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TWO EXTRAGRADIENT APPROXIMATION METHODS FOR
VARIATIONAL INEQUALITIES AND FIXED POINT
PROBLEMS OF STRICT PSEUDO-CONTRACTIONS

L. C. Ceng1, A. Petruşel, C. Lee2 and M. M. Wong2,∗

Abstract. Let {Si}N
i=1 be N strict pseudo-contractions defined on a nonempty

closed convex subset C of a real Hilbert space H . Consider the problem of
finding a common element of the set of common fixed points of these mappings
{Si}N

i=1 and the set of solutions of the variational inequality for a mono-
tone Lipschitz continuous mapping of C into H , and consider the parallel-
extragradient and cyclic-extragradient algorithms for solving this problem. We
will derive the weak convergence of these algorithms. Moreover, these weak
convergence results will be applied to finding a common zero point of a finite
family of maximal monotone mappings. Further we prove that these algorithms
can be modified to have strong convergence by virtue of additional projections.
Our results represent the improvement, generalization and development of the
previously known results in the literature.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, respectively.
Let C be a nonempty closed convex subset of H , and let A : C → H be a mapping
of C into H . The variational inequality problem (VI(A, C)) is formulated as finding
an element u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C.
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Let PC be the metric projection of H onto C. It is known that the VI(A, C) is
equivalent to the fixed-point equation

u = PC(u − λAu),

where λ > 0 is an arbitrary fixed constant. The set of solutions of the VI(A,C) is
denoted by Ω. Variational inequalities were initially studied by Stampacchia [1] and
ever since have been widely studied and generalized in various directions, because
they cover as diverse disciplines as partial differential equations, optimal control,
optimization, mathematical programming, mechanics and finance; see, e.g., [1-5].
Existence and uniqueness of solutions are important problems in the study of the
variational inequality theory. At the same time, an equally important problem is how
to develop efficient and implementable algorithms for solving variational inequality
and its generalizations if any. A great deal of effort has gone into this problem; see,
e.g., [2,8,10-15,20,25].

Definition 1.1. Let C be a nonempty closed convex subset of a real Hilbert
space H . A mapping A : C → H is called

(i) monotone if
〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C;

(ii) α-inverse-strongly monotone (see, e.g., [10]) if there exists a constant α > 0
such that

〈Ax− Ay, x− y〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ C;

(iii) β-strongly monotone if there exists a constant β > 0 such that

〈Ax − Ay, x − y〉 ≥ β‖x − y‖2, ∀x, y ∈ C;

(iv) k-Lipschitz continuous if there exists a constant k > 0 such that

‖Ax− Ay‖ ≤ k‖x − y‖, ∀x, y ∈ C.

It is clear that every α-inverse-strongly monotone mapping A is monotone and
Lipschitz continuous.

Definition 1.2. Let C be a nonempty closed convex subset of a real Hilbert
space H . A self-mapping S : C → C is called a strict pseudo-contraction [6] if
there exists a constant 0 ≤ κ < 1 such that

‖Sx− Sy‖2 ≤ ‖x − y‖2 + κ‖(I − S)x− (I − S)y‖2, ∀x, y ∈ C.
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(If the last inequality holds, we also say that S is a κ-strict pseudo-contraction.)
These mappings are extensions of nonexpansive mappings which satisfy the last
inequality with κ = 0.

Iterative methods for nonexpansive mappings have been extensively investigated;
see [9,18,20-22,24,26,27] and the references therein. However iterative methods
for strict pseudo-contractions are far less developed than those for nonexpansive
mappings though Browder and Petryshyn [6] initiated their work in 1967. Here the
reason is probably that the second term appearing in the right-hand side of the last
inequality impedes the convergence analysis for iterative algorithms used to find a
fixed point of the strict pseudo-contraction S. However, we remind the reader of
an important fact that strict pseudo-contractions have more powerful applications
than nonexpansive mappings do in solving inverse problems (see Scherzer [23]).
Therefore it is interesting to develop the theory of iterative methods for strict pseudo-
contractions.

Quite recently, motivated by Browder and Petryshyn [6] Marino and Xu [17]
defined the following Mann’s algorithm (see [7])

xn+1 = αnxn + (1 − αn)Sxn,

and proved that the sequence {xn} generated by the algorithm converges weakly to
a fixed point of S, provided the control sequence {αn}∞n=0 satisfies the conditions
that κ < αn < 1 for all n and

∑∞
n=0(αn − κ)(1 − αn) = ∞. Such a result

can also be viewed as the Hilbert space version for strict pseudo-contractions of
Reich’s Banach space result [26] for nonexpansive mappings which states that if
S is a nonexpansive self-mappings, with a fixed point, of a closed convex subset
C of a uniformly convex Banach space with a Fŕechet differentiable norm, then
the sequence {xn} generated by the above Mann’s algorithm converges weakly
to a fixed point of S provided the sequence {αn}∞n=0 of parameters satisfies the
conditions that 0 < αn < 1 for all n and that

∑∞
n=0 αn(1 − αn) = ∞. We remark

that if S is nonexpansive, then S is κ-strict pseudo-contraction with κ = 0. In this
case, the condition

∑∞
n=0(αn−κ)(1−αn) = ∞ reduces to

∑∞
n=0 αn(1−αn) = ∞.

