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DERIVATIONS AND CENTRALIZING MAPPINGS IN
PRIME RINGS

Tsiu-Kwen Lee

Abstract. Let R be a prime ring with extended centroid C and ρ a
nonzero right ideal of R. In this paper we investigate the derivations δ,
d on R such that [δ(x), d(x)] ∈ C for all x ∈ ρ. As an application, we
prove that any centralizing additive mapping f on ρ must be of the form
f(x) = λx+ µ(x) for all x ∈ ρ, where λ ∈ C and µ : ρ → C, except when
[ρ, ρ]ρ = 0.

Let R be a ring with center Z and A a subset of R. A mapping f from A
into R is said to be commuting if [f(x), x] = 0 for all x ∈ A and centralizing
if [f(x), x] ∈ Z for all x ∈ A. The study of such mappings was initiated by
a paper of E. Posner. In [22] Posner proved that a prime ring R must be
commutative if it possesses a nonzero centralizing derivation. Over the last
twenty years, many related results have been published (for instance, see the
references of [1], [2], [4] and [20]). In [1] Brešar obtained a characterization
of commuting additive mappings on prime rings and in [3] he extended the
result to the semiprime case. Basing on these results Brešar initiated the study
of functional identities (see [4] and [5]). The goal of the present paper is to
give a characterization of centralizing additive mappings on one–sided ideals
in prime rings. To state more precisely we first fix some notations.

Throughout this paper, R will be always a prime ring with center Z, ex-
tended centroid C, right Utumi quotient ring U and two–sided Martindale
quotient ring Q (see [9] for these definitions). Brešar proved that every com-
muting additive mapping f : ρ → R is of the form f(x) = λx + µ(x), x ∈ ρ,
for some λ ∈ C and additive mapping µ : ρ → C, unless [ρ, ρ]ρ = 0 [4, The-
orem 5.2]. In a recent paper [20] Lee and Lee obtained the same conclusion
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by assuming f : ρ → U . For x, y ∈ U we write [x, y]1 = [x, y] = xy − yx and
[x, y]n = [[x, y]n−1, y] for n > 1. Applying the theorem on functional identities
[5], Brešar proved the following theorem [6].

Theorem B. Let R be a prime ring and f : R → R an additive mapping.
Suppose that there is a positive integer n such that [f(x), x]n = 0 for all x ∈ R.
If charR = 0 or charR > n, then [f(x), x] = 0 for all x ∈ R.

We remark that Theorem B still holds without the restriction on charR if
f is a derivation of R. Indeed, in [17] the author proved the following result.

Theorem L. Let R be a semiprime ring with a derivation d and ρ
a nonzero right ideal of R. Suppose that there exist n, k ≥ 1 such that
[d(xn), xn]k = 0 for all x ∈ ρ. Then [ρ,R]d(R) = 0.

Clearly, in the theorem above if R is a prime ring, then the conclusion is
that either d = 0 or R is commutative. Therefore it seems natural to ask if
Theorem B still holds without the restriction on charR. More generally, we
raise the following.

Conjecture. Let R be a prime ring, ρ a nonzero right ideal of R and
f : ρ → U an additive mapping. Suppose that there is a positive integer n such
that [f(x), x]n = 0 for all x ∈ ρ. Then f(x) = λx + µ(x) for all x ∈ ρ, where
λ ∈ C and µ : ρ → C, unless [ρ, ρ]ρ = 0.

We begin with the special case where f is a centralizing additive mapping.
To arrive at the aim we need a theorem concerning derivations. Explicitly,
we will prove the following two main results in this paper. Recall that a ring
is called an S4–ring or an S4–free ring according as it satisfies the standard
identity S4 of degree 4 or not.

