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ITERATIVE CONSTRUCTION OF FIXED POINTS OF
ASYMPTOTIC 1-SET CONTRACTIONS IN BANACH SPACES

P. Vijayaraju

Abstract. We prove theorems on the existence of fixed points and the
structure of fixed point sets for asymptotic 1-set contraction mappings T
on certain subsets of Banach spaces by assuming some condition on T .
We also prove some fixed point theorems for a sum of asymptotic 1-set
contraction and compact (strongly continuous) mappings in real Banach
spaces (reflexive real Banach spaces).

1. Introduction

Let K be a nonempty closed convex bounded subset of a Banach space X.
Sadovskii [9] proved that any condensing self-mapping of K has a fixed point
in K. This result was extended by Browder [1, Theorem 13.8, p. 230] to a
1-set contraction mapping T by assuming an additional condition that
(i) (I − T )(K) is closed, where I denotes the identity map.
Krasnose1skii [4] proved first that a sum T + S of a contraction mapping T
and a compact mapping S with Tx + Sy in K for all x, y ∈ K, has a fixed
point in K. This result was extended by Edmunds [2] and Reinermann [8] to
a sum of a nonexpansive mapping T (that is, ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y
in K) and a strongly continuous mapping S (that is, xn ⇀ x in K implies
Sxn → Sx as n → ∞) in Hilbert spaces and in uniformly convex Banach
spaces. Singh [10] extended the above results to a sum of such mappings in
reflexive Banach spaces by assuming further that (I − T )(K) is demiclosed
in the sense that if for any sequence {xn} ⊂ K which converges weakly to
x ∈ K, the convergence of the sequence {(I − T )xn} to y ∈ X implies that
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(I − T )x = y. A sum T + S of an asymptotic 1-set contraction mapping T
of K into K and a strongly continuous mapping S of K into X has a fixed
point in K, under some additional conditions on T and Tn +S for n = 1, 2, · · ·
(when X is a reflexive Banach spaces). This result has been proved recently
by the author in [12].

Petryshyn [6] dropped the convexity on the set K of Browder’s theorem
by assuming the following condition:
( ii ) there exists a point u ∈ K such that if Tx− u = µ(x− u) holds for some

x ∈ ∂K, then µ ≤ 1,
(when K is a nonempty bounded open subset of a real Banach space X, K
and ∂K denote the closure and the boundary of K, respectively). This result
is also true due to Petryshyn [7, Theorem 1] under the weaker condition that
(iii) if {xn} is any sequence in K such that (I − T )xn → 0 as n →∞, then

there exists a point z ∈ K with (I − T )z = 0
instead of closedness on the set (I − T )(K). Using this result, Petryshyn [7,
Theorems 2.2 and 2.3] established fixed point theorems for a sum T + S of
a nonexpansive mapping T and a compact mapping S (a strongly continu-
ous mapping) in real Banach spaces by assuming further that T + S satisfies
conditions (ii) and (iii) (in uniformly convex real Banach spaces by assuming
further that T + S satisfies condition (iii)).

We shall begin by recalling some definitions needed in the sequel.

Definition 1.1. The Kuratowski measure of noncompactness α(K) [cf.
13, p. 492] of a bounded subset K of a metric space X is defined to be the
infimum of the set of all ε > 0 with the following property:

K can be covered by finitely many sets, each of whose diameter is ≤ ε.

The properties of α(K) are given in [13].

Definition 1.2. Let K be a nonempty subset of a Banach space X. If T
maps K into X, we say that

(a) T is condensing [cf. 13, p. 492] if T is bounded and continuous and
α(T (M)) < α(M) for all bounded subsets M of K with α(M) > 0;

(b) T is 1-set contraction ([10]) if T is bounded and continuous and α(T (M))
≤ α(M) for all bounded subsets M of K;

(c) T is asymptotic 1-set contraction ([12]) if T is bounded and continuous,
and α(Tn(M)) ≤ knα(M) for all bounded subsets M of K, n = 1, 2, · · ·,
where {kn} is a sequence of real numbers with kn → 1 as n →∞.
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It is assumed that kn ≥ 1 and kn ≥ kn+1, n = 1, 2, · · ·.

