s)
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is satisfied, we have

|〈〈z, ∂xM(x)z〉, F 01〉|lD(s−2ρ,2r1+δ)

≤ cr2(1+δ)‖∂xM(x)‖l
D(s−ρ) · ‖F 10‖l

D(s−ρ)

≤ cr2(1+δ)

ρ
‖M0‖l

D(s) ·
cµr

ρv

≤ cµr3+2δ

ρv+1
.

So

(3.23)

‖X〈〈z,∂xM (x)z〉,F 01〉|‖l
r1+δ;D(s−3ρ,r1+δ)

= |∂y〈〈z, ∂xM(x)z〉, F 01〉|lD(s−3ρ,r1+δ)

+
1

r2(1+δ)
|∂x〈〈z, ∂xM(x)z〉, F 01〉|lD(s−3ρ,r1+δ)

+
1

r1+δ
‖∂z〈〈z, ∂xM(x)z〉, F 01〉‖l

D(s−3ρ,r1+δ)

≤ c
|〈〈z, ∂xM(x)z〉, F 01〉|l

D(s−2ρ,2r1+δ)

ρr2+2δ
≤ cµr

ρv+2
.

To estimate P+ in (3.6), we first estimate the symplectic map X t
F .

Lemma 3.6. If XF satisfies (3.17) and

(3.24) 2E =
2cµr

ρv+2
≤ 1,

then we have

1
ρ
‖X t

F − id‖l
D(s−2ρ, r

2
), ‖DX t

F − Id‖l
r;D(s−3ρ, r

4
) ≤ cE ≤ 1

2
,

‖D2X t
F − Id‖r;r;D(s−4ρ, r

8
) ≤ cE,

for |t| ≤ 1, where D is the differential operator with respect to (x, y, z). c is
independent of KAM steps.

The preceding estimates imply that for each λ ∈ O+,

X t
F (·, λ) : D(s − 5ρ, r1+δ) → D(s − 4ρ, 2r1+δ), ∀|t| ≤ 1.
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By (3.5) and (3.23), we have

‖XR̃‖l
r1+δ ;D(s−3ρ,r1+δ) ≤ c

(
‖XP‖l

r,D(s,r) + ‖X〈〈z,∂xM (x)z〉,F 01〉|‖l
r1+δ;D(s−3ρ,r1+δ)

)
≤ c(γn+1µ +

µr

ρv+2
).

So by (3.2) (3.7) and (3.5) we have

(3.25) ‖XRt‖l
r1+δ;D(s−3ρ,r1+δ) ≤ c(γn+1µ +

µr

ρv+2
).

Similar to Lemma A.4 in [25], we have the following lemma:

Lemma 3.7. If a Hamiltonian vector field W (·, λ) is analytic on V = D(s −
2ρ, 3r1+δ) depending on the parameter λ with ‖W‖ l

r;V < +∞, and Φ = X t
F : U →

V , where U = D(s−4ρ, r1+δ), V = D(s−3ρ, 2r1+δ), then Φ∗W = (DΦ)−1W ◦Φ.
Moreover, if

1
ρ
‖Φ − id‖l

r1+δ;U , ‖DΦ− Id‖l
r1+δ;r1+δ;U ≤ cE ≤ 1

2
,

we have ‖Φ∗W‖l
r1+δ,U

≤ 4‖W‖l
r1+δ,V

.

So if r0 is sufficiently small, then

‖XP+‖l
r1+δ;D(s−5ρ,r1+δ)

≤ 4‖XP‖l
r1+δ;D(s−4ρ,2r1+δ) + 4

∫ 1

0
‖[XRt, XF ]‖l

r1+δ;D(s−4ρ,2r1+δ)dt

+‖X〈〈z,∂xM (x)z〉,F 01〉|‖l
r1+δ;D(s−3ρ,r1+δ)

By Cauchy’s inequality and Lemma 3.6,

‖[XRt, XF ]‖l
r1+δ;D(s−4ρ,2r1+δ) ≤ 1

r2δ
‖DXRtXF − DXF XRt‖l

r;D(s−4ρ,2r1+δ)

≤ c

r2δρ
‖XRt‖l

r;D(s,r)‖XF‖l
r;D(s−ρ,r)

≤ cµ2r1−2δ

ρv+3
(γn+1 +

r

ρv+2
).

So

(3.26) ‖XP+‖l
r1+δ;D(s−5ρ,r1+δ) ≤ cγn+1µr1+δ +

cµ2r1−2δ

ρv+3
(γn+1+

r

ρv+2
)+

cµr

ρv+2
.