Theorem 1. Let R be a prime S4-free ring, ρ a nonzero right ideal of
R, and δ and d two nonzero derivations of R with δ /∈ Cd. Suppose that
[δ(x), d(x)] is central for all x ∈ ρ. Then there exist p0, q0 ∈ Q with p0ρ =
0 = q0ρ such that d(x) = [p0, x], δ(x) = [q0, x] for all x ∈ ρ, unless charR = 2
and ρ satisfies the identity S4(X1, X2, X3, X4)X5 (in which case ρC = eRC
for some idempotent e ∈ RC with eRCe an S4–ring).

Theorem 2. Let R be a prime ring and ρ a nonzero right ideal of R. Then
every centralizing additive mapping f : ρ → U is of the form f(x) = λx+µ(x)
for all x ∈ ρ, where λ ∈ C and µ : ρ → C, unless [ρ, ρ]ρ = 0.
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Remark. Let R be a prime ring and ρ a nonzero right ideal of R. In
[4, Lemma 5.1] it was shown that [ρ, ρ]ρ = 0 if and only if RC is a strongly
primitive ring with minimal right ideal ρC and commuting division ring C.
We refer to [18] and [19] for a characterization of PI one–sided ideals in prime
or semiprime rings.

We begin with some preliminary results. The first is an immediate con-
sequence of [21, Theorem 2 (a)]. Therefore we give its statement without
proof.

Lemma 1. Let R be a prime ring. Suppose that
∑m

i=1 aixibi+
∑n

j=1 cjxdj =
0 for all x ∈ R, where ai, bi, cj , dj ∈ RC, 1 ≤ i ≤ m, 1 ≤ j ≤ n. If a1, . . . am

are C–independent, then each bi is C–dependent on d1, . . . , dn. Similarly, if
b1, . . . bm are C–independent, then each ai is C–dependent on c1, . . . , cn.

As an application of Lemma 1 we have the following result which will be
used in the proof of Theorem 1.

Lemma 2. Let R be a prime ring and a, b elements in R. Suppose that
[ax, bx] ∈ Z for all x ∈ R. Then a and b are linearly dependent over C.

Proof. In view of [8, Theorem 2] we have [ax, bx] ∈ C for all x ∈ U . In
particular, [a, b] ∈ Z by setting x = 1. Expansion of [a(x + 1), b(x + 1)] ∈ Z
yields [a, bx] + [ax, b] ∈ Z for all x ∈ R. Replacing x by xa we obtain that
ax[a, b]+[ax, b]a+[a, bx]a ∈ Z. Commuting with a we arrive at a[a, b][a, x] = 0
for all x ∈ R. Thus a[a, b] = 0 and so [a, b] = 0 since [a, b] ∈ Z. For each
y ∈ R, we have [(ay)x, (by)x] ∈ Z for all x ∈ R. Hence [ay, by] = 0 for all
y ∈ R and, by [8, Theorem 2] again, [ay, by] = 0 for all y ∈ U . Expansion of
[a(x + 1), b(x + 1)] = 0 yields axb− bxa = 0 for all x ∈ R. Therefore a and b
are linearly dependent over C by Lemma 1.

Let ρ be a right ideal of a ring R. Denote by `R(ρ) the set {x ∈ R | xρ = 0},
the left annihilator of ρ in R. Set ρ = ρ/(ρ ∩ `R(ρ)). It is easily seen that ρ
is a prime ring if R is. Though the next lemma is intuitively true, we give its
proof here for the sake of completeness.

Lemma 3. Let R be a prime ring with extended centroid C and ρ a
nonzero right ideal of R. Then the extended centroid F of ρ is isomorphic to
C in such a way that if γ ∈ C maps to γ ∈ F then for any ideal J of ρ with
γJ ⊆ ρ and Jρ 6= 0 we have γx = γ̄x̄ for all x ∈ J . In particular, if R has C
as its center, then γx = γ̄x̄ for all x ∈ ρ and γ ∈ C.
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Proof. Let γ ∈ C and J an ideal of ρ such that Jρ 6= 0 and γJ ⊆ ρ. (For
instance J = ρI where I is a nonzero ideal of R such that γI ⊆ R.) The map
x 7→ γx is a (ρ, ρ)–homomorphism of J into ρ, so there exists γ ∈ F such that
γ̄x̄ = γx for all x ∈ J . The element γ̄ ∈ F is independent of the choice of J .
Indeed, if γ′ ∈ F satisfies γ̄′x̄ = γx for all x ∈ J ′ where J ′ is an ideal of ρ such
that J ′ρ 6= 0 and γJ ′ ⊆ ρ, then (J ∩ J ′)ρ 6= 0 and γ̄′x̄ = γ̄x̄ for all x ∈ J ∩ J ′