Very recently, Acedo and Xu [19] introduced and considered the problem of
finding a point x such that

x ∈
N⋂

i=1

F (Si), (1.1)

where N ≥ 1 is a positive integer and {Si}N
i=1 are N strict pseudo-contractions

defined on a nonempty closed convex subset C of a Hilbert space H . Here F (Si) =
{z ∈ C : Siz = z} is the set of fixed points of Si, 1 ≤ i ≤ N . Let S be defined
by

S =
N∑

i=1

λiSi
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where λi > 0 for all i such that
∑N

i=1 λi = 1. We will see that S is a strict
pseudo-contraction on C and F (S) =

⋂N
i=1 F (Si). Marino and Xu’s result [17]

applies to S and hence the sequence {xn} generated by the algorithm

xn+1 = αnxn + (1− αn)
N∑

i=1

λiSixn (1.2)

converge weakly to a solution to the problem (1.1). Moreover, they considered a
more general situation by allowing the weights {λi}N

i=1 in (1.2) to depend on n,
the number of steps of the iteration. That is, they considered the algorithm which
generates a sequence {xn} in the following way

xn+1 = αnxn + (1− αn)
N∑

i=1

λ
(n)
i Sixn. (1.3)

Under appropriate assumptions on the sequences of the weights {λ(n)
i }N

i they also
proved the weak convergence, to a solution of the problem (1.1), of the algorithm
(1.3).

Another approach to the problem (1.1) is the cyclic algorithm. (For convenience,
the mappings {Si}N

i=1 are relabeled as {Si}N−1
i=0 .) This means that beginning with

an x0 in C, the sequence {xn} is defined cyclically by

x1 = α0x0 + (1 − α0)S0x0,

x2 = α1x1 + (1 − α1)S1x1,

...
xN = αN−1xN−1 + (1 − αN−1)SN−1xN−1,

xN+1 = αNxN + (1− αN )S0xN ,

...

In a more compact form, xn+1 can be written as

xn+1 = αnxn + (1− αn)S[n]xn, (1.4)

where S[n] = Si, with i = n(modN ), 0 ≤ i ≤ N −1. They proved that this cyclic
algorithm (1.4) is also weakly convergent if the sequence {αn} of parameters is
appropriately chosen.

Furthermore, Acedo and Xu [19] proposed the modification for the algorithm
(1.3) as follows

xn+1 = PCn∩Qnx0, (1.5)
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where Cn and Qn are given by

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − κ)‖xn − Anxn‖2}
where An =

∑N
i=1 λ

(n)
i Si and yn = αnxn + (1− αn)Anxn, and

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0}. (1.6)

As for the algorithm (1.4), they proposed the following modification that produces
the sequence {xn} given by the same formula (1.5) with Cn given by

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − κ)‖xn − S[n]xn‖2}
where yn = αnxn + (1 − αn)S[n]xn, and with Qn given by the same formula
(1.6). They proved the strong convergence of the algorithm (1.5) for strict pseudo-
contractions.

On the other hand, recently, by combining Korpelevich’s extragradient method
[8] with Takahashi and Toyoda’s iterative algorithm [10], Nadezhkina and Takahashi
[11] introduced the following iterative scheme for finding an element of F (S) ∩ Ω
and proved its weak convergence.

Theorem 1.1. [11, Theorem 3.1]. Let C be a nonempty closed convex subset of
a real Hilbert space H . Let A : C → H be a monotone and k-Lipschitz-continuous
mapping and S : C → C be a nonexpansive mapping such that F (S)∩Ω �= ∅. Let
{xn}, {yn} be the sequences generated by any given x0 ∈ C and{

yn = PC(xn − λnAxn),

xn+1 = αnxn + (1− αn)SPC(xn − λnAyn)
(1.7)

for all n ≥ 0, where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [c, d] for
some c, d ∈ (0, 1). Then the sequences {xn}, {yn} converge weakly to the same
point z ∈ F (S) ∩ Ω where z = limn→∞ PF (S)∩Ωxn.

Very recently, inspired by Nadezhkina and Takahashi [11, Theorem 3.1], Zeng
and Yao [13] introduced the following iterative process for finding an element of
F (S) ∩ Ω and established the following strong convergence theorem.

Theorem 1.2. [13, Theorem 3.1]. Let C be a nonempty closed convex subset
of a real Hilbert space H . Let A : C → H be a monotone, k-Lipschitz-continuous
mapping and let S : C → C be a nonexpansive mapping such that F (S) ∩Ω �= ∅.
Let {xn}, {yn} be sequences generated by any given x0 ∈ C and{

yn = PC(xn − λnAxn),

xn+1 = αnx0 + (1 − αn)SPC(xn − λnAyn),

for every n ≥ 0, where {λn} and {αn} satisfy the conditions:
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(a) {λnk} ⊂ (0, 1− δ) for some δ ∈ (0, 1);
(b) {αn} ⊂ (0, 1),

∑∞
n=0 αn = ∞, limn→∞ αn = 0.

Then the sequences {xn}, {yn} converge strongly to the same element PF (S)∩Ωx0

provided limn→∞ ‖xn − xn+1‖ = 0.

On the other hand, motivated by Nadezhkina and Takahashi [11, Theorem
3.1], Ceng and Yao [14] introduced the following extragradient-like approxima-
tion method for finding an element of F (S)∩Ω and established the following weak
convergence theorem.

