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TORSION THEORIES AND ESSENTIAL FLAT ENVELOPES

Xian-Hui Fu* and Nan-Qing Ding

Abstract. Let R be a ring with identity and let MR be the category of
right R-modules. In this article, we study some relations between torsion
theories and cotorsion theories in MR. As applications, we give some new
characterizations of IF rings with essential flat envelopes.

1. NOTATION

In this section, we shall recall some known notions and definitions which we
need in the later sections.

Throughout this article, R is an associative ring with identity and all modules are
unitary R-modules. We write MR (RM ) to indicate a right (left) R-module. MR

denotes the category of right R-modules. As usual, E(M) stands for the injective
envelope of M . General background material can be found in [1, 15, 28, 31, 32, 33].

A torsion theory in MR is a pair (T ,F ) of classes of right R-modules [11, 31]
such that

(1) Hom(T, F ) = 0 for all T ∈ T , F ∈ F ;
(2) If Hom(C, F ) = 0 for all F ∈ F , then C ∈ T ;
(3) If Hom(T, C) = 0 for all T ∈ T , then C ∈ F .

For each right R-module M , there exists an exact sequence 0 → T → M →
F → 0 with T ∈ T and F ∈ F .

A preradical τ [7, 31] of MR is a subfunctor of the identity functor of MR,
moreover, if τ is left exact, we call τ a left exact preradical. To a preradical τ ,
τ(R) is a two-sided ideal and Mτ(R) ⊆ τ(M) for any right R-module M .

If τ1 and τ2 are preradicals, one defines preradicals τ1τ2 and τ1 : τ2 as

τ1τ2(M) = τ1(τ2(M)),
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(τ1 : τ2)(M)/τ1(M) = τ2(M/τ1(M)).

A preradical τ is called idempotent if ττ = τ and is called a radical if τ : τ = τ .
To a preradical τ , one can associate two classes of right R-modules, namely

Tτ = {M |τ(M) = M},
Fτ = {M |τ(M) = 0}

which are called torsion class and torsionfree class of τ respectively. A right
R-module M is called τ -torsion (τ -torsionfree) if M ∈ Tτ (M ∈ Fτ ). If τ is
idempotent, then Tτ = {τ(M)|M ∈ MR}.

Let A be a class of right R-modules closed under direct sums and quotients,
then there exists only one idempotent preradical τ such that A = Tτ , where
τ(M) =

∑
Mi∈A,Mi⊆M Mi; moreover, if A is closed under submodules, then the

corresponding idempotent preradical τ is left exact. Conversely, let A be the torsion
class of an idempotent preradical τ , then τ(M) =

∑
Mi∈A,Mi⊆M Mi.

If τ is an idempotent radical, then (Tτ ,Fτ ) is a torsion theory. Conversely, if a
pair (T ,F ) is a torsion theory, then there exists only one idempotent radical τ such
that (T ,F ) = (Tτ ,Fτ ).

A torsion theory (T ,F ) is called hereditary [7, 31] if T is closed under sub-
modules, in this case, the corresponding idempotent radical τ is left exact; (T ,F )
is called cohereditary if F is closed under quotients; (T ,F ) is called cosplitting if
(T ,F ) is both hereditary and cohereditary.

Let C be a class of R-modules and M an R-module. Following [15], we say
that a homomorphism φ : M → C is a C-preenvelope if C ∈ C and the abelian
group homomorphism Hom(φ, C′) : Hom(C, C′) → Hom(M, C′) is surjective for
each C′ ∈ C. A C-preenvelope φ : M → C is said to be a C-envelope if every
endomorphism g : C → C such that gφ = φ is an isomorphism. A monomor-
phism φ : M → C with C ∈ C is said to be a special C-preenvelope of M

if Ext1(C/φ(M), C′) = 0 for every C′ ∈ C. Dually we have the definitions of a
(special) C-precover and a C-cover. C-envelopes (C-covers) may not exist in general,
but if they exist, they are unique up to isomorphism.

By a monomorphic (resp. an essential) C-envelope of M [24] we shall mean
a C-envelope f : M → C such that f is a monomorphism (resp. an essential
monomorphism). By a ring with monomorphic (resp. essential) C-envelopes on the
right we shall understand a ring such that all its right modules have monomorphic
(resp. essential) C-envelopes.

Let A be a class of R-modules. A is called a resolving class [16] if A is closed
under extensions, P0 ⊆ A and A ∈ A, whenever 0 → A → B → C → 0 is a short
exact sequence such that B, C ∈ A, where P0 denotes the class of all projective
modules; dually, we have the definition of coresolving classes.
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A cotorsion theory [30, 16] for MR is a pair (F , C) of classes of right R-
modules such that F = ⊥C and C = F⊥, where ⊥C = {F |Ext1R(F, C) =
0 for all C ∈ C} and F⊥ = {C|Ext1R(F, C) = 0 for all F ∈ F}. Let A be a
class of right R-modules, the cotorsion theory (⊥(A⊥),A⊥) is said to be generated
by A. A cotorsion theory (F , C) is called hereditary if F is a resolving class or
C is a coresolving class; (F , C) is called complete if every module has a special
C-preenvelope or a special F -precover.

Let (T ,F ) be a hereditary torsion theory, � the corresponding Gabriel topology
and M a right R-module. Following [31, IX, p.201], an �-injective envelope
of M is an essential monomorphism M → E�(M) such that E�(M) ∈ T ⊥

and E�(M)/M ∈ T . Every right R-module has an �-injective envelope which
is unique up to isomorphism. Let τ be the corresponding radical, and M� =
lim−→
I∈�

Hom(I, M/τ(M)), then M� ∼= E�(M/τ(M)) [31, IX, p.202]. Moreover, R�

is a ring and there exists a functor q : MR → MR� with q(M) = M� [31, IX,
p.197].

A module M is called cotorsion [33] if Ext 1
R(F, M) = 0 for any flat module

F . A ring R is called right IF [10] if every injective right R-module is flat, an IF
ring is both left and right IF.

2. INTRODUCTION

In [13], Enochs proved that for a ring R, every right R-module has a flat
preenvelope if and only if R is left coherent, and he gave some characterizations of
domains such that every module has a flat envelope. He then asked how rings with
every module having flat envelope can be characterized. This problem has been
studied by many authors (see, for example, [2, 3, 4, 12, 14, 24, 29]).

