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REGULARIZATION AND ITERATION METHODS
FOR A CLASS OF MONOTONE VARIATIONAL INEQUALITIES

Rudong Chen, Yongfu Su and Hong-Kun Xu*

Abstract. We consider the monotone variational inequality of finding x∗ ∈ C
such that 〈(I−T )x∗, x−x∗〉 ≥ 0 for x ∈ C , where C is a closed convex subset
of a real Hilbert space and T is a nonexpansive self-mapping of C . Techniques
of nonexpansive mappings are applied to regularize this variational inequality.
The regularized solutions and an iteration process are shown to converge in
norm to a solution of this variational inequality.

1. INTRODUCTION

A variational inequality (VI) is formulated as finding a point x ∗ satisfying the
property

x∗ ∈ C such that 〈Fx∗, x− x∗〉 ≥ 0, x ∈ C (1.1)

where C is a nonempty closed convex subset of a real Hilbert space H and F : C →
H is a (nonlinear) operator. The VI (1.1) is said to be monotone if the operator
F is monotone. In this paper we are concerned with a special class of monotone
variational inequalities where the operator F can be decomposed as I − T with a
nonexpansive mapping T : C → C. Namely, the VIs that we will investigate are of
the form

x∗ ∈ C such that 〈(I − T )x∗, x− x∗〉 ≥ 0, x ∈ C. (1.2)

It is known that if the operator F is Lipschitz continuous and strongly monotone,
then the VI (1.1) is well-defined.
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It is well-known that the VIP (1.1) is equivalent to the fixed point equation

x∗ = PC(I − γF )x∗ (1.3)

where γ > 0 and PC is the metric projection of H onto C.
It is also well-known that if F is Lipschitzian and strongly monotone, then

for small enough γ > 0, the mapping PC(I − γF ) is a contraction on C and so
the sequence {xn} of Picard iterates, given by xn = PC(I − γF )xn−1 (n ≥ 1),
converges strongly to the unique solution of the VIP (1.1).

The VI (1.2) is equivalent to the fixed point equation, for any γ > 0,

x∗ = PC(I − γ(I − T ))x∗ = PC((1− γ)I + γT )x∗.

It is observed that the illness of VI (1.2) is because of lack of strong monotonicity of
the mapping I−T , due the nonexpansivity of T . Regularization by contractions can
remove such illness. We therefore replace the nonexpansive mapping T by a family
of contractions tf + (1 − t)T , with t ∈ (0, 1) and f : C → C a fixed contraction.
That is, we consider the regularized problems

xt ∈ C, 〈(I − [tf + (1 − t)T ])xt, x − xt〉 ≥ 0, x ∈ C. (1.4)

This is equivalent to the fixed point equation, for any γ > 0,

xt = PC(I − γ(I − [tf + (1 − t)T ]))xt. (1.5)

The purpose of this paper is to investigate the behavior of the regularized solu-
tions {xt} as t ↓ 0 and also of the following iteration process obtained by discretizing
the implicit scheme (1.4):

xn+1 ∈ C, 〈xn+1 − [tnf(xn) + (1 − tn)Txn], x− xn+1〉 ≥ 0, x ∈ C. (1.6)

The paper is organized as follows. The next section introduces some prelimi-
naries. In Sections 3 and 4 we prove convergence of the regularized solutions {xt}
and of the iteration process (1.6), respectively. Finally in Section 5 we apply the
results obtained in Sections 3 and 4 to a minimization problem.

2. PRELIMINARIES

Throughout this section, H will be a real Hilbert space and C is a nonempty
closed convex subset of H . We now recall the following concepts of mappings.

(i) A mapping f : C → C is a ρ-contraction if ρ ∈ [0, 1) and if the following
property is satisfied:

‖f(x)− f(x′)‖ ≤ ρ‖x − x′‖, x, x′ ∈ C.
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(ii) A mapping T : C → C is nonexpansive provided

‖Tx− Tx′‖ ≤ ‖x− x′‖, x, x′ ∈ C.

(iii) A mapping F : C → H is
(a) monotone if

〈Fx − Fy, x − y〉 ≥ 0, x, y ∈ C;

(b) strictly monotone if

〈Fx − Fy, x− y〉 > 0, x, y ∈ C, x 	= y;

(c) η-strongly monotone if there exists a constant η > 0 such that

〈Fx − Fy, x− y〉 ≥ η‖x− y‖2, x, y ∈ C.