and so γ̄′ = γ̄. It is easily seen that the mapping γ 7→ γ̄ is an isomorphism of
C into F .

Now let µ ∈ F . Choose a nonzero ideal J of ρ such that Jρ 6= 0 and µJ ⊆ ρ.
Fix a nonzero element h ∈ ρ and consider the mapping of RJρ into R defined
by

∑
i rixiyi 7→

∑
i ritiyih for ri ∈ R, xi ∈ J, yi ∈ ρ and ti ∈ ρ with µxi = ti.

Then the mapping is well–defined; for if
∑

i rixiyi = 0, then
∑

i urixiyi = 0
for all u ∈ ρ so

∑
i urixiyi = 0 and

∑
i uritiyi = 0, that is,

(
u

∑
i ritiyi

)
ρ = 0

for all u ∈ ρ and hence (
∑

i ritiyi)ρ = 0 and, in particular,
∑

i ritiyih = 0.
This mapping is obviously a homomorphism of left R–modules and so there
exists a in the left Martindale quotient ring of R such that rxya = rtyh for
all r ∈ R, x ∈ J, y ∈ ρ and t ∈ ρ with µx = t. Hence xya = tyh and
so xyra = tyrh for all r ∈ R. Since xy 6= 0 for some x ∈ J, y ∈ ρ, there
exists β ∈ C such that a = βh. Then (βxy − ty)Rh = 0 and so βxy = ty.
That is, βJρ ⊆ ρ. Note that Jρ is an ideal of ρ with (Jρ)ρ 6= 0 and so
βxy = βxy = ty = t̄ȳ = µx̄ȳ = µxy for all x ∈ J, y ∈ ρ. Hence β = µ and so
C is isomorphic to F via γ 7→ γ̄. The last statement is obvious.

Recall that a derivation d of R is called X–inner if d is induced by some
element a ∈ Q, that is, d(x) = ax − xa for all x ∈ R (see [12] and [13]). In
this case write d = ad(a). Also, d is called outer if d is not X–inner. Let Dint

stand for the C–subspace of all X–inner derivations of Q. We are now in a
position to prove Theorem 1.

Proof of Theorem 1.

First, we claim that d and δ are C–dependent modulo Dint. By assumption,
we have

[
δ(xr), d(xr)

]
=

[
δ(x)r + xδ(r), d(x)r + xd(r)

]
∈ C for all x ∈ ρ and

r ∈ R. Assume on the contrary that d and δ are C–independent modulo Dint;
then it follows from Kharchenko’s theorem [13] that

[
δ(x)r+xr1, d(x)r+xr2

]
∈

C for all x ∈ ρ and r, r1, r2 ∈ R. In particular, we have [xr1, xr2] ∈ Z for all
x ∈ ρ and r1, r2 ∈ R. Thus, for any nonzero x in ρ, the nonzero right ideal xR
satisfies [xR, xR] ⊆ Z which yields the commutativity of R, a contradiction.
Therefore we may write δ = αd + ad(b) for some α ∈ C and b ∈ Q. Note
that b /∈ C since δ /∈ Cd. We claim next that d, as well as δ, must be
X–inner. Now [δ(xr), d(xr)] = [αd(xr) + [b, xr], d(xr)] = [[b, xr], d(xr)] =
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[[b, xr], d(x)r + xd(r)] ∈ C for all x ∈ ρ and r ∈ R. Assume on the contrary
that d is outer. Then, by Kharchenko’s theorem again, [[b, xr], d(x)r+xr1] ∈ C
for all x ∈ ρ and r, r1 ∈ R. By setting r1 = 0, we have [[b, xr], d(x)r] ∈ C for
all x ∈ ρ and r ∈ R. Hence [[b, xr], xr1] ∈ C for all x ∈ ρ and r, r1 ∈ R. Thus,
for any nonzero x in ρ, the nonzero right ideal xR satisfies [[b, xR], xR] ⊆ C.
Hence [b, xR] ⊆ C and so b ∈ C, contrary to our choice of b. Therefore d must
be X–inner.