If R is a commutative ring with monomorphic flat envelopes on the right, then
the flat envelope of every R-module is an essential flat extension [2, Corollary 10].
For the noncommutative situation, Martĺnez Hernández et al. [24] gave some char-
acterizations of IF rings with essential flat envelopes on the right. A natural question
is how the rings with essential flat envelopes on one side can be characterized.

In this article, we study some relations between torsion theories and cotorsion
theories in MR. We get that, if R is a ring and F the class of all flat right R-
modules, then R is a ring with essential flat envelopes on the right if and only if
there exists a torsion theory (A,B) such that A⊥ = F . As applications, we give
some new characterizations of IF rings with essential flat envelopes on the right.

In Section 3, let A be a class of right R-modules closed under isomorphisms.
We prove that if A is closed under quotients, then (⊥(A⊥),A⊥) is a complete
cotorsion theory; moreover, every right R-module M has an essential A⊥-envelope.
Some characterizations of von Neumann regular rings are given.
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In Section 4, let R be a ring and (F , C) be a cotorsion theory in MR. It is
shown that R is a ring with essential C-envelopes on the right if and only if there
exists a torsion theory (A,B) such that (F , C) is generated by A; moreover, if
(F , C) is a hereditary cotorsion theory, then the above conditions are equivalent to
that there exists a hereditary torsion theory (A,B) such that (F , C) is generated by
A. This result gives some relations between torsion theories and cotorsion theories.
As a corollary, we prove that R is a right artinian ring if and only if R is a right
noetherian ring with essential cotorsion envelopes on the right.

Section 5 is devoted to rings with essential flat envelopes on the right. Let R be
a ring and F the class of all flat right R-modules, it is proved that R is a ring with
essential flat envelopes on the right if and only if there exists a torsion theory (A,B)
such that A⊥ = F . This result gives an equivalent condition of rings with essential
flat envelopes on the right. As applications, we give some new characterizations
of IF rings with essential flat envelopes on the right. It is shown that R is an IF
ring with essential flat envelopes on the right if and only if there exists a cosplitting
torsion theory (A,B) with A⊥ = F if and only if there exists a torsion theory
(A,B) such that A⊥ = F , τ(R) is pure as a right ideal in R and R/τ(R) is a von
Neumann regular ring. Let R be a right IF ring, as a corollary, we have that if there
exists a cosplitting torsion theory (A,B) in MR with τ(R) = I pure as a right
ideal in R such that R/I is von Neumann regular, and E(F )I = FI for any flat
right R-module F , then R is an IF ring with essential flat envelopes on the right.

3. COTORSION THEORIES GENERATED BY A CLASS OF

MODULES CLOSED UNDER QUOTIENTS

Let A be a class of right R-modules closed under isomorphisms. For any right
R-module M , define SA(M) =

∑
Mi∈A,Mi⊆M Mi.

Lemma 3.1. Let M be a nonzero right R-module.

(1) If M ∈ A⊥, then SA(E(M)/M) = 0. Moreover, if A is closed under
quotients, then the converse is true;

(2) If every nonzero cyclic singular module has a nonzero submodule in A, then
M ∈ A⊥ if and only if M is injective;

(3) If A is closed under quotients and every injective right R-module is contained
in A, then M ∈ A⊥ if and only if M is injective.

Proof.

(1) If SA(E(M)/M) �= 0, then there exists a nonzero submodule L of E(M)
such that M is a proper submodule of L and L/M ∈ A , so 0 → M →
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L → L/M → 0 is a split exact sequence. Thus M is a direct summand of
L. But M is essential in E(M) and hence essential in L. This leads to a
contradiction.

Conversely, suppose A is closed under quotients and SA(E(M)/M) = 0.
Note that M ∈ A⊥ if and only if every A in A is projective with respect to
the exact sequence 0 → M → E(M) π→ E(M)/M → 0. For any A ∈ A and
any homomorphism f : A → E(M)/M , f = 0 since SA(E(M)/M) = 0.
So there exists g : A → E(M) with f = πg. Thus M ∈ A⊥.

(2) By hypothesis, every nonzero singular module has a nonzero submodule in
A, that is, for any nonzero singular module N , SA(N ) �= 0. Let M ∈
A⊥. If M is not injective, then E(M)/M is a nonzero singular module and
SA(E(M)/M) = 0 by (1). This is a contradiction. So M is injective.

(3) Let M ∈ A⊥, then SA(E(M)/M) = 0 by (1). But A is closed under quo-
tients and contains all injective modules, and so SA(E(M)/M) = E(M)/M .
Thus M = E(M) is injective.

Let A be the class of all flat right R-modules in Lemma 3.1 (2), we have

Proposition 3.2. The following statements are equivalent for a ring R:

(1) R is a von Neumann regular ring;
(2) every nonzero singular right R-module has a nonzero flat submodule;
(3) every nonzero singular right R-module has a nonzero cyclic flat submodule;
(4) every nonzero cyclic singular rightR-module has a nonzero flat submodule;
(5) every nonzero cyclic singular right R-module has a nonzero cyclic flat sub-

module.

Proof. (1) =⇒ (5) =⇒ (4) =⇒ (2) and (1) =⇒ (5) =⇒ (3) =⇒ (2) are
trivial. (2) =⇒ (1) follows from Lemma 3.1 (2).

Recall that R is said to be a right SF ring [27] if every simple right R-module
is flat.

As applications, we list two corollaries of the above proposition.

Corollary 3.3. [9]. If R is a right SF ring and every nonzero cyclic singular
right R-module has a nonzero socle, then R is a von Neumann regular ring.

Corollary 3.4. [21, 22]. The following statements are equivalent for a ringR:

(1) R is a von Neumann regular ring;
(2) Every nonzero right R-module has a nonzero flat submodule;
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(3) Every nonzero cyclic singular right R-module is flat.

Recall that a right R-module M is called copure injective [15] if Ext 1
R(E, M) =

0 for all injective right R-modules E . Let A be the class of injective right R-
modules. If R is a right hereditary ring, then A is closed under quotients. So we
have the following corollary by Lemma 3.1 (3).

Corollary 3.5. If R is a right hereditary ring, then every copure injective right
R-module is injective.