(For more details about the theory of monotone operators, see [1].)

The metric (or nearest point) projection from H onto C is the mapping PC :
H → C which assigns to each point x ∈ C the unique point PCx ∈ C satisfying
the property

‖x − PCx‖ = inf
y∈C

‖x − y‖ =: d(x, C).

The following properties of projections are useful and often used.

Lemma 2.1. Given x ∈ H and z ∈ C.

(i) That z = PCx if and only if there holds the relation:

〈x− z, y − z〉 ≤ 0 for all y ∈ C.

(ii) There holds the relation

〈PCx − PCy, x− y〉 ≥ ‖PCx − PCy‖2 for all x, y ∈ H.

Consequently, PC is monotone and nonexpansive.

The following lemma is not hard to prove.

Lemma 2.2. (cf. [14]). Let f : C → C be a ρ-contraction with ρ ∈ [0, 1) and
T : C → C be a nonexpansive mapping. Then

(i) I − f is (1− ρ)-strongly monotone:

〈(I − f)x− (I − f)y, x− y〉 ≥ (1 − ρ)‖x− y‖2, x, y ∈ C;
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(ii) I − T is monotone:

〈(I − T )x − (I − T )y, x− y〉 ≥ 0, x, y ∈ C.

Lemma 2.3. (Demiclosedness Principle) (cf. [2]). Let T : C → C be a
nonexpansive mapping with Fix(T ) 	= ∅. If {xn} is a sequence in C weakly
converging to x and if {(I − T )xn} converges strongly to y, then (I − T )x = y.

Some recent progresses on the investigations on iterative methods for nonex-
pansive mappings can be found in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15] and the
references cited there.

The following plays a key role in proving strong convergence of our algorithms.

Lemma 2.4. [9]. Assume {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1 − γn)an + γnδn + βn, n ≥ 0,

where {γn} and {βn} are sequences in (0,1) and {δn} is a sequence in R such that

(i)
∑∞

n=1 γn = ∞;
(ii) either lim supn→∞ δn ≤ 0 or

∑∞
n=1 γn|δn| < ∞;

(iii)
∑∞

n=1 βn < ∞.

Then limn→∞ an = 0.

Notation. Let {xn} be a sequence and x be a point in a normed space X .
• xn → x means that {xn} converges to x in norm;
• xn ⇀ x means that {xn} converges to x weakly;
• ωw(xn) is the weak ω-limit set of {xn}; that is, ωw(xn) = {x : ∃xni ⇀ x}.

3. A REGULARIZTION METHOD

If F : C → H is L-Lipschitz continuous and η-strongly monotone, then for
0 < γ < 2η/L2, the mapping

Tγ := PC(I − γF )

is a contraction with contraction coefficient
√

1 − γ(2η − γL2) < 1. Therefore, for
such a γ and for each x0 ∈ C, the sequence of Picard iterates, {Tn

γ x0}, converges
in norm to the unique solution of VI (1.1) (see [16, 13] for hybrid methods in the
case when C is the set of fixed points of another nonexpansive mappings).

However, if either Lipschitz continuity or strong monotonicity of T is violated,
the VI (1.1) would be ill-posed; thus regularization is needed. The VI (1.2) falls
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in this case since the operator I − T is not strongly monotone though it is indeed
Lipschitzian. Since contractions can be used to regularize nonexpansive mappings,
we can extend this way to regularize the VI (1.2); details are carried out below. Let
us copy the VI (1.2) below:

x∗ ∈ C, 〈(I − T )x∗, x− x∗〉 ≥ 0, x ∈ C. (3.1)

Let us denote by S the solution set of VI (3.1).
Recall that a necessary and sufficient condition for x∗ ∈ C to solve (3.1) is that

x∗ ∈ C solves the fixed point equaiton

x∗ = PC(I − γ(I − T ))x∗ = PC((1− γ)I + γT )x∗ (3.2)

where γ > 0 is any fixed constant. The focus of our technique lies in the fact that
the operator PC(I−γ(I−T )) is nonexpansive 0 < γ ≤ 1. This fact is summarized
below.

Proposition 3.1. The operator PC(I−γ(I−T )) is nonexpansive if 0 < γ ≤ 1
and 1+γ

2 -averaged if 0 < γ < 1.

Our idea is to turn the VI (3.1) into its equivalent fixed point formulation (3.2)
and then regularize the nonexpansive mapping T by contractions. Details are carried
out below.