Definition 1.3. Let K and X be as in Definition 1.2. Then the mapping
T from K to X is said to be proper ([cf. 13, p. 498]) if the preimage T−1(M)
of every compact subset M of X is compact.

A self-mapping T of K is said to be Lipschitzian with Lipschitz constant λ
if there is a λ ≥ 0 such that

‖Tx− Ty‖ ≤ λ‖x− y‖ for all x, y ∈ K.

A mapping T from K to X is called demicompact ([5]) in K if it has the
property that, whenever {xn} ⊂ K is a bounded sequence and {(I − T )xn} is
a convergent sequence in X, {xn} converges to a point of K.

A mapping T from K to K is said to be uniformly asymptotically regular
([11]) if for each η > 0, there exists N(η) (= N , say) such that

‖Tnx− Tn+1x‖ ≤ η, whenever n ≥ N, for all x ∈ K.

2. Fixed Points of Asymptotic 1-set Contraction Mappings

Theorem 2.1. Let K be a nonempty closed convex bounded subset of a
Banach space X. Let T be an asymptotic 1-set contraction self-mapping of K.
Assume further that the following conditions hold:

(a) limn→∞[sup{‖Tx− Tnx‖ : x ∈ K}] = 0,

(b) (I − T )(K) is closed.

Then T has a fixed point in K.

Proof. For fixed y ∈ K, let Tn be a mapping of K into itself defined by

Tnx = (1− an)y + anTnx for all x ∈ K, n = 1, 2, · · · ,

where an = (1− 1
n)/kn and {kn} is as in Definition 1.2 (c).

Since K is convex, it follows that Tn maps K into itself. Suppose that
M ⊂ K is arbitrary. Then we have

α(Tn(M)) = α((1− an)y + anTn(M)) ≤ anknα(M)

=
(

1− 1
n

)
α(M)(since T is asymptotic 1− set contraction)

< α(M).
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Therefore Tn is a condensing mapping on K.
From Sadovskii’s theorem, Tn has a fixed point, say, xn in K. Therefore

xn − Tnxn = (1− an)(y − Tnxn) → 0 as n →∞, since an → 1 as n →∞ and
K is bounded. By condition (a), we obtain

xn − Txn → 0 as n →∞.

Since (I − T )(K) is closed, 0 ∈ (I − T )(K) and hence there is a point u in K
such that 0 = (I − T )u. Thus u is a fixed point of T in K.

Remark 2.1. If K is a nonempty weakly compact subset of a Banach
space and if T is a mapping of K into itself such that I − T is demiclosed,
then (I − T )(K) is closed. Therefore, we obtain the following results.

Corollary 2.1. Let K be a nonempty weakly compact convex subset of a
Banach space X. Let T be an asymptotic 1-set contraction on K for which
the condition (a) of Theorem 2.1 holds. Assume further that (c) I − T is
demiclosed. Then T has a fixed point in K.

Corollary 2.2. Let K be a nonempty closed convex bounded subset of a
reflexive Banach space X. Let T be an asymptotic 1-set contraction on K for
which the condition (a) of Theorem 2.1 and the condition (c) of Corollary 2.1
hold. Then T has a fixed point in K.

We note that the condition (a) of Theorem 2.1 implies that the map T is
uniformly asymptotically regular.

The next theorem is an extension of Theorem 13.8 of Browder [1] to Lip-
schitzian, asymptotic 1-set contractions which are uniformly asymptotically
regular mappings.

Theorem 2.2. Let K be a nonempty closed convex bounded subset of a
Banach space X. Suppose that T is a Lipschitzian, asymptotic 1-set contrac-
tion self-mapping of K with Lipschitz constant λ. Assume further that T is
a uniformly asymptotically regular self-mapping of K such that (I − T )(K) is
closed. Then T has a fixed point in K.