Corollary 3.6. [23, Corollary 2.11].

(1) Every right R-module over a right semihereditary ring R has an FI-injective
envelope, where FI denotes the class of all FP-injective right R-modules.

(2) Every right R-module over a right PP-ring R has a DI-injective envelope,
where DI denotes the class of all divisible right R-modules.

Proof. Note that the class of all FI-injective modules (over a right semi-
hereditary ring) and the class of all DI-injective modules (over a right PP-ring) are
closed under quotients and contain all injective modules, so they coincide with the
class of injective modules by Lemma 3.1 (3). Hence the above results are trivial.

Following [1], the class of all modules generated by A is denoted by Gen(A)
and the trace of A in a right R-module M is defined by TrM(A) =

∑
{Imh|h :

A → M for some A ∈ A}. It is clear that if A is closed under quotients then
SA(M) = TrM (A) for any right R-module M .

Lemma 3.7. For a class A of right R-modules, TrM (A) = TrM(Gen(A)).

Proof. The proof is easy.

Proposition 3.8. Let R be a ring and A a class of right R-modules. If A is
closed under quotients, then A⊥ = (Gen(A))⊥.

Proof. Note that

SA(M) = TrM(A) = TrM (Gen(A)) = SGen(A)(M).

So M ∈ A⊥ if and only if SA(E(M)/M) = 0 if and only if SGen(A)(E(M)/M) =
0 if and only if M ∈ (Gen(A))⊥ by Lemma 3.1 (1).

Remark 3.9. In Proposition 3.8, let A be the class of cyclic modules, then
A⊥ = (Gen(A))⊥ = (MR)⊥. It is just the Baer Criterion. So Proposition 3.8 may
be viewed as a generalization of Baer Criterion.
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Definition 3.10. [16, Definition 3.1.1].

(1) Let µ be an ordinal and A = (Aα|α ≤ µ) be a sequence of modules.
Let (fβα|α ≤ β ≤ µ) be a sequence of monomorphisms (with fβα ∈
HomR(Aα, Aβ)) such that D = {Aα, fβα|α ≤ β ≤ µ} is a direct system of
modules. D is called continuous provided that A 0 = 0 and Aα = lim−→

β<α

Aβ

for all limit ordinals α ≤ µ.

If all the maps fβα are inclusions, then the sequence A is called a continuous
chain of modules. So a continuous chain is just a sequence of modules A
satisfying A0 = 0, Aα ⊆ Aα+1 for all α < µ and Aα =

⋃
β<α Aβ for all

limit ordinals α ≤ µ.
(2) Let M be a module and C be a class of modules. M is C- filtered provided

that there exist an ordinal κ and a continuous chain of modules, (M α|α ≤ κ),
consisting of submodules of M , such that M = M κ, and each of the modules
Mα+1/Mα (α < κ) is isomorphic to an element of C. The chain (Mα|α ≤ κ)
is called a C- filtration of M . If κ is finite, then M is said to be finitely C-
filtered.

Lemma 3.11. [16, Lemma 3.1.2]. Let N be a right R-module and M a ⊥N -
filtered module. Then M ∈⊥N .

Recall that for an idempotent preradical τ , there exists a smallest idempotent
radical τ larger than τ which is constructed as follows (see [31, VI, p.138]): if α is
not a limit ordinal, then τα is given by τα(M)/τα−1(M) = τ(M/τα−1(M)), and
for a limit ordinal α, put τα =

∑
β<α τβ. This gives rise to an increasing sequence

of preradicals τα, and τ =
∑

α τα. It is not difficult to show that (1) if τ(M) = M ,
then τ(M) = M ; (2) τ(M) = 0 if and only if τ(M) = 0.

Let A be a class of right R-modules closed under quotients, it is not difficult
to show that SA : M 	−→ SA(M) =

∑
Mi∈A,Mi⊆M Mi is an idempotent preradical

of MR, and the torsion class of SA is Gen(A).

Proposition 3.12. Let N be a right R-module and A a class of right R-modules
which is closed under quotients, then the following statements are equivalent:

(1) N ∈ A⊥.
(2) Ext1R(SA(M), N ) = 0 for any module M .

Proof. (1) =⇒ (2). Note that Gen(A) is closed under direct sums and
quotients, by Proposition 3.8, we may assume A is closed under direct sums
and quotients. Since SA is an idempotent preradical of MR and SA(M) ∈ A,
Ext1R(SA(M), N ) = 0 by (1) for any right R-module M .
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Let M be a right R-module. Since M is a set, there exists an ordinal κ such that
(Sα

A(M)|α ≤ κ) is a continuous chain and Sα+1
A (M)/Sα

A(M) = SA(M/Sα
A(M))

if α is not a limit ordinal. Thus, for any right R-module M , SA(M) is a ⊥N -filtered
module, and so Ext1R(SA(M), N ) = 0.

(2) =⇒ (1). Let M ∈ A. Then SA(M) = M , and hence Ext1R(M, N ) =
Ext1R(SA(M), N ) = 0 by (2). So N ∈ A⊥.

Theorem 3.13. Let R be a ring and A a class of right R-modules closed
under quotients, then (⊥(A⊥),A⊥) is a complete cotorsion theory. Moreover,
every right R-module M has an essential A⊥-envelope ι : M → EA(M) with
EA(M)/M = SA(E(M)/M).

Proof. Let M be a right R-module. If M is injective, then M ∈ A⊥, we are
done.

Next we assume that M is not injective. Let N be the submodule of E(M)
such that M ⊆ N and N/M = SA(E(M)/M), then

SA(E(N )/N ) = SA(E(M)/N ) = SA
(

E(M)/M
N/M

)
= SA

(
E(M)/M

SA(E(M)/M)

)
⊆ SA

(
E(M)/M

SA(E(M)/M)

)
= 0,

so N ∈ A⊥ by Lemma 3.1 (1). Let ι : M → N be the canonical injection and X a
right R-module in A⊥. Since N/M = SA(E(M)/M), we have Ext1R(N/M, X) =

0 by Proposition 3.12. Hence the sequence Hom(N, X) ι∗→ Hom(M, X) → 0 is
exact.