Theorem 1.3. [14, Theorem 3.1]. Let C be a nonempty closed convex subset of
a real Hilbert space H . Let f : C → C be a contractive mapping with a contractive
constant α ∈ (0, 1), A : C → H be a monotone, k-Lipschitz-continuous mapping
and S : C → C be a nonexpansive mapping such that F (S) ∩ Ω �= ∅. Let
{xn}, {yn} be sequences generated by any given x0 ∈ C and{

yn = (1 − γn)xn + γnPC(xn − λnAxn),

xn+1 = (1 − αn − βn)xn + αnf(yn) + βnSPC(xn − λnAyn),

for every n ≥ 0, where {λn} is a sequence in (0, 1) with
∑∞

n=0 λn < ∞, and
{αn}, {βn}, {γn} are three sequences in [0, 1] satisfying the conditions:

(i) αn + βn ≤ 1 for all n ≥ 0;

(ii) limn→∞ αn = 0,
∑∞

n=0 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim infn→∞ βn < 1.

Then the sequences {xn}, {yn} converge strongly to the same point q = PF (S)∩Ω

f(q) if and only if {Axn} is bounded and lim infn→∞〈Axn, y − xn〉 ≥ 0 for all
y ∈ C.

Let {Si}N
i=1 be N strict pseudo-contractions defined on a nonempty closed con-

vex subset C of a real Hilbert space H . In this paper, consider the problem of finding
a common element of the set of common fixed points of these mappings {Si}N

i=1

and the set of solutions of the variational inequality VI(A, C) for a monotone Lip-
schitz continuous mapping A of C into H , and consider the parallel-extragradient
and cyclic-extragradient algorithms for solving this problem. We will derive the
weak convergence of these algorithms. Moreover, these weak convergence results
will be applied to finding a common zero point of a finite family of maximal mono-
tone mappings. Further we prove that these algorithms can be modified to have
strong convergence by virtue of additional projections. Our results represent the
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improvement, generalization and development of the previously known results in
the literature.

Notation:

1. ⇀ stands for weak convergence and → for strong convergence.
2. ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn}.

2. PRELIMINARIES

We need some facts and tools in a real Hilbert space H which are listed as
lemmas below (see [18] for necessary proofs of Lemmas 2.2 and 2.4).

Lemma 2.1. Let H be a real Hilbert space. There hold the following identities

(i) ‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, ∀x, y ∈ H;
(ii) ‖tx+(1− t)y‖2 =t‖x‖2+(1−t)‖y‖2−t(1−t)‖x−y‖2, ∀t∈ [0, 1], ∀x, y ∈ H;
(iii) If {xn} is a sequence in H weakly convergent to z, then

lim sup
n→∞

‖xn − y‖2 = lim sup
n→∞

‖xn − z‖2 + ‖z − y‖2, ∀y ∈ H.

Lemma 2.2. Let H be a real Hilbert space. Given a nonempty closed convex
subset C ⊂ H and points x, y, z ∈ H and given also a real number a ∈ R =
(−∞,∞), the set

{v ∈ C : ‖y − v‖2 ≤ ‖x − v‖2 + 〈z, v〉+ a}
is convex (and closed).

Recall that given a nonempty closed convex subset K of a real Hilbert space H ,
the nearest point projection PK from H onto K assigns to each x ∈ H its nearest
point denoted as PKx in K from x to K; that is, PKx is the unique point in K
with the property

‖x − PKx‖ ≤ ‖x − y‖, ∀y ∈ K.

Lemma 2.3. Let K be a nonempty closed convex subset of a real Hilbert
space H . Given x ∈ H and z ∈ K, then z = PKx if and only if there holds the
relation:

〈x − z, y − z〉 ≤ 0, ∀y ∈ K.

Remark 2.1. It is easy to see that the last inequality is equivalent to

‖x− y‖2 ≥ ‖x − PKx‖2 + ‖y − PKx‖2 (2.1)
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for all x ∈ H and all y ∈ K; see [9] for more derails.

Lemma 2.4. Let K be a nonempty closed convex subset of H . Let {xn} be a
sequence in H and u ∈ H . Let q = PKu. Suppose {xn} is such that ωw(xn) ⊂ K

and satisfies the condition

‖xn − u‖ ≤ ‖u − q‖, ∀n.

Then xn → q.

Lemma 2.5. [19, Lemma 2.5]. Let K be a nonempty closed convex subset
of H . Let {xn} be a bounded sequence in H . Assume that the weak ω-limit set
ωw(xn) ⊂ K and for each z ∈ K, limn→∞ ‖xn − z‖ exists. Then {xn} is weakly
convergent to a point in K.

The following proposition lists some useful properties for strict pseudo-contractions;
see also [6,23].

Proposition 2.6. [19, Proposition 2.6]. Assume C is a nonempty closed convex
subset of a real Hilbert space H .

(i) If S : C → C is a κ-strict pseudo-contraction, then S satisfies the Lipschitz
condition

‖Sx− Sy‖ ≤ 1 + κ

1 − κ
‖x − y‖, ∀x, y ∈ C. (2.2)

(ii) If S : C → C is a κ-strict pseudo-contraction, then the mapping I − S is
demiclosed (at 0). That is, if {xn} is a sequence in C such that xn ⇀ x̃ and
(I − S)xn → 0, then (I − S)x̃ = 0.

(iii) If S : C → C is a κ-strict pseudo-contraction, then the fixed point set F (S)
of S is closed and convex so that the projection P F (S) is well defined.

(iv) Given an integer N ≥ 1, assume, for each 1 ≤ i ≤ N , S i : C → C is
a κi-strict pseudo-contraction for some 0 ≤ κ i < 1. Assume {λi}N

i=1 is
a positive sequence such that

∑N
i=1 λi = 1. Then

∑N
i=1 λiSi is a κ-strict

pseudo-contraction, with κ = max{κ i : 1 ≤ i ≤ N}.