Proof. Define a map Tn from K to K as in the proof of Theorem 2.1.
Proceeding as in Theorem 2.1, there is a point xn in K such that

xn − Tnxn → 0 as n →∞.
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Since T is Lipschitzian, uniformly asymptotically regular, it follows that

‖xn − Txn‖ ≤ ‖xn − Tnxn‖+ ‖Tnxn − Tn+1xn‖+ ‖Tn+1xn − Txn‖
≤ (1 + λ)‖xn − Tnxn‖+ ‖Tnxn − Tn+1xn‖
−→ 0 as n −→∞.

Since (I − T )(K) is closed, 0 ∈ (I − T )(K) and hence there is a point u in K
such that u = Tu.

Petryshyn [6] proved the following generalization of Sadovskii’s theorem
by using a boundary condition (given below) instead of the convexity on the
set K.

Theorem (A)[6]. Let K be a nonempty open bounded subset of a real
Banach space X with 0 ∈ K. Suppose that T is a condensing mapping of K
into X which satisfies the following boundary condition:

( i ) If Tx = µx for some x ∈ ∂K, then µ ≤ 1.

Then T has a fixed point in K.

By using the boundary condition (i) (above), Petryshyn [6] obtained a
fixed point theorem for a 1-set contraction of a nonempty open bounded subset
of a real Banach space X into X. The next theorem is a generalization of
this result to Lipschitzian, asymptotic 1-set contractions which are uniformly
asymptotically regular maps in such spaces.

Theorem 2.3. Let K be a nonempty open bounded subset of a real Banach
space X with 0 ∈ K. Suppose that T is a Lipschitzian, asymptotic 1-set con-
traction self-mapping of K with Lipschitz constant λ, and that it is a uniformly
asymptotically regular mapping for which the following conditions hold:

(a) if for each n = 1, 2, · · · , Tnyn = µnyn for some yn ∈ ∂K, then µn ≤ 1.

(b) (I − T )(K) is closed.

Then T has a fixed point in K.

Proof. We define a map Tn from K to X by

Tnx = bn Tnx for all x ∈ K and n = 1, 2, · · · ,
where {bn} is a sequence of real numbers with 0 < bnkn < 1 and bn → 1 as
n →∞ and kn is as in Definition 1.2 (c). Since T (K) ⊂ K ⊂ X, Tn maps K
into X.
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Suppose that for each n = 1, 2, · · · , Tnyn = µnyn for some yn in ∂K. Then
we have bnTnyn = µnyn and therefore Tnyn = (µn/bn)yn. By (a), µn/bn ≤ 1
and therefore µn ≤ bn < 1/kn ≤ 1, since kn ≥ 1. Thus Tn satisfies the
condition (i) of Theorem (A).

Suppose that M ⊂ K is arbitrary. Then we have

α(Tn(M)) = bnα(Tn(M)) ≤ bnknα(M)

(since T is an asymptotic 1 − set contraction on K )

< α(M), since 0 < bnkn < 1.

Therefore Tn is a condensing mapping of K into X. From Theorem (A), Tn

has a fixed point, say, xn in K. The remaining part of the proof is similar to
that of Theorem 2.2.

Theorem 2.4. Let K and X be as in Theorem 2.3. If T is a demicompact,
Lipschitzian and asymptotic 1-set contraction mapping of K into itself with
Lipschitz constant λ which is a uniformly asymptotically regular map for which
the condition (a) of Theorem 2.3 holds, then the set F (T ) of fixed points of T
is nonempty and compact.

Proof. Since T is demicompact and continuous, it follows that (I −T )(K)
is closed. From Theorem 2.3, F (T ) 6= ∅. Suppose that {xn} is any sequence
in F (T ). Since T is demicompact in K, there is a subsequence {xnk

} of {xn}
such that

xnk
→ x ∈ K as k →∞.

Since I − T is continuous, (I − T )xnk
→ (I − T )x as k → ∞. Therefore

(I − T )x = 0. Hence x ∈ F (T ). Thus {xn} has a subsequence {xnk
} which is

convergent to x in F (T ). This means that F (T ) is compact.