Thus we write d = ad(p) and δ = ad(q) for some p, q ∈ Q. Then we have

[
[[p, x], [q, x]] , y

]
= 0(1)

for all x ∈ ρ and all y ∈ R. By [8, Theorem 2], we see that (1) holds for
all x ∈ ρQ and y ∈ Q. Replacing R and ρ by Q and ρQ respectively, we
may assume that 1, p, q ∈ R, ρC = ρ and R is centrally closed over its center
C. In case C is infinite, set R = R ⊗C C and ρ = ρ ⊗C C where C is the
algebraic closure of C. Then R is centrally closed ovre its center C [10] and
(1) holds for all x ∈ ρ and y ∈ R by a standard argument (see, for instance,
[23, Ex. 7.6.3, p. 287] or [15, Proposition]). Thus, replacing R, ρ and C
with R, ρ and C respectively, we may assume further that C is either finite
or algebraically closed and proceed to show that (p − µ)ρ = (q − ν)ρ = 0 for
some µ, ν ∈ C except when charR = 2 and ρ satisfies the polynomial identity
S4(X1, X2, X3, X4)X5.

Note that 1, p and q are C–independent. Suppose first that 1, p and q are
C–dependent modulo `R(ρ). That is, there exist α, β, γ ∈ C, not all zero, such
that (α + βp + γq)ρ = 0. Note that either β 6= 0 or γ 6= 0. Say, assume γ 6= 0
and set q′ = α+βp+γq. Then q′ρ = 0 and so [[p, x], xq′] = −[[p, x], [q′, x]] ∈ C
for all x ∈ ρ. We claim that (p − µ)ρ = 0 for some µ ∈ C. Assume on the
contrary, then by [16, Lemma 3] either R is a PI–ring or there exists x0 ∈ ρ such
that x0 and px0 are C–independent. In the latter case,

[
[[p, x0X], x0Xq′], Y

]

is a nontrivial GPI for R. Hence R must be a GPI–ring in either case. By
Martindale’s theorem [21], R is a primitive ring with soc(R) 6= 0 having C as
commuting division ring.

Let H = soc(R) and e = e2 ∈ ρH with rank e = 1. Then rank (1− e) ≥ 2
since R is S4–free. For each r ∈ R, we have

[[p, er], erq′] ∈ C,(2)

and so (1−e)[[p, er], erq′] ∈ C(1−e). Expanding (1−e)[[p, er], erq′], we obtain
that

(1− e)pererq′ ∈ C(1− e).(3)
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for all r ∈ R. Since (1− e)pererq′ has rank at most 1 while nonzero elements
in C(1−e) have rank at least 2, it follows that (1− e)pererq′ = 0 for all r ∈ R
and so (1− e)pe = 0 by [22, Lemma 2]. Thus q′pe = q′epe ∈ q′ρH = 0 and so
(2) reduces to [p, er]erq′ ∈ C which gives

[p, er]erq′ = 0(4)

for all r ∈ R since q′ρ = 0. Linearization of (4) yields

peserq′ − esperq′ + [p, er]esq′ = 0(5)

for all r, s ∈ R. If pe and e are C–independent, it follows from Lemma 1 that,
for each r ∈ R, we have erq′ = λrq