The KAM step is now complete.
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3.4. Iteration Lemma and convergence

For given γ , µ, s, r in the introduction, we set e1 = e, ω1 = ω, M1 = M ,
N1 = N , P1 = P , E1 = µ1r1

ρv+2
1

, O1 = O, γ1 = γ , s1 = s, r1 = µ
3
8 , µ1 = µ

1
4 r2,

ρ1 = s1
20 initially.

Define some sequences inductively as follows:

rν+1 = r
11
9 , sν+1 = sν − 5ρν, ρν+1 =

1
20

ρν

µν+1 = µ
10
9

ν , Eν+1 =
µν+1rν+1

ρv+2
ν+1

, γν+1 =
γ

2
(1 + 2−ν−1).

Then by (3.26)

(3.27)
‖XP+‖l

D(s+,r+) ≤ γn+1
+ µ+c

((
γ

γ+

)n+1 r
11
9

µ
1
9

+
(

γ

γ+

)n+1 µ
8
9 r

5
9

ρv+3
+

r

ρv+2γn+2
+

)
.

If

(3.28)

µ≤ε2 =min


[(

1
2

)n+1

(3c)−1r
2
9

] 72
31

,

[
(3c)−1

( s

20

)v+2
(

1
2
γ

)n+2
]8

3

,

[
(3c)−1

(
1
2

)n+1 ( s

20

)v+3
r−

16
9

]72
31

 ,

then by (3.27) we will have

‖XP+‖l
D(s+,r+) ≤ γn+1

+ µ+.

Let
Dν = D(sν, rν).

The proceeding analysis may be summarized as the following iteration lemma.

Lemma 3.8. If

(3.29) µ ≤ ε3 = min


(

sv+2

20v+22cr2

) 8
5

,

(
1

20ρ
1
9

) 8(v+2)
3

,
sv+2

20v+22c
, ε2

 ,
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the following holds for all ν ≥ 1: Suppose H ν = H ◦ Φν = Nν + Pν , where

Nν = eν + 〈ων, y〉+
1
2
〈z, Mν(x)z〉,

defined on Dν ×Oν with

(3.30) |eν+1 − eν|l ≤ cγn+1
ν r2µν ,

(3.31) |ων+1 − ων|l ≤ cγn+1
ν rµν ,

(3.32) ‖Mν+1 − Mν‖l ≤ cγn+1
ν µν .

Oν is the set such that for λ ∈ Oν , the small divisor conditions

|〈ων, k〉| ≥ γν

|k|τ , ∀0 �= k ∈ Z
n

hold at the νth KAM iteration step.

Finally, we have that

‖XPν‖Dν ,Oν ≤ γn+1µν .

Then there is a subset Oν+1 ⊂ Oν ,

Oν+1 = Oν \ ∪|k|≥2νRν+1
k (γν),

where Rν+1
k (γν+1) = {λ ∈ Oν | |〈k, ων+1〉−1| > |k|τ

γν
}, with ων+1 = ων + [P 10

ν ],
and a symplectic change of variables

(3.33) Φν : Dν+1 ×Oν+1 → Dν,

such that Hν+1 = Hν ◦Φν , defined on Dν+1×Oν+1 , satisfies the same assumptions
with ν + 1 in place of ν.

If µ in Theorem 1 satisfies the condition (3.29), then µ satisfies the conditions
in Lemma 3.6. So for ∀λ ∈ Oν+1 we have the map Φν : Dν+1 → Dν satisfying

(3.34)
1
ρν

‖Φν − id‖l
rν;Dν+1

, ‖DΦν − Id‖l
rν;rν ;Dν+1

≤ cEν.

Let Φν = Φ1 ◦ Φ2 ◦ · · · ◦ Φν , thus Hν = H ◦Φν = Nν + Pν , where

Nν = e +ν +〈ων , y〉+
1
2
〈z, Mz〉.
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Let Oγ = ∩ν≥1Oν . By the inequalities (3.30), (3.19) and (3.20) in Lemma 3.8 we
have:

|eν+1 − eν |l ≤ cγn+1
1 r

2( 11
9

)ν

1 µ
( 10

9
)ν

1 ,

|ων+1 − ων |l ≤ cγn+1
1 r

( 11
9

)ν

1 µ
( 10

9
)ν

1 ,

‖Mν+1 − Mν‖l
Dν

≤ cγn+1
1 µ

( 10
9

)ν

1

for λ ∈ Oγ . If µ ≤
(

c
γ

) 162
55 (1

r

)8 , then it follows that cµ
( 10

9
)ν+1

1 ≤
(

cµ
( 10

9
)ν

1

) 1
2

for all ν ≥ 1. It follows that

|eν+1 − e|l ≤
∑
ν≥1

cγn+1
1 r

2( 11
9

)ν

1 µ
( 10

9
)ν

1 ≤ 2cγn+1r2µ,(3.35)

|ων+1 − ω|l ≤
∑
ν≥1

cγn+1
1 r

( 11
9

)ν

1 µ
( 10

9
)ν

1 ≤ 2cγn+1r2µ
5
8 ,(3.36)