(v) Let {Si}N
i=1 and {λi}N

i=1 be given as in (iv) above. Suppose that {Si}N
i=1 has

a common fixed point. Then

F (
N∑

i=1

λiSi) =
N⋂

i=1

F (Si).
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A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈
Tx and g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. A monotone mapping T : H → 2H

is maximal if its graph G(T ) is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping T is maximal if and only
if for (x, f) ∈ H × H, 〈x − y, f − g〉 ≥ 0 for all (y, g) ∈ G(T ), then f ∈ Tx.
Let A : C → H be a monotone, k-Lipschitz continuous mapping and NCv be the
normal cone to C at v ∈ C, i.e., NCv = {w ∈ H : 〈v − y, w〉 ≥ 0, ∀y ∈ C}.
Define

Tv =

{
Av + NCv, if v ∈ C,

∅, if v �∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ Ω; see [16].

3. PARALLEL-EXTRAGRADIENT ALGORITHM

Mann’s algorithm has been extensively investigated for nonexpansive mappings.
One of the fundamental convergence results is proved by Reich [26] in a uniformly
convex Banach space with a Fréchet differentiable norm. Recently Marino and Xu
[17, Theorem 3.1] extended Reich’s result to strict pseudo-contractions in the Hilbert
space setting. Very recently, Acedo and Xu [19, Theorem 3.3] also extended Marino
and Xu’s result to a finite family of strict pseudo-contractions. In this section, by
combining the iterative scheme in [19, Theorem 3.3] with the iterative one in [11,
Theorem 3.1], we propose a parallel-extragradient algorithm for finding an element
of

⋂N
i=1 F (Si) ∩ Ω where for each 1 ≤ i ≤ N , Si : C → C is a κi-strict pseudo-

contraction for some 0 ≤ κi < 1.

Lemma 3.1. (see [10]). Let H be a real Hilbert space and let D be a
nonempty closed convex subset of H . Let {xn} be a sequence in H . Suppose that,
for all u ∈ D,

‖xn+1 − u‖ ≤ ‖xn − u‖, ∀n ≥ 0.

Then the sequence {PDxn} converges strongly to some z ∈ D.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H and A : C → H be a monotone, k-Lipschitz continuous mapping. Let
N ≥ 1 be an integer. Let, for each 1 ≤ i ≤ N, Si : C → C be a κi-strict
pseudo-contraction for some 0 ≤ κ i < 1 such that

⋂N
i=1 F (Si) ∩ Ω �= ∅. Let

κ = max{κi : 1 ≤ i ≤ N}. Assume that for each n, {λ(n)
i }N

i=1 is a finite sequence
of positive numbers such that

∑N
i=1 λ

(n)
i = 1 for each n ≥ 0 where λ

(n)
i > 0 for all

n ≥ 0 and 1 ≤ i ≤ N . Given any x0 ∈ C, let {xn}∞n=0, {yn}∞n=0 be the sequences
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generated by 


yn = PC(xn − λnAxn),

tn = PC(xn − λnAyn),

xn+1 = αntn + (1 − αn)
N∑

i=1

λ
(n)
i Sitn, n ≥ 0,

(3.1)

where there hold the following conditions

(i) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(ii) {αn} ⊂ [α, β] for some α, β ∈ (κ, 1).

Then, the sequences {xn}, {yn} converge weakly to the same point z ∈ ⋂N
i=1 F (Si)∩

Ω, where z = limn→∞ P⋂N
i=1 F (Si)∩Ωxn.

Proof. We divide the proof into several steps.

Step 1. We claim that the following hold:

(i) ‖xn+1 − u‖ ≤ ‖xn − u‖ for all u ∈ ⋂N
i=1 F (Si) ∩ Ω and all n ≥ 0;

(ii) limn→∞ ‖xn − u‖ exists for each u ∈ ⋂N
i=1 F (Si) ∩ Ω.

Indeed, put tn = PC(xn − λnAyn) for each n ≥ 0. Let u ∈ ⋂N
i=1 F (Si) ∩ Ω

be an arbitrary element. Then, from (2.1), monotonicity of A, and u ∈ Ω, we have

‖tn − u‖2 ≤ ‖xn − λnAyn − u‖2 − ‖xn − λnAyn − tn‖2

= ‖xn − u‖2 − ‖xn − tn‖2 + 2λn〈Ayn, u− tn〉
= ‖xn − u‖2 − ‖xn − tn‖2

+2λn(〈Ayn − Au, u − yn〉 + 〈Au, u− yn〉+ 〈Ayn, yn − tn〉)
≤ ‖xn − u‖2 − ‖xn − tn‖2 + 2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − 2〈xn − yn, yn − tn〉 − ‖yn − tn‖2

+2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+2〈xn − λnAyn − yn, tn − yn〉.
Further, since yn = PC(xn − λnAxn) and A is k-Lipschitz continuous, we have

〈xn − λnAyn − yn, tn − yn〉
= 〈xn − λnAxn − yn, tn − yn〉+ λn〈Axn − Ayn, tn − yn〉
≤ λn〈Axn − Ayn, tn − yn〉
≤ λnk‖xn − yn‖‖tn − yn‖.
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So, we have

‖tn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+2λnk‖xn − yn‖‖tn − yn‖
≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+λ2
nk2‖xn − yn‖2 + ‖yn − tn‖2

= ‖xn − u‖2 + (λ2
nk2 − 1)‖xn − yn‖2

≤ ‖xn − u‖2.