′ for some λr ∈ C. In case λr 6= 0, (4)
reduces to [p, er]q′ = 0. Thus, for each r ∈ R, either erq′ = 0 or [p, er]q′ = 0.
Hence, either eRq′ = 0 or [p, eR]q′ = 0. Since R is prime, eRq′ 6= 0 and so
[p, eR]q′ = 0. In view of [11], (p − λ)eR = 0 for some λ ∈ C and so pe = λe,
a contradiction. Hence pe and e must be C–dependent, that is, pe = µe
for some µ ∈ C. Suppose that ρ1 and ρ2 are two distinct minimal right
ideals contained in ρH. By what we have just proved, there exist µ1, µ2 ∈ C
such that px = µ1x for all x ∈ ρ1 and py = µ2y for all y ∈ ρ2. Then
expansion of [[p, x + y], (x + y)q′] ∈ C yields (µ1 − µ2)[x, y]q′ ∈ C and so
(µ1 − µ2)[x, y]q′ = 0 for all x ∈ ρ1 and y ∈ ρ2. If µ1 6= µ2, then, for each
x ∈ ρ1, we have [x, ρ2]q′ = 0. Again, by [11], (x − ξ)ρ2 = 0 for some ξ ∈ C.
Thus xρ2 = ξρ2 ⊆ ρ1 ∩ ρ2 = 0 for each x ∈ ρ1, a contradiction. Therefore,
µ1 = µ2. In other words, there exists µ ∈ C such that (p − µ)ρ′ = 0 for each
minimal right ideal ρ′ contained in ρH. Since ρH is a sum of minimal right
ideals, we have (p − µ)ρH = 0 and so (p − µ)ρ = 0. Set p0 = p − µ and
q0 = q + γ−1(α + βµ); then d = ad(p0), δ = ad(q0) and p0ρ = q0ρ = 0.

Suppose next that (α + βp + γq)ρ = 0 implies α = β = γ = 0 for
α, β, γ ∈ C. By [16, Lemma 3], either R is a PI–ring or there exists x0 ∈ ρ
such that x0, px0 and qx0 are C–independent. However, in the latter case,[
[[p, x0X], [q, x0X]], Y

]
is a nontrivial GPI for R, and therefore R must be a

GPI–ring in either case. Then R is a primitive ring with nonzero socle H
having C as commuting division ring. Let e = e2 ∈ ρH with rank e = 1.
Then rank (1− e) ≥ 2 and so (1− e)R(1− e) is not commutative. We claim
first that (1− e)pe = 0 if and only if (1− e)qe = 0. For each r ∈ R, we have
(1 − e)[[p, er], [q, er]] ∈ C(1 − e). Suppose that (1 − e)pe = 0. Expanding
(1− e)[[p, er], [q, er]], we obtain (1− e)qer[p, er] ∈ C(1− e) and comparison of
ranks yields

(1− e)qer[p, er] = 0(6)
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for all r ∈ R. Linearization of (6) yields

(1− e)qer[p, es] + (1− e)qes[p, er] = 0(7)

for all r, s ∈ R. Replacing r by r(1− e) in (7), we have

(1− e)qes[p, er(1− e)] = 0(8)

for all r, s ∈ R. Hence either (1− e)qe = 0 or [p, er(1− e)] = 0 for all r ∈ R.
In the latter case, per(1− e) − er(1− e)p = 0 for all r ∈ R. Since 1− e 6= 0,
it follows from Lemma 1 that pe = λe for some λ ∈ C. Then (6) reduces
to (1 − e)qerer(λ − p) = 0 for all r ∈ R and so (1 − e)qe = 0. Conversely,
(1− e)pe = 0 follows from (1− e)qe = 0 symmetrically. We continue to show
that both (1− e)pe = 0 and (1− e)qe = 0 as a matter of fact.