‖Mν+1 − M‖l
Dν

≤
∑
ν≥1

cγn+1µν ≤ 2cγn+1r2µ
1
4 .(3.37)

Since Eν+1 ≤ E
10
9 , we have Eν+1 ≤ ( 1

2)(10/9)ν under the condition (3.24). It
follows that ∑

ν≥1

cEν ≤ 2cE1.

Now we prove {Φν} is convergent on D∗ × Oγ =
⋂

ν≥1 Dν × Oν with D∗ =
D( 1

2s) × {0} × {0}. From the proceeding analysis, Φν maps Dν+1 into D(sν −
4ρν, 2rν

11
9 ) ⊂ D(sν − 2ρν,

1
2rν). Since the distance ‖ · ‖ from D(sν − 5ρν, 2r

10
9

ν )
to the boundary of D(sν − 4ρν,

1
2rν) is more than ρν , if E1 is sufficiently small,

we have
‖Φν−1 ◦ Φν − id‖l

Dν+1
≤ ‖∂l

λ(Φν−1 − id)‖Dν .

Inductively it follows that for any ν ≥ 1 and ν′ ≥ 1,

‖Φν ◦ Φν+1 ◦ · · · ◦ Φν+ν′ − id‖l
Dν+ν′+1

≤ ‖Φν − id‖l
Dν+1

.

Since Φν+1 = Φν ◦Φν+1, we have

‖Φν+1 − Φν‖l
Dν+2

≤ ‖DΦν‖l
Dν+1

‖Φν+1 − id‖l
Dν+2

.
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By the inequality of the operator norm ‖ · ‖, we have

(3.38)

‖DΦν‖l
Dν+1

≤ ‖DΦ1‖D2‖DΦ2‖l
D3

· · · ‖DΦ‖l
Dν+1

≤
ν∏

ν′=1

(1 + cEν′) < +∞

So
‖Φν+1 − Φν‖l

Dν+2
≤ c‖Φν+1 − id‖l

Dν+2
≤ cEν,

thus {Φν} is convergent on D∗×Oγ , say, to Φ. Now we give the ideas of the proof
of the convergency of Φν on D(1

2s, 1
2r)×Oγ . We can use the estimates about DΦν

to prove that {DΦν} are convergent on D∗ ×Oγ as in [21]. It is clear that Φν is
affine in y and z, and so are their composition mappings Φν . Thus the fact that {Φν}
and {DΦν} are convergent on D∗×Oγ implies that {Φν} is actually convergent on
D( 1

2s, 1
2r) ×Oγ . Since ‖XPν‖l

Dν
≤ γn+1

ν r2µ and limν→∞ ‖XPν − XP∗‖l
Dν

= 0,
it follows that P∗ = 0 on D∗ × Oγ and ∂p+qP∗

∂yp∂zq |D∗ = 0 for 2|p| + |q| ≤ 2. So
P∗ =

∑
k∈Zn,2|p|+|q|≥3 P∗kpqy

lzqe
√−1〈k,x〉. Let limν→+∞ Φν = Φ. Then H ◦ Φ =

N∗ + P∗ on D(1
2s, 1

2r) ×Oγ , where

N∗ = lim
ν→∞Nν = e∗ + 〈ω∗, y〉+

1
2
〈z, M∗z〉

and e∗ = limν→∞ eν , ω∗ = limν→∞ ων , M∗ = limν→∞ Mν . From (3.35)-(3.37),
it follows that

|e∗ − e|lOγ
= O(γn+1r2µ),

|ω∗ − ω|lOγ
= O(γn+1r2µ

5
8 ),

‖M∗ − M‖l
D( s

2
)×Oγ

= O(γn+1r2µ
1
4 )

for any |l| ≤ l0. From the above iteration, it is easy to see that the map Φ is close
to the identity map with ‖Φ−Id‖l =O(µ

5
8 r2s−(v+2)). The measure estimates are

standard, see for example [26] (also [2, 14]). This completes the proof of Theorem 1.
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12. À. Jorba, R. de la Llave and M. Zou, Lindstedt series for lower dimensional tori, in:
Hamiltonian systems with three or more degrees of freedom, C. Simó (ed.), Kluwer
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