(3.2)

Write, for each n ≥ 1,

Tn =
N∑

i=1

λ
(n)
i Si.

By Proposition 2.6 (iv), each Tn is a κ-strict pseudo-contraction on C, and from
the algorithm (3.1) we obtain

xn+1 = αntn + (1 − αn)Tntn. (3.3)

Hence from (3.2), u = Siu (1 ≤ i ≤ N ), and {αn} ⊂ (κ, 1), we have

‖xn+1−u‖2

= ‖αn(tn−u) + (1−αn)(Tntn−u)‖2

= αn‖tn−u‖2 + (1−αn)‖Tntn−u‖2−αn(1−αn)‖tn−Tntn‖2

≤ αn‖tn−u‖2 + (1−αn)(‖tn−u‖2

+κ‖tn−Tntn‖2)−αn(1−αn)‖tn−Tntn‖2

= ‖tn−u‖2 + (1−αn)(κ−αn)‖tn−Tntn‖2

≤ ‖xn−u‖2 + (λ2
nk2−1)‖xn−yn‖2 + (1−αn)(κ−αn)‖tn−Tntn‖2

≤ ‖xn−u‖2 + (λ2
nk2−1)‖xn−yn‖2

≤ ‖xn−u‖2.

(3.4)

Therefore, there exists
c = lim

n→∞ ‖xn − u‖
and the sequences {xn}, {tn} are bounded.

Step 2. We claim that the following hold:

(i) lim
n→∞ ‖xn − yn‖ = 0;

(ii) lim
n→∞ ‖yn − tn‖ = 0;
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(iii) lim
n→∞ ‖xn − tn‖ = 0.

Indeed, from (3.4), we get

(1 − λ2
nk2)‖xn − yn‖2 ≤ ‖xn − u‖2 − ‖xn+1 − u‖2.

So we have

‖xn − yn‖2 ≤ 1
1 − λ2

nk2
(‖xn − u‖2 − ‖xn+1 − u‖2)

≤ 1
1 − b2k2

(‖xn − u‖2 − ‖xn+1 − u‖2).

Hence limn→∞ ‖xn − yn‖ = 0. Further, it follows that

‖tn − yn‖ = ‖PC(xn − λnAyn) − PC(xn − λnAxn)‖ ≤ λnk‖xn − yn‖.

This implies that limn→∞ ‖yn−tn‖ = 0. From ‖xn−tn‖ ≤ ‖xn−yn‖+‖yn−tn‖,
we also have limn→∞ ‖xn − tn‖ = 0. Since A is k-Lipschitz continuous, we have
limn→∞ ‖Ayn − Atn‖ = 0.

Step 3. We claim that the following hold:

(i) lim
n→∞ ‖tn − Tntn‖ = 0;

(ii) lim
n→∞ ‖xn − Tnxn‖ = 0.

Indeed, since κ < α ≤ αn ≤ β < 1 for all n ≥ 0, from (3.4) it follows that

(α − κ)(1− β)‖tn − Tntn‖2 ≤ (αn − κ)(1− αn)‖tn − Tntn‖2

≤ ‖xn − u‖2 − ‖xn+1 − u‖2.

From Step 1 (ii) we deduce that limn→∞ ‖tn − Tntn‖ = 0. Furthermore, utilizing
the Lipschitz continuity of Tn, we have

‖xn − Tnxn‖ ≤ ‖xn − tn‖ + ‖tn − Tntn‖ + ‖Tntn − Tnxn‖

≤ ‖xn − tn‖ + ‖tn − Tntn‖ +
1 + κ

1 − κ
‖tn − xn‖

= ‖tn − Tntn‖ +
2

1− κ
‖tn − xn‖,

which hence implies that limn→∞ ‖xn − Tnxn‖ = 0.

Step 4. We claim that ωw(xn) ⊂ ⋂N
i=1 F (Si) ∩ Ω.
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Indeed, first, let us show that

ωw(xn) ⊂
N⋂

i=1

F (Si). (3.5)

To see this, we take z ∈ ωw(xn) arbitrarily and assume that xnl
⇀ z as l → ∞ for

some subsequence {xnl
} of {xn}. Without loss of generality, we may assume that

λ
(nl)
i → λi (as l → ∞), 1 ≤ i ≤ N. (3.6)

It is readily seen that each λi > 0 and
∑N

i=1 λi = 1. We also have

Tnl
x → Γx (as l → ∞) for all x ∈ C,

where Γ =
∑N

i=1 λiSi. Note that by Proposition 2.6, Γ is a κ-strict pseudo-
contraction and F (Γ) =

⋂N
i=1 F (Si). Since

‖xnl
− Γxnl

‖ ≤ ‖xnl
− Tnl

xnl
‖ + ‖Tnl

xnl
− Γxnl

‖

≤ ‖xnl
− Tnl

xnl
‖ +

N∑
i=1

|λ(nl)
i − λi|‖Sixnl

‖.

Since limn→∞ ‖xn − Tnxn‖ = 0, from (3.6) we conclude that liml→∞ ‖xnl
−

Γxnl
‖ = 0. So by the demiclosedness principle (Proposition 2.6 (ii)), it follows that

z ∈ F (Γ) =
⋂N

i=1 F (Si) and hence (3.5) holds.
Second, let us show that ωw(xn) ⊂ Ω. Indeed, take z ∈ ωw(xn) arbitrarily and

assume still that xnl
⇀ z as l → ∞ for some subsequence {xnl

} of {xn}. Since
xn − tn → 0 and yn − tn → 0, we have tnl

⇀ z and ynl
⇀ z. Let

Tv =

{
Av + NCv, if v ∈ C,

∅, if v �∈ C.