We fix γ ∈ (0, 1]. Now for each t ∈ (0, 1) and a ρ-contraction f : C → C, we
introduce a contraction Vt : C → C by

Vt = (1− γ)I + γ[tf + (1 − t)T ].

It is easily found that Vt is a contraction with coefficient 1− (1−ρ)γt, so is PCVt.
Hence PCVt has a unique fixed point in C which is denoted by xt. That is, xt is
the unique solution in C of the following fixed point equation

xt = PCVtxt = PC((1 − γ)I + γ[tf + (1− t)T ])xt. (3.3)

Equivalently, xt is the unique solution of the following VI

xt ∈ C, 〈xt − Vtxt, x− xt〉 ≥ 0, x ∈ C. (3.4)

Before stating the main result of this section, we need the equivalence of mono-
tone VIs with their dual counterparts.

Proposition 3.2. Assume that F : C → H is monotone and weakly continuous
along segments (i.e., F (x + ty) ⇀ Fx as t → 0). Then the VI (1.1) is equivalent
to its dual variational inequality

x∗ ∈ C, 〈Fx, x− x∗〉 ≥ 0, x ∈ C.
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In particular, the VI (3.1) is equivalent to its dual

x∗ ∈ C, 〈(I − T )x, x− x∗〉 ≥ 0, x ∈ C.

Theorem 3.3. Fix γ ∈ (0, 1]. The solution set S of the VI (3.1) is nonempty
if and only of the net {x t} of the solutions of the regularized fixed point problem
(3.3) remains bounded as t ↓ 0. Moreover, if S 	= ∅, then {xt} converges in norm
as t ↓ 0 to a solution x∗ ∈ S which also solves the following VI

x∗ ∈ S, 〈(I − f)x∗, x− x∗〉 ≥ 0, x ∈ S. (3.5)

Proof. Write Tγ = I−γ(I−T ) = (1−γ)I+γT . Notice that S = Fix(PCTγ).
First assume S 	= ∅. Then we can take p ∈ S to deduce that

‖xt − p‖ = ‖(PCVt)xt − (PCTγ)p‖
≤ ‖Vtxt − Tγp‖
≤ ‖Vtxt − Vtp‖ + ‖Vtp − Tγp‖
≤ [1 − (1 − ρ)γt]‖xt − p‖+ γt‖f(p)− Tp‖.

It follows that
‖xt − p‖ ≤ 1

1− ρ
‖f(p)− Tp‖

hence {xt} is bounded.
Conversely, assume that {xt} remains bounded as t ↓ 0. Observe that VI (3.4)

can be rewritten as (using the definition of Vt)

t〈xt − f(xt), x− xt〉+ (1− t)〈xt − Txt, x− xt〉 ≥ 0, x ∈ C. (3.6)

Now since I − T is monotone, we get from (3.6), for x ∈ C,

〈x− Tx, xt − x〉 ≤ 〈xt − Txt, xt − x〉
≤ t

1 − t
〈xt − f(xt), x− xt〉. (3.7)

The boundedness of {xt} and (3.7) imply that

lim sup
t↓0

〈x − Tx, xt − x〉 ≤ 0. (3.8)

It follows that if a sequence {tn} in (0, 1) is such that tn → 0 and xtn ⇀ x̃, then

〈x − Tx, x̃− x〉 ≤ 0, x ∈ C.

By Proposition 3.2, we conclude that x̃ solves the VI (3.2); hence S 	= ∅ and
ωw(xt) ⊂ S.
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Finally we prove that the entire net {xt} indeed converges in norm to the unique
solution x∗ of the VI (3.5) provided we assume S 	= ∅. To see this, take x̄ ∈ S;
hence, by Proposition 3.2, 〈(I − T )x, x − x̄〉 ≥ 0 for x ∈ C. This together with
(3.6) results in

〈xt − f(xt), x̄− xt〉 ≥ t

1 − t
〈(I − T )xt, xt − x̄〉 ≥ 0. (3.9)

Next since I − f is (1 − ρ)-strongly monotone, we get

(1− ρ)‖xt − x̄‖2 ≤ 〈(I − f)xt − (I − f)x̄, xt − x̄〉
= 〈(I − f)xt, xt − x̄〉 − 〈(I − f)x̄, xt − x̄〉
≤ −〈(I − f)x̄, xt − x̄〉.