For X = N , consider the commutative diagram:

N

0 �� M ι
��

ι

��

N.

f
����������

Since ι is an essential monomorphism, it follows that f is an essential monomor-
phism. So f(N ) ∈ A⊥. Hence SA(E(f(N ))/f(N)) = 0 by Lemma 3.1 (1). But
SA(N/f(N )) ⊆ SA(E(f(N ))/f(N)), so SA((N/f(N )) = 0. Hence SA(N/f(N )) =
0. Since SA is an idempotent radical, we have

SA(N/M) = SA(SA(E(M)/M)) = SA(E(M)/M) = N/M.

Note that the torsion class of SA is closed under quotients and N/f(N ) is a quotient
module of N/M , and so SA(N/f(N )) = N/f(N ). Thus N = f(N ), and hence
f is an isomorphism. Therefore ι : M → N is an essential monomorphic A⊥-
envelope of M .
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Remark 3.14. Let (A,B) be a hereditary torsion theory and � the corresponding
Gabriel topology, then E�(M) ∼= EA(M) for every right R-module M .

4. SOME RELATIONS BETWEEN TORSION THEORIES AND COTORSION THEORIES

Let C be a class of right R-modules closed under isomorphisms. If a right R-
module M has a C-envelope, we always let εM : M → C(M) denote the C-envelope
of M . Let X = {C(M)/εM(M)|M has a C − envelope εM : M → C(M)}.

Lemma 4.1. Let C be a class of right R-modules closed under isomorphisms,
direct summands and extensions, then

(1) Ext1R(X , C) = 0;
(2) If every right R-module has a monomorphic C-envelope, then X ⊥ = C.

Proof. (1) follows from Wakamatsu’s Lemma [16, Lemma 2.1.13].
(2). Let M ∈ X⊥, there exists a monomorphic C-envelope εM : M → C(M).

We have the split exact sequence 0 → M → C(M) → C(M)/εM (M) → 0 by
hypothesis. Thus M is a direct summand of C(M), and so M ∈ C. Hence X⊥ ⊆ C.
But C ⊆ X⊥ by (1). So X⊥ = C.

Corollary 4.2. [14, Theorem 2.5 (1)]. Let R be a ring and F the class of all
flat right R-modules. If every right R-module has a monomorphic flat envelope,
then (⊥F ,F ) is a cotorsion theory.

Proposition 4.3. Let C be a class of right R-modules closed under isomor-
phisms, direct summands and extensions. Then the following statements are equiv-
alent:

(1) X is closed under quotients;
(2) If a right R-module N has a C-envelope εN : N → C(N ) and there exists a

commutative diagram

N
φ ��

εN

��

M

ε�����
���

��

C(N )

with φ and ε monomorphisms, then ε : M → C(N ) is a C-envelope of M .

Proof. (1) =⇒ (2). Let N be a right R-module satisfying the condition of (2).
Then C(N )/ε(M) ∼= C(N)/εN (N)

ε(M )/εN(N) ∈ X by (1), and hence Ext1R(C(N )/ε(M), C) =
0 for any C ∈ C by Lemma 4.1(1). So ε : M → C(N ) is a C-preenvelope of M .
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Note that for any f : C(N ) → C(N ) with fε = ε, we have fεN = fεφ = εφ =
εN . Thus f is an automorphism of C(N ) and so ε : M → C(N ) is a C-envelope
of M .

(2) =⇒ (1). Let X be a quotient of C(N )/εN(N ) ∈ X , where εN : N →
C(N ) is a C-envelope of N . We may assume X = C(N )/M with εN (N ) ⊆ M ⊆
C(N ). Let ι : εN(N ) → C(N ), φ : εN(N ) → M and ε : M → C(N ) be the
inclusions. Then we have a commutative diagram:

εN (N )
φ ��

ι

��

M

ε
����

��
��

��
�

C(N )

Clearly, ι : εN (N ) → C(N ) is a C-envelope of εN(N ). By (2), ε : M → C(N ) is
a C-envelope of M , and so X = C(N )/M ∈ X by definition.

Proposition 4.4. Let C be a class of right R-modules closed under isomor-
phisms, direct summands and extensions. If every right R-module has an essential
C-envelope, then X is closed under quotients.

Proof. Let N be a right R-module with a C-envelope εN : N → C(N ).
Consider the commutative diagram

N
φ ��

εN

��

M

ε�����
���

��

C(N )

with φ and ε monomorphisms. For a C-envelope εM : M → C(M), we have the
diagram:

N
φ ��

εN

��

M

εM

��

ε

�����������

C(N )
f ��

C(M)
g

��

with fεN = εMφ and ε = gεM . Thus gfεN = gεMφ = εφ = εN , and hence gf

is an automorphism of C(N ) and g is an epimorphism. Note that ε and εM are
essential monomorphisms, and so g is an essential monomorphism. It follows that
g is an isomorphism, and so ε : M → C(N ) is a C-envelope of M . Therefore X
is closed under quotients by Proposition 4.3.
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Theorem 4.5. Let R be a ring and (F , C) be a cotorsion theory in MR. Then
the following statements are equivalent:

(1) R is a ring with essential C-envelopes;
(2) (F , C) is generated by a class A of right R-modules closed under quotients;

(3) There exists a torsion theory (A,B) such that (F , C) is generated by A.
Moreover, if (F , C) is a hereditary cotorsion theory, then the above statements
are equivalent to:

(4) There exists a hereditary torsion theory (A,B) such that (F , C) is generated
by A.

Proof. (3) =⇒ (2) follows since A is closed under quotients.
(2) =⇒ (1) follows from Theorem 3.13.
(1) =⇒ (3). By Lemma 4.1 (2) and Proposition 4.4, (F , C) is generated by

X and X is closed under quotients. Hence SX is an idempotent radical, and so
(TSX ,FSX ) is a torsion theory. Let (A,B) = (TSX ,FSX ). By Proposition 3.12,
(F , C) is generated by A.

(4) =⇒ (2) is trivial.
(1) =⇒ (4). Let X̃ = {L|L ⊆ X ∈ X} and Y = {M |M is singular and

M ∈ F}.
Let L ∈ X̃ , then there exists some right R-module M such that L = N/εM (M) ⊆

C(M)/εM (M).
Let H/εM(M) be a submodule of N/εM(M). The canonical injection ιH :

H → C(M) is a C-envelope of H by Proposition 4.3. Hence the quotient module
N/εM(M )
H/εM (M )

∼= N/H is a submodule of C(M)/H ∈ X . Thus N/εM(M )
H/εM(M )

∈ X̃ , and so
X̃ is closed under quotients.