Then, T is maximal monotone and 0 ∈ Tv if and only if v ∈ Ω; see [16]. Let
(v, w) ∈ G(T ). Then, we have w ∈ Tv = Av + NCv and hence w − Av ∈ NCv.
So, we have

〈v − u, w − Av〉 ≥ 0, ∀u ∈ C.

On the other hand, from

tn = PC(xn − λnAyn) and v ∈ C,

we have
〈xn − λnAyn − tn, tn − v〉 ≥ 0,
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and hence
〈v − tn, (tn − xn)/λn + Ayn〉 ≥ 0.

Therefore from
w − Av ∈ NCv and tnl

∈ C,

we have

〈v − tnl
, w〉 ≥ 〈v − tnl

, Av〉
≥ 〈v − tnl

, Av〉 − 〈v − tnl
, (tnl

− xnl
)/λnl

+ Aynl
〉

= 〈v − tnl
, Av − Atnl

〉 + 〈v − tnl
, Atnl

− Aynl
〉

−〈v − tnl
, (tnl

− xnl
)/λnl

〉
≥ 〈v − tnl

, Atnl
− Aynl

〉 − 〈v − tnl
, (tnl

− xnl
)/λnl

〉.
Hence we obtain

〈v − z, w〉 ≥ 0, as l → ∞.

Since T is maximal monotone, we have z ∈ T−10 and hence z ∈ Ω. Thus, we
conclude that ωw(xn) ⊂ Ω. Therefore, ωw(xn) ⊂ ⋂N

i=1 F (Si) ∩ Ω.

Step 5. We claim that {xn}, {yn} converge weakly to the same point z ∈⋂N
i=1 F (Si) ∩ Ω, where z = limn→∞ P⋂N

i=1 F (Si)∩Ωxn.
Indeed, we first show that ωw(xn) is a single-point set. We take z1, z2 ∈ ωw(xn)

arbitrarily and let {xki} and {xmj} be subsequences of {xn} such that xki ⇀ z1 and
xmj ⇀ z2, respectively. Since limn→∞ ‖xn−u‖ exists for each u ∈ ⋂N

i=1 F (Si)∩Ω
and since z1, z2 ∈

⋂N
i=1 F (Si) ∩ Ω, by Lemma 2.1 (iii) we obtain

lim
n→∞ ‖xn − z1‖2 = lim

j→∞
‖xmj − z1‖2

= lim
j→∞

‖xmj − z2‖2 + ‖z2 − z1‖2

= lim
i→∞

‖xki − z2‖2 + ‖z2 − z1‖2

= lim
i→∞

‖xki − z1‖2 + 2‖z2 − z1‖2

= lim
n→∞ ‖xn − z1‖2 + 2‖z2 − z1‖2.

Hence z1 = z2. This shows that ωw(xn) is a single-point set. Without loss of
generality, we may write ωw(xn) = {z}. This implies that xn ⇀ z ∈ ⋂N

i=1 F (Si)∩
Ω. Since xn − yn → 0 as n → ∞, we also have yn ⇀ z ∈ ⋂N

i=1 F (Si) ∩ Ω.
Now, put un = P⋂N

i=1 F (Si)∩Ωxn. Let us show that limn→∞ ‖un − z‖ = 0.
Since un = P⋂N

i=1 F (Si)∩Ωxn and z ∈ ⋂N
i=1 F (Si) ∩ Ω, we have

〈z − un, un − xn〉 ≥ 0.
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By Lemma 3.2, {un} converges strongly to some z0 ∈ ⋂N
i=1 F (Si) ∩ Ω. Then we

have 〈z − z0, z0 − z〉 ≥ 0 and hence z = z0. This completes the proof.

Utilizing Theorem 3.1, we derive two corollaries in a real Hilbert space.

Corollary 3.1. Let H be a real Hilbert space and A : H → H be a monotone,
k-Lipschitz continuous mapping. Let N ≥ 1 be an integer. Let, for each 1 ≤ i ≤
N, Si : H → H be a κi-strict pseudo-contraction for some 0 ≤ κ i < 1 such that⋂N

i=1 F (Si) ∩ A−10 �= ∅. Let κ = max{κi : 1 ≤ i ≤ N}. Assume that for each
n, {λ(n)

i }N
i=1 is a finite sequence of positive numbers such that

∑N
i=1 λ

(n)
i = 1 for

each n ≥ 0 where λ
(n)
i > 0 for all n ≥ 0 and 1 ≤ i ≤ N . Given any x0 ∈ H , let

{xn}∞n=0, {yn}∞n=0 be the sequences generated by


yn = xn − λnAxn,

tn = xn − λnAyn,

xn+1 = αntn + (1− αn)
N∑

i=1

λ
(n)
i Sitn, n ≥ 0,

where there hold the following conditions
(i) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(ii) {αn} ⊂ [α, β] for some α, β ∈ (κ, 1).

Then, the sequences {xn}, {yn} converge weakly to the same point z ∈ ⋂N
i=1 F (Si)∩

A−10, where z = limn→∞ P⋂N
i=1 F (Si)∩A−10xn.