Therefore, for x̄ ∈ S,

‖xt − x̄‖2 ≤ − 1
1 − ρ

〈(I − f)x̄, xt − x̄〉. (3.10)

It turns out that if {xtn} is a subsequence of {xt} such that xtn ⇀ x̄, then since
x̄ ∈ S, we get from (3.10) that xtn → x̄. This proves that {xt} is actually relatively
compact in the norm topology (at t ↓ 0). To see that the whole net {xt} is strongly
convergent, we assume that xt′n → x̃, where t′n → 0. Taking limits in (3.9) as
t = tn → 0 and t = t′n → 0, respectively, we get

〈(I − f)x̄, x̃− x̄〉 ≥ 0 and 〈(I − f)x̃, x̄− x̃〉 ≥ 0.

Adding up these two inequalities and using the strong monotonicity of I − f yield

(1 − ρ)‖x̃− x̄‖2 ≤ 〈(I − f)x̃ − (I − f)x̄, x̃− x̄〉 ≤ 0.

Hence x̃ = x̄ and {xt} converges in norm to some point (say) x∗ ∈ S. It remains
to prove that x∗ solves the VI (3.5). As a matter of fact, taking the limit as t → 0
in (3.9) gives that 〈(I − f)x∗, x̄− x∗〉 ≥ 0 for all x̄ ∈ S. This is (3.5).

Corollary 3.4. If the solution setS of the VI (3.1) is empty, then lim t↓0 ‖xt‖=∞.

Proof. If S = ∅, then no subsequences of {xt} can be bounded. Therefore,
‖xt‖ → ∞ as t ↓ 0.

4. AN ITERATION METHOD

In this section, we discretize the implicit scheme (3.3) to get an iterative algo-
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rithm which will be proved to converge in norm. Again fix γ ∈ (0, 1]. Now define
Vn by

Vn = (1 − γ)I + γ[tnf + (1 − tn)T ],

where {tn} is a sequence in (0, )] and f is a ρ-contraction on C. It is seen that Vn

is a contraction with coefficient 1 − (1 − ρ)γtn. Initializing x0 ∈ C, we define a
sequence {xn} in C in the manner: xn+1 is the solution of the VI

xn+1 ∈ C, 〈xn+1 − Vnxn, x− xn+1〉 ≥ 0, x ∈ C. (4.1)

Remark. Since Vn is a contraction on C, VI (4.1) has a unique solution. Hence the
sequence {xn} is well-defined. Indeed, xn+1 is alternatively given by

xn+1 = (PCVn)xn. (4.2)

Theorem 4.1. Assume the solution set S of the VI (3.1) is nonempty. Assume
the sequence {tn} of parameters satisfies the conditions

(i) tn → 0;
(ii)

∑∞
n=1 tn = ∞;

(iii) either
∑∞

n=1 |tn+1 − tn| < ∞ or limn→∞ tn/tn+1 = 1.

Then the sequence {xn} generated by the algorithm (4.1) converges in norm to the
unique solution x∗ of the VI

x∗ ∈ S, 〈(I − f)x∗, x− x∗〉 ≥ 0, x ∈ S. (4.3)

Equivalently, x∗ is the unique fixed point of the contraction P Cf ; i.e., x∗ =
(PCf)x∗.

Proof. (1◦) The sequence {xn} is bounded. As a matter of fact, it follows
from (4.1) that, for x′ ∈ S,

0 ≥ 〈(1− γ)xn + γ[tnf(xn) + (1 − tn)Txn] − xn+1, x
′ − xn+1〉

= (1− γ)〈xn − xn+1, x
′ − xn+1〉

+γ[tn〈f(xn) − xn+1, x
′ − xn+1〉+ (1− tn)〈Txn − xn+1, x

′ − xn+1〉]
= (1− γ)(〈xn − x′, x′ − xn+1〉+ ‖x′ − xn+1‖2)

+γ[tn(〈f(xn)− f(x′), x′ − xn+1〉 + 〈f(x′) − x′, x′ − xn+1〉 + ‖x′ − xn+1‖2)
+(1 − tn)(〈Txn − Tx′, x′ − xn+1〉+ 〈Tx′ − x′, x′ − xn+1〉 + ‖x′ − xn+1‖2)]

= ‖x′ − xn+1‖2 + (1 − γ)〈xn − x′, x′ − xn+1〉
+γ[tn(〈f(xn)− f(x′), x′ − xn+1〉 + 〈f(x′) − x′, x′ − xn+1〉)
+(1 − tn)(〈Txn − Tx′, x′ − xn+1〉+ 〈Tx′ − x′, x′ − xn+1〉)].
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It follows that (noticing 〈Tx′ − x′, x′ − xn+1〉 ≥ 0 as x′ ∈ S)