Since εM : M → C(M) is essential, C(M)/εM(M) is singular. Hence
N/εM(M) is singular. By Lemma 4.1 (1), C(M)/εM (M) ∈ F . Note that the
canonical injection ιN : N → C(M) is a C-envelope of N by Proposition 4.3, and
so C(M)/N ∈ F by Lemma 4.1 (1). Since (F , C) is a hereditary cotorsion theory,
the exact sequence 0 → N/εM(M) → C(M)/εM (M) → C(M)/N → 0 shows
that N/εM(M) ∈ F . So X̃ ⊆ Y .

Now let M ′ ∈ Y . Since M ′ is singular, there exists an exact sequence 0 →
K

f→ N → M ′ → 0 with f an essential monomorphism. Note that M ′ ∈ F , we
have the commutative diagram:

0 �� K
f �� N ��

h
��

M ′ ��

g

��

0

0 �� K
εK �� C(K) �� C(K)/K �� 0.
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Since f is an essential monomorphism, h is monic. So g is monic by the Five
Lemma. Hence M ′ ∼= g(M ′) ∈ X̃ and so Y ⊆ X̃ . Thus X̃ = Y . Since F and the
class of all singular right R-modules are both closed under direct sums, Y is closed
under direct sums. So X̃ is closed under direct sums.

It is clear that X̃ is closed under submodules, the above proof shows that X̃ is
closed under quotients and direct sums. Hence SX̃ is a left exact preradcial. So SX̃
is a left exact radical. Note that X ⊆ X̃ ⊆ F , we have C = F⊥ ⊆ X̃⊥ ⊆ X⊥ = C.
So (A,B) = (TSX̃

,FSX̃
) is a hereditary torsion theory, and (F , C) is generated by

A by Proposition 3.12.

Proposition 4.6. Let R be a right noetherian ring and (F , C) a cotorsion theory
in MR. If every right R-module has an essential C-envelope, then C is closed under
direct sums.

Proof. By Theorem 4.5, there exists a torsion theory (A,B) such that C = A⊥.
Let τ be the corresponding idempotent radical of (A,B). It is clear that τ = SA.
Let {Ci}i∈I be a family of right R-modules in C. Since R is a right noetherian
ring, E(

⊕
i∈I Ci) =

⊕
i∈I E(Ci). Thus

τ(E(
⊕
i∈I

Ci)/
⊕
i∈I

Ci) = τ(
⊕
i∈I

E(Ci)/
⊕
i∈I

Ci) =
⊕
i∈I

τ(E(Ci)/Ci) = 0,

and hence
⊕

i∈I Ci ∈ C = A⊥ by Lemma 3.1 (1). So C is closed under direct
sums.

It is well known that if the class of cotorsion right R-modules is closed under
direct sums, then R is right perfect [19]. Hence we have

Corollary 4.7. Let R be a ring, then the following statements are equivalent:

(1) R is a right artinian ring;
(2) R is a right noetherian ring with essential cotorsion envelopes on the right.

Proof. (1) =⇒ (2). Since R is right artinian, R is right perfect. Thus every
right R-module is cotorsion [33], and so (2) follows.

(2) =⇒ (1) Since the class of cotorsion modules is closed under direct sums
by Proposition 4.6, R is right perfect [19]. But a right noetherian and right perfect
ring is right artinian by [18, Theorem 5.9].

Remark 4.8. It is well known that every right R-module over any ring R has a
cotorsion envelope [6]. But, in general, not every cotorsion envelope is an essential
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monomorphism. For example, let R = Z, the ring of integers, P = {p|p is a prime
number}, Z(p) = {a

b : b /∈ Zp, (a, b) = 1}, where p ∈ P. Then

φ : Z ��
∏

p∈P Z(p)

x 	→ (x/1)

is a cotorsion envelope of Z. But φ is not essential. In fact, it is easy to check that∏
p∈P(

p
p+1 ) �= 0, but Im(φ) ∩

∏
p∈P(

p
p+1 ) = 0.

5. IF RINGS WITH ESSENTIAL FLAT ENVELOPES ON THE RIGHT

In this section, we always let F denote the class of all flat right R-modules,
and for a torsion theory (A,B), we always let τ be the corresponding idempotent
radical.

If R is a commutative ring with monomorphic flat envelopes on the right, then
the flat envelope of every R-module is an essential flat extension [2, Corollary
10]. In [29], Saorĺn described the structure of commutative rings with essential
flat envelopes. For the noncommutative situation, Martĺnez Hernández et al. [24]
gave some characterizations of IF rings with essential flat envelopes on the right.
A natural question is how the rings with essential flat envelopes on one side can
be characterized. The following proposition gives an equivalent condition of rings
with essential flat envelopes on the right.

Proposition 5.1. If R is a ring and F the class of all flat right R-modules,
then R is a ring with essential flat envelopes on the right if and only if there exists
a torsion theory (A,B) such that A⊥ = F .

Proof. This result follows from Corollary 4.2 and Theorem 4.5 immediately.

Proposition 5.2. Let R be a ring and (A,B) a torsion theory with A⊥ = F .

(1) If τ(R) = R, then R is a QF-ring;
(2) If τ(R) = 0 and B is closed under direct limits, then R is a von Neumann

regular ring.

Proof. (1). If τ(R) = R, then M = Mτ(R) ⊆ τ(M) ⊆ M for any right
R-module M , and hence (A,B) = (MR, 0). Thus F is just the class of injective
right R-modules and so R is a QF-ring.

(2). Since τ(R) = 0, R is τ -torsionfree. But B is closed under submodules
and direct products, and R(I) is a submodule of RI , τ(R(I)) = 0. Hence for any
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projective right R-module P , τ(P ) = 0. Let F be a flat right R-module. Note that
F is a direct limit of projective modules and B is closed under direct limits, and
so τ(F ) = 0. Let M be any right R-module. Since A⊥ = F , M has an essential
flat envelope M → EA(M) by Proposition 5.1. Note that EA(M) ∈ B by the
foregoing proof, and so M ∈ B. It follows that (A,B) = (0,MR) and F = MR.
Thus R is a von Neumann regular ring.