Proof. We have C = H, A−10 = Ω and PH = I . By Theorem 3.1 we obtain
the desired result.

Corollary 3.2. Let H be a real Hilbert space and A : H → H be a monotone,
k-Lipschitz continuous mapping. Let N ≥ 1 be an integer. Let, for each 1 ≤
i ≤ N, Bi : H → 2H be a maximal monotone mapping such that

⋂N
i=1 B−1

i 0 ∩
A−10 �= ∅. Let JBi

r be the resolvent of Bi for each r > 0. Assume that for each
n, {λ(n)

i }N
i=1 is a finite sequence of positive numbers such that

∑N
i=1 λ

(n)
i = 1 for

each n ≥ 0 where λ
(n)
i > 0 for all n ≥ 0 and 1 ≤ i ≤ N . Given any x0 ∈ H , let

{xn}∞n=0, {yn}∞n=0 be the sequences generated by


yn = xn − λnAxn,

tn = xn − λnAyn,

xn+1 = αntn + (1− αn)
N∑

i=1

λ
(n)
i JBi

r tn, n ≥ 0,

where there hold the following conditions
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(i) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);

(ii) {αn} ⊂ [α, β] for some α, β ∈ (0, 1).

Then, the sequences {xn}, {yn} converge weakly to the same point z ∈ ⋂N
i=1 B−1

i 0∩
A−10, where z = limn→∞ P⋂N

i=1 B−1
i 0∩A−10xn.

Proof. We have C = H, A−10 = Ω, F (JBi
r ) = B−1

i 0 and κ = 0. Putting
PH = I , by Theorem 3.1 we obtain the desired result.

4. CYCLIC-EXTRAGRADIENT ALGORITHM

Let C be a nonempty closed convex subset of a real Hilbert space H and let
{Si}N−1

i=0 be N κ-strict pseudo-contractions on C such that the intersection set⋂N−1
i=0 F (Si) ∩ Ω �= ∅. In this section, we propose a cyclic-extragradient algorithm

for finding an element of
⋂N−1

i=0 F (Si) ∩ Ω.

Algorithm 4.1. Let{αn}∞n=0 be a sequence in (κ, 1) and {λn}∞n=0 be a sequence
in (0, 1/k). Given any x0 ∈ C, let {xn}∞n=0, {yn}∞n=0 be the sequences generated
via the iterative scheme


yn = PC(xn − λnAxn),

tn = PC(xn − λnAyn),

xn+1 = αntn + (1− αn)S[n]tn, n ≥ 0,

(4.1)

where S[n] = Si, with i = n(modN ), 0 ≤ i ≤ N − 1, i.e., if n = jN + i for
some integers j ≥ 0 and 0 ≤ i ≤ N − 1, then S[n] = S0 if i = 0 and S[n] = Si if
0 < i ≤ N − 1.

We are now in a position to discuss the convergence analysis for Algorithm 4.1.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert
space H and A : C → H be a monotone, k-Lipschitz continuous mapping. Let
N ≥ 1 be an integer. Let, for each 0 ≤ i ≤ N − 1, Si : C → C be a κi-strict
pseudo-contraction for some 0 ≤ κ i < 1 such that

⋂N−1
i=0 F (Si) ∩ Ω �= ∅. Let

κ = max{κi : 0 ≤ i ≤ N − 1}. Given any x0 ∈ C, let {xn}∞n=0, {yn}∞n=0 be the
sequences generated by the cyclic-extragradient algorithm (4.1). Assume that the
sequences {αn} ⊂ (κ, 1) and {λn} ⊂ (0, 1/k) satisfy the following conditions

(i) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);

(ii) {αn} ⊂ [α, β] for some α, β ∈ (κ, 1).
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Then the sequences {xn}, {yn} converge weakly to the same point z ∈ ⋂N
i=1 F (Si)∩

Ω, where z = limn→∞ P⋂N
i=1 F (Si)∩Ωxn.

Proof. We divide the proof into several steps.

Step 1. We claim that the following hold:

(i) ‖xn+1 − u‖ ≤ ‖xn − u‖ for all u ∈ ⋂N
i=1 F (Si) ∩ Ω and all n ≥ 0;

(ii) limn→∞ ‖xn − u‖ exists for each u ∈ ⋂N
i=1 F (Si) ∩ Ω.

Indeed, utilizing the same argument as in the proof of (3.2), we obtain

‖tn − u‖2 ≤ ‖xn − u‖2 + (λ2
nk2 − 1)‖xn − yn‖2 ≤ ‖xn − u‖2. (4.2)

From (4.2), u = Siu (0 ≤ i ≤ N − 1), and {αn} ⊂ (κ, 1), it follows that

‖xn+1 − u‖2

= ‖αn(tn − u) + (1− αn)(S[n]tn − u)‖2

= αn‖tn − u‖2 + (1− αn)‖S[n]tn − u‖2 − αn(1− αn)‖tn − S[n]tn‖2

≤ αn‖tn − u‖2 + (1− αn)(‖tn − u‖2

+κ‖tn − S[n]tn‖2) − αn(1− αn)‖tn − S[n]tn‖2

= ‖tn − u‖2 + (1 − αn)(κ− αn)‖tn − S[n]tn‖2

≤ ‖xn−u‖2 + (λ2
nk2 − 1)‖xn−yn‖2 + (1−αn)(κ−αn)‖tn−S[n]tn‖2

≤ ‖xn − u‖2 + (λ2
nk2 − 1)‖xn − yn‖2

≤ ‖xn − u‖2.