Assume that (1− e)pe 6= 0. For r, s ∈ R we have

(1− e)[[p, er(1− e)s(1− e)], [q, er(1− e)s(1− e)]] ∈ C(1− e)(9)

for all r, s ∈ R. Expansion of (9) yields

[(1− e)per(1− e)s(1− e), (1− e)qer(1− e)s(1− e)] ∈ C(1− e)(10)

for all r, s ∈ R. By Lemma 2, we see that (1−e)per(1−e) and (1−e)qer(1−e)
are C–dependent for each r ∈ R. Suppose that (1− e)pet(1− e) = 0 for some
t ∈ R. Replacing r by r + t in (10), we obtain

[(1− e)per(1− e)s(1− e), (1− e)qet(1− e)s(1− e)] ∈ C(1− e)(11)

for all r, s ∈ R. If (1−e)qet(1−e) 6= 0, then (1−e)per(1−e) ∈ C(1−e)qet(1−e)
for all r ∈ R. Thus (1 − e)peR(1 − e) is a nonzero commutative right ideal
of (1 − e)R(1 − e), a contradiction. Hence (1 − e)qet(1 − e) = 0 whenever
(1 − e)pet(1 − e) = 0. Thus, for each t ∈ R, we have (1 − e)qet(1 − e) =
λt(1 − e)pet(1 − e) for some λt ∈ C. Since (1 − e)peR(1 − e) has dimension
at least 2 over C, a standard argument shows that there exists λ ∈ C such
that (1 − e)qet(1 − e) = λ(1 − e)pet(1 − e) for all t ∈ R, or equivalently,
(1 − e)(q − λp)eR(1 − e) = 0. Hence, (1 − e)(q − λp)e = 0. Set q′ = q − λp;
then (1−e)q′e = 0. Note that q′ enjoys the same properties as q does; namely,
[[p, x], [q′, x]] ∈ C for all x ∈ ρ and (α+βp+ γq′)ρ = 0 implies α = β = γ = 0.
In view of the previous paragraph, (1 − e)pe = 0 follows from (1 − e)q′e = 0
and hence (1 − e)qe = 0 holds too. Thus p(eR) = epeR ⊆ eR and similarly
q(eR) ⊆ eR. Hence p(ρH) ⊆ ρH and q(ρH) ⊆ ρH since ρH is a sum of
minimal right ideals of the form eR with e2 = e and rank e = 1.

Let S = ρH/(ρH ∩ `R(ρH)); then S is a prime ring. Since R has C as its
center, it follows from Lemma 3 that the elements of the extended centroid
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of S are of the form γ with γ ∈ C such that γ̄x̄ = γx for all x ∈ ρH where
x denotes the canonical image of x in S. The derivations d and δ induce
naturally derivations d and δ on S given by d(x) = [p, x] and δ(x) = [q, x]
for x ∈ ρH. By assumption we have

[
[d(x), δ(x)], y

]
= 0 for all x, y ∈ S. In

view of [14, Theorem 4], either d = 0 or δ = λ̄d̄ for some λ ∈ C except when
charS = 2 and S satisfies S4.

Suppose that either d = 0 or δ = λ̄d̄ for some λ ∈ C. That is, [p, ρH]ρH =
0 or [q − λp, ρH]ρH = 0. By [11] again, we have either (p − µ)ρH = 0 or
(q − λp − ν)ρH = 0 for some µ or ν in C, contrary to the C–independence
of 1, p and q modulo `R(ρ). Hence charS = 2 and S satisfies S4. Thus
2(ρH)2 = 0 and so 2ρH = 0. Therefore R has characteristic 2. Now S
satisfies S4(X1, X2, X3, X4), so ρH satisfies S4(X1, X2, X3, X4)X5. Then ρR =
ρ satisfies S4(X1, X2, X3, X4)X5 by [8, Theorem 2]. The last statement in the
parenthesis follows immediately from [18, Proposition]. This completes the
proof of Theorem 1.

We next come to the proof of Theorem 2.

Proof of Theorem 2.