Proposition 5.3. Let R be a ring with essential flat envelopes on the right and
(A,B) a torsion theory with A⊥ = F . Then τ(N ) ∼= τ(E(N )) ∈ F for any flat
right R-module N .

Proof. Let N be a flat right R-module and consider the commutative diagram:

0

��

0

��
τ(N )

��

τ(N )

��
0 �� N ��

��

E(N ) ��

��

E(N )/N �� 0

0 �� N/τ(N ) ��

��

Y ��

��

E(N )/N �� 0

0 0

Note that τ = SA and N ∈ A⊥ = F , and so E(N )/N ∈ B by Lemma 3.1 (1).
But N/τ(N ) ∈ B, so Y ∈ B. Since τ(N ) ∈ A and Y ∈ B, the exact sequence
0 → τ(N ) → E(N ) → Y → 0 shows that τ(N ) ∼= τ(E(N )) by [26, Lemma 1.1].
It is clear that the injective envelope E(τ(N )) of τ(N ) is a submodule of E(N ), and
hence τ(E(τ(N ))/τ(N)) ⊆ τ(E(N )/τ(N )) = τ(Y ) = 0. So τ(N ) ∈ A⊥ = F
by Lemma 3.1 (1).

Lemma 5.4. [31, Proposition XI.3.13] The following statements are equivalent
for a two-sided ideal I of R:

(1) R/I is flat as a right R-module;
(2) I is pure as a right ideal in R;
(3) For any a ∈ I , there exists c ∈ I such that a = ca;
(4) Every injective left R/I-module is injective as an R-module;
(5) Every flat right R/I-module is flat as an R-module.
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The following lemma is well known, so we omit its proof.

Lemma 5.5. Let R be a ring, I a two-sided ideal of Rand F a right R-module.

(1) If F is a flat right R-module and FI = 0, then FR/I is a flat right R/I-
module;

(2) If I is pure as a right ideal in R, then IN ∼= I ⊗ N for any left R-module
N ;

(3) If F is a flat right R-module and I is pure as a right ideal in R, then F/FI

is a flat right R/I-module.

Lemma 5.6. Let R be a ring, I a two-sided ideal of R pure as a right ideal
and M a right R/I-module. If M → F (M) is a flat preenvelope of M R, then
M → F (M )

F (M )I is a flat preenvelope of MR/I .

Proof. Straightforward.

We call a two-sided ideal I pure in R if I is pure as a left and right ideal in R.

Proposition 5.7. Let R be a ring with essential flat envelopes on the right and
I a pure ideal in R, then R/I is a ring with essential flat envelopes on the right.

Proof. Since every right R-module has an essential flat envelope, R is a right
IF ring. Let ER/I be an injective right R/I-module. Since I is pure as a left ideal
in R, ER is an injective right R-module by Lemma 5.4. But R is right IF, so ER is
a flat right R-module. By Lemma 5.5 (1), ER/I is a flat right R/I-module. Hence
R/I is a right IF ring.

Let N be a right R/I-module. NR has an essential flat envelope εN : N →
EA(N ). Let π : EA(N ) → EA(N)

EA(N)I be the quotient map and ι : NR/I → E(NR/I)
be the inclusion with E(NR/I) an injective envelope of NR/I . Note that πεN :
N → EA(N)

EA(N)I is a flat preenvelope of NR/I by Lemma 5.6 and R/I is right IF,

and so there exists g : EA(N)
EA(N)I → E(NR/I) with gπε = ι. Since ι is monic,

πε is monic. Hence Ker(πεN) = EA(N )I ∩ N = 0. But N is essential in
EA(N ), so EA(N )I = 0. Thus EA(N ) may be viewed as a right R/I-module and
εN : N → EA(N ) is a flat preenvelope of NR/I . It is not difficult to show that
εN : N → EA(N ) is an essential flat envelope of NR/I .

Lemma 5.8. Let R be a ring and (A,B) a torsion theory in MR, then

(1) (A,B) is cohereditary if and only if τ(M) = Mτ(R) for any right R-module
M ;
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(2) (A,B) is cosplitting if and only if Ext 1
R(A, B) = 0 for any A ∈ A and

B ∈ B;
(3) If (A,B) is cohereditary, then (A,B) is cosplitting if and only if τ(R) is pure

as a left ideal in R.

Proof. (1) follows from [7, I.2.10].
(2). If (A,B) is a cosplitting torsion theory, then B is closed under quotients

by definition and injective envelopes by [31, Proposition VI.3.2]. Hence for any
B ∈ B, E(B)/B ∈ B. Note that τ = SA, and so B ∈ A⊥ by Lemma 3.1 (1).

Conversely, let B ∈ B. Since B ∈ A⊥ and τ = SA, E(B)/B ∈ B by Lemma
3.1 (1). Thus E(B) ∈ B, and so B is closed under injective envelopes. Hence
(A,B) is a hereditary torsion theory. On the other hand, let 0 → B′ → B →
B′′ → 0 be an exact sequence. Since B is closed under submodules and B ∈ B,
B′ ∈ B. For any A ∈ A, applying the functor Hom(A,−) to this sequence, we
get the exact sequence 0 = Hom(A, B) → Hom(A, B′′) → Ext1R(A, B′). Since
Ext1R(A, B′) = 0 by hypothesis, Hom(A, B′′) = 0. Thus B′′ ∈ B, and so (A,B)
is a cohereditary torsion theory.

(3). If (A,B) is a cosplitting torsion theory, then (A,B) is hereditary. Hence for
any right ideal J , J ∩ τ(R) = τ(J). But (A,B) is cohereditary, and so J ∩ τ(R) =
τ(J) = Jτ(R) by (1). Thus R/τ(R) is a flat left R-module by [28, Theorem 3.55],
and so τ(R) is pure as a left ideal in R.

Conversely, let 0 → N → M → M/N → 0 be an exact sequence with
M ∈ A. Applying the functor − ⊗ τ(R) to this sequence gives the exactness of
0 → Nτ(R) → Mτ(R) → (M/N )τ(R) → 0 by Lemma 5.5 (2). Since (A,B) is a
cohereditary torsion theory, Mτ(R) = M and (M/N )τ(R) = M/N by (1). Hence
Nτ(R) = N . Thus A is closed under submodules, and so (A,B) is a hereditary
torsion theory.