‖xn+1 − x′‖2 ≤ (1 − γ)〈xn − x′, xn+1 − x′〉
+γ[tn(〈f(xn) − f(x′), xn+1 − x′〉 + 〈f(x′) − x′, xn+1 − x′〉)
+(1 − tn)〈Txn − Tx′, xn+1 − x′〉]

≤ (1 − γ)‖xn − x′‖‖xn+1 − x′‖
+γ[tn(‖f(xn) − f(x′)‖‖xn+1 − x′‖ + 〈f(x′) − x′, xn+1 − x′〉)
+(1 − tn)‖Txn − Tx′‖‖xn+1 − x′‖]

= (1 − (1 − ρ)γtn)‖xn − x′‖‖xn+1 − x′‖
+γtn〈f(x′)− x′, xn+1 − x′〉 (4.4)

≤ (1 − (1 − ρ)γtn)‖xn − x′‖‖xn+1 − x′‖
+γtn‖f(x′) − x′‖‖xn+1 − x′‖.

This implies that

‖xn+1 − x′‖ ≤ (1− (1− ρ)γtn)‖xn − x′‖ + γtn‖f(x′) − x′‖
≤ max

{
‖xn − x′‖, 1

1 − ρ
‖f(x′) − x′‖

}
. (4.5)

By induction, we get

‖xn − x′‖ ≤ max
{
‖x0 − x′‖, 1

1− ρ
‖f(x′) − x′‖

}

for all n ≥ 0; in particular, {xn} is bounded.

(2◦) We show ‖xn+1 − xn‖ → 0. Indeed, we have

‖xn+1−xn‖ = ‖PCVnxn − PCVn−1xn−1‖
≤ ‖Vnxn − Vn−1xn−1‖
= ‖(1− γ)xn + γ[tnf(xn) + (1 − tn)Txn]

−(1−γ)xn−1−γ[tn−1f(xn−1)+(1−tn−1)Txn−1]‖
= ‖(1− γ)(xn − xn−1)

+γ(tn[f(xn)−f(xn−1)]+(1− tn)(Txn−Txn−1))

+γ(tn − tn−1)(f(xn−1) − Txn−1)‖
≤ (1− (1− ρ)γtn)‖xn − xn−1‖ + M |tn − tn−1|

(4.6)

where M > 0 is a constant big enough so that M > ‖f(xn) − Txn‖ for all
n. Noticing conditions (ii) and (iii), we can apply Lemma 2.4 to () to assert that
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‖xn+1 − xn‖ → 0.

(3◦) The weak ω-limit set ωw(xn) of {xn} satisfies the property: ωw(xn) ⊂ S.
To see this, we again use (4.1) to get

〈(1− γ)xn + γ[tn(f(xn) − Txn) + Txn] − xn+1, x− xn+1〉 ≤ 0, x ∈ C.

This results in

γ〈Txn−xn+1, x−xn+1〉 ≤ (1−γ)〈xn+1−xn, x−xn+1〉+γtn〈Txn−f(xn), x−xn+1〉.

This further results in

γ〈Txn − xn, x − xn〉 ≤ 〈xn+1 − xn, x− xn〉+ γ〈Txn − xn, xn+1 − xn〉
+γtn〈Txn − f(xn), x− xn+1〉

≤ d(tn + ‖xn − xn+1‖), (4.7)

where d is a constant (which may depend on x) such that

d > sup
n
{‖x− xn‖ + γ(‖xn − Txn‖ + ‖x − xn+1‖‖f(xn) − Txn‖}.

Next use the monotonicity of I − T to obtain from (4.7)

〈(I − T )x, xn − x〉 ≤ 〈(I − T )xn, xn − x〉
≤ (d/γ)(tn + ‖xn − xn+1‖).

By Step (2◦), we get

lim sup
n→∞

〈(I − T )x, xn − x〉 ≤ 0, x ∈ C. (4.8)

This immediately implies that if x̃ ∈ ωw(xn), then 〈(I−T )x, x̃−x〉 ≤ 0 for x ∈ C;
hence, x̃ ∈ S by Proposition 3.2. Therefore, ωw(xn) ⊂ S.