If 0 6∈ K in Theorem 2.3, we obtain the following result.

Theorem 2.5. Let K be a nonempty open bounded subset of a real Ba-
nach space X. Suppose that T is a Lipschitzian, asymptotic 1-set contraction
mapping of K into itself with Lipschitz constant λ which satisfies the following
conditions:

(a1) there exists u in K such that if for each n = 1, 2, · · · , Tnyn−u = µn(yn−
u) for some yn in ∂K, then µn ≤ 1.

(b) (I − T )(K) is closed.
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Assume further that T is a uniformly asymptotically regular self-mapping of
K. Then T has a fixed point in K.

Proof. Suppose that A = K−u = {x−u : x ∈ K}. Then A 6= φ as 0 ∈ A.
Since K is open and bounded, so is A. Also ∂A = ∂K − u and A = K − u.

We define a map S from A to A by

S(x− u) = Tx− u for all x− u ∈ A.

Since T maps K into itself, S maps A into itself. Suppose that M ⊂ A is
arbitrary. Then we have

α(Sn(M)) = α(Tn(M + u)− u) = α(Tn(M + u)) ≤ knα(M + u) = knα(M),

since T is an asymptotic 1-set contraction on K. Therefore S is an asymptotic
1-set contraction on A. Since T is Lipschitzian, uniformly asymptotically
regular, so is S. Now, let for each n = 1, 2, · · · , Snzn = µnzn for some
zn = yn − u in ∂A, where yn in ∂K. Then Tnyn − u = µn(yn − u) and by
(a1), µn ≤ 1.

Therefore the condition (a) of Theorem 2.3 holds for S. Since (I − S)(x−
u) = (I − T )x for all x in K, it follows that (I − S)(A) = (I − T )(K),
and hence (I − S)(A) is closed. Thus A and S satisfy all the hypotheses of
Theorem 2.3. Therefore there is a point y = x−u in A such that Sy = y that
is, S(x − u) = x − u and therefore Tx = x. This means that T has a fixed
point x in K.

Theorem 2.6. Let K and X be as in Theorem 2.5. If T is a demicompact,
Lipschitzian and asymptotic 1-set contraction self-mapping of K with Lipschitz
constant λ and it is a uniformly asymptotically regular map for which the
condition (a1) of Theorem 2.5 holds, then the set F (T ) of fixed points of T is
nonempty and compact.

Proof. Define A and S as in the proof of the above theorem. Since T is
demicompact and continuous, S is demicompact and continuous. Therefore
(I − S)(A) is closed. From Theorem 2.5, F (T ) 6= ∅. Since S is demicompact,
F (S) is compact and therefore F (T ) is compact.

The following results are used to prove our Theorem 2.7.

Theorem (B) ([6]). Let K be a nonempty open bounded subset of a real
Banach space X. Suppose that T is a 1-set contraction mapping of K into X
for which the following hold:

321



322 P. Vijayaraju

( i ) there is a point u ∈ K such that if Tx− u = µ(x− u) for some x ∈ ∂K,
then µ ≤ 1.

(ii) (I − T )(K) is closed.

Then T has a fixed point in K.

Theorem (C)([13, p. 498]). Suppose that K is a nonempty closed
bounded subset of a Banach space X. If T is a condensing mapping of K into
X, then the map I − T is proper on K.

Theorem (D)([13, p. 499]). Suppose that K is a nonempty closed
subset of a Banach space X. If T is a continuous and proper mapping of K
into X, then the set T (K) is closed.

The following theorem shows that if the closedness of the set (I − T )(K)
in Theorem 2.5 is replaced by the condition (b1) below, then the conclusion of
this result remains valid. This result is an extension of Theorem 1 of Petryshyn
[7] for 1-set contraction mappings.