Let M be a right R-module. Following [32], σ[M ] denotes the full subcategory
of MR consisting of the M -subgenerated R-modules. The injective objects in σ[M ]
are precisely the M -injective M -generated modules. M is said to be a self-generator
if TrM(N ) = N for every submodule N of M . Let M = P be a projective
module, a flat object in σ[P ] is a direct limit of modules in add(P ) = {X |X is a
direct summand of finite direct sums of copies of P}. Since the inclusion functor
σ[P ] ↪→ MR preserves direct limits in σ[P ], it is clear that each flat object in σ[P ]
is also flat in MR; conversely, any P -subgenerated flat right R-module is a flat
object in σ[P ], as may be seen by adapting the proof of Lazard in [20, Theorem
1.2]. Moreover, PR is a self-generator if and only if Gen(P ) = σ[P ]. We call a
quotient of a submodule of a right R-module M a subfactor of M .

Theorem 5.9. The following statements are equivalent for a ring R:
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(1) R is an IF ring with essential flat envelopes on the right;
(2) There exists a cosplitting torsion theory (A,B) with A⊥ = F ;
(3) There exists a cohereditary torsion theory (A,B) with A⊥ = F and τ(R)

pure as a two-sided ideal in R;
(4) There exists a hereditary torsion theory (A,B) with A⊥ = F , B closed under

direct limits and τ(R) pure as a two-sided ideal in R;
(5) There exists a hereditary torsion theory (A,B) such that A⊥ = F , τ(R) is

pure as a right ideal in R and the functor q : M R → MR� is exact, where
� is the corresponding Gabriel topology of (A,B);

(6) There exists a torsion theory (A,B) such that A⊥ = F , τ(R) is pure as a
right ideal in R and R/τ(R) is a von Neumann regular ring;

(7) R is a ring with essential flat envelopes on the right and F is a coresolving
class.

Proof. (1) =⇒ (2). Let

A = {M ∈ MR|M has no flat simple subfactor}

and
B = {M ∈ MR|all simple subfactors of M are flat}.

In [24, Lemma 10], Mart´nez Hernández et al. proved that (A,B) is a cosplitting
torsion theory with B ⊆ F . Moreover, there exists a projective module P such that
A = σ[P ] = Gen(P ) by the proof of (a) =⇒ (b) in [24, Theorem 7].

Let M ∈ A⊥. Since R is IF, E(M) is flat. Note that τ = SA and B ⊆ F , and
so E(M)/M ∈ B by Lemma 3.1 (1). Thus E(M)/M is flat, and hence M is flat.
So A⊥ ⊆ F .

Conversely, let F be a flat right R-module. Since F/τ(F ) ∈ B ⊆ F , τ(F )
is a flat right R-module. Note that A = Gen(P ) = σ[P ] and P is a projective
generator of σ[P ], by adapting the proof of Lazard in [20, Theorem 1.2], we may
show that there exists a direct system {Pj |j ∈ J with Pj ∈ add(P )} such that
τ(F ) = lim−→ Pj . Hence τ(F ) is a flat object in A. But the class of injective objects

and the class of flat objects in A coincide by [24, Lemma 11], so τ(F ) ∈ A⊥.
Note that (A,B) is cosplitting and F/τ(F ) ∈ B ⊆ A⊥ by Lemma 5.8 (2), and so
F ∈ A⊥. Thus F ⊆ A⊥.

(1) =⇒ (5). By (1) =⇒ (2), there exists a cosplitting torsion theory (A,B)
such that A⊥ = F , and hence every right R-module M has an essential flat envelope
εM : M → EA(M) by Proposition 5.1. Let τ(R) = I . For any finitely generated
right subideal H of I , take a flat envelope H → FX . Since I is flat by Proposition
5.3, FX is contained in I . So FX is a direct summand of R by [3, Corollary 3].
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Thus I is a direct union of direct summands of R, and so it is pure as a right ideal
in R. Note that (A,B) is a cosplitting torsion theory, and so B ⊆ F by Lemma 5.8
(2). Hence q(M) = M� ∼= EA(M/τ(M)) = M/τ(M) ∼= M ⊗ R/I . Since I is
pure as a left ideal in R by Lemma 5.8 (3), R/I is a flat left R-module, and so q
is exact.

(5) =⇒ (6). Since A⊥ = F , every right R-module M has an essential flat
envelope εM : M → EA(M) by Proposition 5.1. Let τ(R) = I . Note that I is pure
as a right ideal in R, EA(R/I) = R/I . Let {Mi}I be a family of right R-modules.
Since F is closed under direct sums, we have

q(
⊕

I

Mi) ∼= EA((
⊕

I

Mi)/τ(
⊕

I

Mi)) = EA(
⊕

I

(Mi/τ(Mi)))

=
⊕

I

EA(Mi/τ(Mi)),

i.e., q preserves direct sums. Thus q(M) ∼= M ⊗R R/I ∼= M/MI for any right
R-module M [31, XI, p.231]. Let N be a right R/I-module. Since NI = 0,
N ∼= q(N ) is flat. By Lemma 5.5 (1), NR/I is a flat right R/I-module. So R/I is
a von Neumann regular ring.

(6) =⇒ (7). Let τ(R) = I and F a flat right R-module. Since A⊥ = F and
τ = SA, E(F )/F ∈ B by Lemma 3.1 (1). Hence (E(F )/F )I ⊆ τ(E(F )/F ) = 0.
Since R/I is von Neumann regular, (E(F )/F )R/I is a flat right R/I-module.
But I is pure as a right ideal in R, so (E(F )/F )R is a flat right R-module by
Lemma 5.4. Thus Ext1R(A, E(F )/F ) = 0, and hence Ext2R(A, F ) = 0. Now let
0 → F1 → F2 → F3 → 0 be an exact sequence with F1, F2 ∈ F . For any A ∈ A,
applying the functor HomR(A,−) to this sequence, we get the exact sequence
0 = Ext1R(A, F2) → Ext1R(A, F3) → Ext2R(A, F1) = 0. Hence Ext1R(A, F3) = 0,
i.e., F3 ∈ A⊥ = F . So F is a coresolving class.