(4◦) We claim that

lim sup
n→∞

〈(I − f)x∗, x∗ − xn〉 ≤ 0. (4.9)

where x∗ is the unique solution of the VI (4.3). To see this, we take a subsequence
{xni} of {xn} such that

lim sup
n→∞

〈(I − f)x∗, x∗ − xn〉 = lim sup
i→∞

〈(I − f)x∗, x∗ − xni〉.
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With no loss of generality, we may assume xni ⇀ x̂. By Step (3◦), x̂ ∈ S. Hence
the VI (4.3) ensures that

lim sup
n→∞

〈(I − f)x∗, x∗ − xn〉 = (I − f)x∗, x∗ − x̂〉 ≤ 0.

(5◦) Finally we prove that xn → x∗, where x∗ = (PCf)x∗ is the unique solution
of VI (4.3). To see this, we substitute x∗ for x′ in the relation (4.4) to get

‖xn+1 − x∗‖2 ≤ (1− (1− ρ)γtn)‖xn − x∗‖‖xn+1 − x∗‖
+γtn〈f(x∗) − x∗, xn+1 − x∗〉)

≤ 1
2
(1 − (1 − ρ)γtn)(‖xn − x∗‖2 + ‖xn+1 − x∗‖2)

+γtn〈f(x∗) − x∗, xn+1 − x∗〉.

It follows that

‖xn+1 − x∗‖2 ≤ 1 − (1 − ρ)γtn
1 + (1 − ρ)γtn

‖xn − x∗‖2

+
2γtn

1 + (1− ρ)γtn
〈(I − f)x∗, x∗ − xn+1〉. (4.10)

Setting

γn =
2(1− ρ)γtn

1 + (1 − ρ)γtn
, δn =

1
1 − ρ

〈(I − f)x∗, x∗ − xn+1〉,

we can rewrite (4.10) as

‖xn+1 − x∗‖2 ≤ (1 − γn)‖xn − x∗‖2 + γnδn. (4.11)

Observing that γn → 0,
∑∞

n=1 γn = ∞, and lim supn→∞ δn ≤ 0, we can apply
Lemma 2.4 to (4.11) to conclude that ‖xn − x∗‖ → 0.

5. APPLICATION IN MINIMIZATION

Let H be a Hilbert space and C a closed convex subset of H . Let ϕ : C → R

be a lower semicontinuous convex function. Consider the following minimization
problem

min
x∈C

ϕ(x). (5.1)

Let S denote the solution set of (5.1) and assume S 	= ∅.
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Assume ϕ is differentiable and its gradient is Lipschitz continuous:

‖∇ϕ(x)−∇ϕ(y)‖ ≤ L‖x− y‖
for x, y ∈ C and L > 0 is a constant.

Recall that the optimality condition for x∗ ∈ C to be a solution of (5.1) is the
following VI

x∗ ∈ C, 〈∇ϕ(x∗), x− x∗〉 ≥ 0, x ∈ C. (5.2)

Let
T = I − λ∇ϕ,

where γ > 0 is a parameter. Then VI (5.2) is rewritten as

x∗ ∈ C, 〈(I − T )x∗, x− x∗〉 ≥ 0, x ∈ C. (5.3)

Since for 0 < λ < 2/L, the mapping T is nonexpansive, Theorems 3.3 and 4.1 are
applicable. In particular, taking γ = 1 and f = 0 in both theorems, we arrive at the
following theorem.

Theorem 5.1. Assume the solution set S of the minimization (5.1) is nonempty
and fix 0 < λ < 2/L. (I) For each t ∈ (0, 1), let xt be the unique solution to the
fixed point equation

xt = PC((1− t)I − λ(1− t)∇ϕ)xt. (5.4)

Then limt↓0 xt exists in the norm topology and is the minimum-norm solution of
the minimization (5.1).

(II) Define a sequence {xn} via the recursive algorithm:

xn+1 = PC((1− tn)(I − λ∇ϕ)xn), (5.5)

where the sequence {tn} satisfy the conditions (i)-(iii) of Theorem 4.1. Then {xn}
converges in norm to the minimum-norm solution of the minimization (5.1).

Proof. If we choose γ = 1, f = 0 and T = I − λ∇ϕ, then it is easily
found that the fixed point equation (3.3) is reduced to the fixed point equation (5.4)
and that the algorithm (4.1) (or its equivalence (4.2)) is reduced to the algorithm
(5.5). Also notice that when f = 0, the solution x∗ of the VI (3.5) is precisely the
minimum-norm element of the solution set S.
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