Theorem 2.7. Let K be a nonempty open bounded subset of a real Banach
space X. Suppose that T is a Lipschitzian, asymptotic 1-set contraction self-
mapping of K with Lipschitz constant λ which satisfies the condition (a1) of
Theorem 2.5. Assume further that T is a uniformly asymptotically regular
self-mapping of K and T satisfies the following condition:

(b1) if {xn} is any sequence in K such that xn − Txn → 0 as n → ∞, then
there exists z ∈ K with (I − T )z = 0.

Then T has a fixed point in K.

Proof. Let u ∈ K be fixed. Define a map Tn from K to X by

Tnx = (1− an)u + anTnx for all x ∈ K,n = 1, 2, · · · ,

where an is as in Theorem 2.1. Since T is an asymptotic 1-set contraction
on K, it follows that Tn is a condensing mapping of K into X and hence a
1-set contraction. By Theorem (C), I − Tn is proper on K. By Theorem
(D), (I − Tn)(K) is closed. Suppose that for each n = 1, 2, 3, · · · , Tnyn − u =
µn(yn−u) for some yn ∈ ∂K. Then we have anTnyn+(1−an)u−u = µn(yn−u),
that is, Tnyn − u = (µn/an)(yn − u). By (a1), µn/an ≤ 1 and therefore
µn ≤ an < 1. Hence Tn satisfies the condition (i) of Theorem (B). Thus K
and Tn satisfy all conditions of Theorem (B). Therefore there is a point xn in
K such that Tnxn = xn. Hence xn − Tnxn → 0 as n →∞.
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Since T is Lipschitzian and uniformly asymptotically regular, it follows
that

xn − T xn → 0 as n →∞.

Therefore, by (b1), T has a fixed point in K.

Remark 2.2. If we assume (I − T )(K) to be closed, then condition (b1)
of the above theorem holds.

3. Fixed Points for a Sum of Two Mappings

Using Theorem 2.7, we prove fixed point theorems for a sum of two map-
pings. These results generalize Theorems 2.2 and 2.3 of Petryshyn [7] for a sum
of nonexpansive and compact (strongly continuous) mappings in real Banach
spaces (in uniformly convex real Banach spaces).

Theorem 3.1. Let K be a nonempty open bounded subset of a real Banach
space X. Suppose that T is an asymptotic 1-set contraction on K and S is a
compact self-mapping of K. Suppose that T + S is a Lipschitzian, uniformly
asymptotically regular mapping of K into itself and satisfies the conditions
(a1) of Theorem 2.5 and (b1) of Theorem 2.7 with T + S in place of T . Then
T + S has a fixed point in K.

Proof. Since T is an asymptotic 1-set contraction and S is compact, it
follows from Theorem 2.2 of [12] that T +S is an asymptotic 1-set contraction
in K and hence the proof of this theorem follows from that of Theorem 2.7.

Theorem 3.2. Let K be a nonempty open bounded subset of a reflexive
real Banach, space X. Suppose that T is an asymptotic 1-set contraction on
K such that I − T is demiclosed and S is a strongly continuous self-mapping
of K. Suppose that T + S is a Lipschitzian, uniformly asymptotically regular
mapping of K into itself and satisfies the condition (a1) of Theorem 2.5 with
T + S in place of T . Then T + S has a fixed point in K.

Proof. Since X is reflexive and K is bounded, every sequence {xn} in K
has a weakly convergent subsequence {xnk

},
that is, xnk

⇀ x as k →∞ for some x in K.

Since S is strongly continuous, Sxnk
→ Sx as k →∞. Therefore S is compact.

Since T is an asymptotic 1-set contraction and S is compact, it follows
from Theorem 2.2 of [12] that T + S is an asymptotic 1-set contraction on K.
Suppose that {xn} is any sequence in K such that

xn − (T + S)xn → 0 as n →∞.
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From Lemma 2.1 of [12], (I−T−S) (K) is closed. Therefore 0 ∈ (I−T−S)(K)
and hence there is a point z ∈ K such that z − (T + S)z = 0. Thus condition
(b1) of Theorem 2.7 is satisfied. Therefore the conclusion of this theorem
follows from Theorem 2.7.
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