Suppose that [ρ, ρ]ρ 6= 0. Choose a subset {vi}i of ρ to form a basis of
ρC over C. Define f̃ : ρC → U by the rule f̃(

∑
i βivi) =

∑
i βif(vi) for

βi ∈ C. Then f̃ is a centralizing C–linear mapping on ρC. Following the same
argument in the proof of [7, Lemma 6.3] we have

[
[f̃(a), x], [a, x]

]
∈ C(12)

for all a, x ∈ ρC. We claim that f̃ is commuting.
Consider first the situation when ρC = RC. By [20, Theorem 4] it suffices

to check the case when charR = 2 and dimC RC = 4. Note that U = RC in
this case. Denote by F the algebraic closure of C. Then RC ⊗C F ∼= M2(F ).
We extend f̃ to RC⊗C F by the rule f̃(

∑
i xi ⊗ γi) =

∑
i f̃(xi)⊗γi for xi ∈ RC

and γi ∈ F . Then [f̃(y), y] ∈ F for all y ∈ RC⊗C F . Let {eij | 1 ≤ i, j ≤ 2} be
the set of the usual matix units in RC ⊗C F ∼= M2(F ). Note that f̃ is an F–
linear mapping. Therefore f̃ is determined by the values f̃(eij) for i, j = 1, 2.
For e = e2 ∈ RC ⊗C F we have [f̃(e), e] = 0 because [a, e]3 = [a, e] for all
a ∈ RC⊗CF . Thus we obtain that f̃(e11) = ae11+be22 and f̃(e22) = ce11+de22

for some a, b, c, d ∈ F by computing [f̃(e11), e11] = 0 = [f̃(e22), e22]. Using the
fact that char R = 2 and [f̃(e12), e12] ∈ F to expand [f̃(e11+e12), e11+e12] = 0
we see that f̃(e12) = λe12 + α(e11 + e22) where α ∈ F and λ = a + b. Also,
expansion of [f̃(e12 + e22), e12 + e22] = 0 yields λ = c + d too. Similarly,
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f̃(e21) = λe21 + γ(e11 + e22) for some γ ∈ F . Then f̃(eij) − λeij ∈ F for
i, j = 1, 2. Since f̃ is an F–linear map, we have f̃(x) − λx ∈ F for all
x ∈ RC ⊗C F . In particular, f̃ is commuting on ρC = RC.

So we may assume that ρC 6= RC. If ρ does not satisfy any polynomial
identity, then, by Theorem 1, it follows from (12) that for each a ∈ ρC we
have a ∈ C, or f̃(a) ∈ Ca + C, or (f̃(a) − λa)ρC = 0 for some λa ∈ C. It
is obvious that [f̃(a), a] = 0 follows from the first two cases. As to the last
case, we have [f̃(a), a]ρC = [f̃(a) − λa, a]ρC = −a(f̃(a) − λa)ρC = 0 and so
[f̃(a), a] = 0 since [f̃(a), a] ∈ C. That is, f̃ is commuting on ρC. Suppose that
ρ satisfies some polynomial identity. Then, by [18, Proposition], ρC = eRC
for some e = e2 ∈ RC. Note that ρU 6= U ; for otherwise U = ρU would be
a PI–ring by [8, Theorem 2] and so RC = U = ρU = ρC, a contradiction.
Since [f̃(e), e] = 0, expansion of (1 − e)([f̃(e), ex] + [f̃(ex), e])e = 0 yields
(1 − e)f̃(ex)e = 0, that is, f̃(ex)e = ef̃(ex)e ∈ ρU for all x ∈ RC. Hence
[f̃(ex), ex] ∈ C ∩ ρU = 0 for all x ∈ RC. Hence f̃ is commuting.

Thus we have shown that f̃ is commuting. By [20, Theorem 2] there
exists λ ∈ C such that f̃(x) − λx ∈ C for all x ∈ ρC. In particular, f(vi) −
λvi ∈ C for all basis elements vi of ρC over C. For each t ∈ ρ, we have
[f(t)− λt, vi] = [f(t), vi] + [λvi, t] = [f(t), vi] + [f(vi), t] ∈ C for each vi. Thus
[f(t) − λt, ρC] ⊆ C and so f(t) − λt ∈ C for all t ∈ ρ. This completes the
proof of Theorem 2.
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