(2) =⇒ (7). The proof is similar to that of (6) =⇒ (7).
(7) =⇒ (1). Since every right R-module has an essential flat envelope, R is

a right IF ring. So every FP-injective right R-module is flat. For any flat right
R-module F , since R is a right IF ring and F is a coresolving class, E(F ) and
E(F )/F are flat. Hence F is pure in E(F ) and so F is FP-injective. Thus the
class of flat right R-modules and the class of FP-injective right R-modules coincide.
So R is an IF ring by [17, Proposition 2.3].

(1) =⇒ (3) follows from (1) =⇒ (5) and Lemma 5.8 (3).
(3) =⇒ (4). Let τ(R) = I . By Lemma 5.8 (3), (A,B) is a cosplitting torsion

theory. Hence (A,B) is a hereditary torsion theory.
Let {Bi, ϕ

i
j} be a direct system with each Bi ∈ B. Applying the functor −⊗ I

to the pure exact sequence 0 → K →
∏

i∈I Bi → lim−→
i∈I

Bi → 0, we get the exact
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sequence 0 → KI → (
∏

i∈I Bi)I → (lim−→
i∈I

Bi)I → 0 by Lemma 5.5 (2). Since

B is closed under direct products and submodules,
∏

i∈I Bi ∈ B and K ∈ B. So
(
∏

i∈I Bi)I = τ(
∏

i∈I Bi) = 0 and KI = τ(K) = 0 by Lemma 5.8 (1). Hence
τ(lim−→

i∈I

Bi) = (lim−→
i∈I

Bi)I ∼= (
∏

i∈I Bi)I/KI = 0. Thus lim−→
i∈I

Bi ∈ B, and so B is

closed under direct limits.
(4) =⇒ (2). Let τ(R) = I . It is clear that τ(R/I) = 0. But B is closed

under direct products and submodules, and (R/I)(I) is a submodule of (R/I)I ,
so τ((R/I)(I)) = 0. Hence, for any projective right R/I-module P , τ(PR) = 0.
Let F be a flat right R/I-module. Note that F is a direct limit of projective
R/I-modules and B is closed under direct limits, and so τ(FR) = 0.

Note that A⊥ = F , and so every right R-module has an essential flat envelope by
Proposition 5.1. Let M be a right R-module and εM/MI : M/MI → EA(M/MI)
be an essential flat envelope of (M/MI)R. By the proof of Proposition 5.7,
εM/MI : M/MI → EA(M/MI) is an essential flat envelope of (M/MI)R/I .
Since EA(M/MI) ∈ B by the foregoing proof, M/MI ∈ B. On the other hand,
since MI ⊆ τ(M) ∈ A and (A,B) is a hereditary torsion theory, MI ∈ A. Thus
MI = τ(M) by the exact sequence 0 → MI → M → M/MI → 0 and [26,
Lemma 1.1]. Thus (A,B) is a cohereditary torsion theory by Lemma 5.8 (1), and
so (A,B) is a cospitting torsion theory.

Corollary 5.10. Let R be a right IF ring. If there exists a cosplitting torsion
theory (A,B) in MR with τ(R) = I pure as a right ideal in R such that R/I is
von Neumann regular, and E(F )I = FI for any flat right R-module F , then R is
an IF ring with essential flat envelopes on the right.

Proof. Take N ∈ A⊥ and consider the exact sequence 0 → N → E(N ) →
E(N )/N → 0. By Lemma 3.1 (1), E(N )/N ∈ B. So (E(N )/N )I = 0 and
E(N )/N is a right R/I-module. Since R/I is von Neumann regular and I is
pure as a right ideal in R, E(N )/N is a flat right R-module by Lemma 5.4. Note
that R is right IF, and so E(N ) is flat. Hence N is flat. On the other hand,
take F ∈ F and consider the exact sequence 0 → F → E(F ) → E(F )/F → 0.
Since I is pure as a left ideal in R by Lemma 5.8 (3), we have the exact sequence
0 → FI → E(F )I → (E(F )/F ))I → 0 by Lemma 5.5 (2). But FI = E(F )I ,
and so (E(F )/F ))I = 0. Since SA = τ , F ∈ A⊥ by Lemma 3.1 (1). Thus
A⊥ = F , and so R is an IF ring with essential flat envelopes on the right by
Theorem 5.9.

We conclude this paper with the following example as an application of Corollary
5.10.
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Example 5.11. Let R be the K-algebra with basis {1}∪{en|n ∈ Z}∪{xn|n ∈
Z}, where 1 is an identity for R, and for all i, j ∈ Z, we have

eiej = δi,jei, eixj = δi−1,jxj, xiej = δi,jxi, xixj = 0.

Then R is an IF ring with essential flat envelopes on both sides by [24, Example
3]. Next we show that this fact can be obtained from Corollary 5.10. In fact, it is
easily seen that R is a right IF ring by the argument described in [10, Example 2].
Let I = ⊕n∈ZenR. It is easy to check that I is pure as a right ideal and it is a self-
generator as a right R-module, and that R/I ∼= K is von Neumann regular. After
a routine inspection we can show that (Gen(I), {MR|MI = 0}) is a cosplitting
torsion theory. Note that enR is emR-injective for all n, m ∈ Z by [24, Example
3]. Adapting the proof of [25, Proposition 1.5 and Theorem 1.11], we get that every
flat object in Gen(I) is an injective object. Now, let F be a flat right R-module,
since I is pure as a right ideal in R and K is von Neumann regular, F/FI is a flat
right R-module by Lemma 5.4. But I is a projective generator of Gen(I), and so
FI is a flat object in Gen(I). Hence FI coincides with its injective envelope E in
Gen(I). Furthermore, E(F ) is a flat right R-module (for R is a right IF ring), and
so E(F )I ∈ Gen(I). It is clear that E(F )I ⊆ E , then FI ⊆ E(F )I ⊆ E = FI ,
i.e., E(F )I = FI . It follows that R is an IF ring with essential flat envelopes on
the right by Corollary 5.10. Similarly, one sees that I′ = ⊕n∈ZRen satisfies the
left version of the conditions in Corollary 5.10. So R is an IF ring with essential
flat envelopes on both sides.
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