(4.3)

Therefore, there exists
c = lim

n→∞ ‖xn − u‖
and the sequences {xn}, {tn} are bounded.

Step 2. We claim that the following hold:

(i) lim
n→∞ ‖xn − yn‖ = 0;

(ii) lim
n→∞ ‖yn − tn‖ = 0;

(iii) lim
n→∞ ‖xn − tn‖ = 0.

Indeed, utilizing the same argument as in Step 2 of the proof of Theorem 3.1,
we can obtain the assertions.

Step 3. We claim that the following hold:
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(i) lim
n→∞ ‖tn − S[n]tn‖ = 0;

(ii) lim
n→∞ ‖xn − S[n]xn‖ = 0.

Indeed, utilizing the same argument as in Step 3 of the proof of Theorem 3.1,
we can obtain the assertions, where Tn is replaced by S[n].

Step 4. We claim that ωw(xn) ⊂ ⋂N
i=1 F (Si) ∩ Ω.

Indeed, first, let us show that

ωw(xn) ⊂
N−1⋂
i=0

F (Si). (4.4)

To see this, we take z ∈ ωw(xn) arbitrarily and assume that xnl
⇀ z as l → ∞ for

some subsequence {xnl
} of {xn}. We may further assume that nl = i(modN ) for

all l. Observe that

‖xn+1 − xn‖2 = ‖αn(tn − xn) + (1 − αn)(S[n]tn − xn)‖2

≤ αn‖tn − xn‖2 + (1 − αn)‖S[n]tn − xn‖2

≤ αn‖tn − xn‖2 + (1 − αn)[‖S[n]tn − tn‖ + ‖tn − xn‖]2.

Thus we deduce that limn→∞ ‖xn+1 −xn‖ = 0 and hence we also have xnl+j ⇀ z
for all j ≥ 0. Consequently, we conclude that

‖xnl+j − S[i+j]xnl+j‖ = ‖xnl+j − S[nl+j]xnl+j‖ → 0.

Then the demiclosedness principle (Proposition 2.6 (ii)) implies that z ∈ F (S [i+j])
for all j. This ensures that z ∈ ⋂N−1

i=0 F (Si). Therefore (4.4) holds. Second, let us
show that ωw(xn) ⊂ Ω. Indeed, the argument is the same as in Step 4 of the proof
of Theorem 3.1. Thus we omit it.

Step 5. We claim that {xn}, {yn} converge weakly to the same point z ∈⋂N
i=1 F (Si) ∩ Ω, where z = limn→∞ P⋂N

i=1 F (Si)∩Ωxn.
Indeed, the argument is the same as in Step 5 of the proof of Theorem 3.1. Thus

we omit it. This completes the proof.

Utilizing Theorem 4.1, we derive two corollaries in a real Hilbert space.

Corollary 4.1. Let H be a real Hilbert space and A : H → H be a monotone,
k-Lipschitz continuous mapping. Let N ≥ 1 be an integer. Let, for each 0 ≤ i ≤
N − 1, Si : H → H be a κi-strict pseudo-contraction for some 0 ≤ κ i < 1 such
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that
⋂N−1

i=0 F (Si) ∩ A−10 �= ∅. Let κ = max{κi : 0 ≤ i ≤ N − 1}. Given any
x0 ∈ H , let {xn}∞n=0, {yn}∞n=0 be the sequences generated by


yn = xn − λnAxn,

tn = xn − λnAyn,

xn+1 = αntn + (1 − αn)S[n]tn, n ≥ 0,

where there hold the following conditions

(i) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(ii) {αn} ⊂ [α, β] for some α, β ∈ (κ, 1).

Then, the sequences {xn}, {yn} converge weakly to the same point z ∈ ⋂N−1
i=0 F (Si)∩

A−10, where z = limn→∞ P⋂N−1
i=0 F (Si)∩A−10xn.

Proof. We have C = H, A−10 = Ω and PH = I . By Theorem 4.1 we obtain
the desired result.

Corollary 4.2. Let H be a real Hilbert space and A : H → H be a monotone,
k-Lipschitz continuous mapping. Let N ≥ 1 be an integer. Let, for each 0 ≤ i ≤
N − 1, Bi : H → 2H be a maximal monotone mapping such that

⋂N−1
i=0 B−1

i 0 ∩
A−10 �= ∅. Let JBi

r be the resolvent of Bi for each r > 0. Given any x0 ∈ H , let
{xn}∞n=0, {yn}∞n=0 be the sequences generated by


yn = xn − λnAxn,

tn = xn − λnAyn,

xn+1 = αntn + (1 − αn)J
B[n]
r tn, n ≥ 0,

where there hold the following conditions

(i) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(ii) {αn} ⊂ [α, β] for some α, β ∈ (0, 1).

Then, the sequences {xn}, {yn} converge weakly to the same point z ∈ ⋂N−1
i=0 B−1

i 0∩
A−10, where z = limn→∞ P⋂N−1

i=0 B−1
i 0∩A−10xn.

Proof. We have C = H, A−10 = Ω, F (JBi
r ) = B−1

i 0 and κ = 0. Putting
PH = I , by Theorem 4.1 we obtain the desired result.

5. STRONG CONVERGENCE

In an infinite-dimensional Hilbert space, the previous two algorithms have only
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weak convergence (see Theorems 3.1 and 4.1). Hence in order to have strong
convergence, we have to modify these two algorithms. Recently, a modification
of Mann’s algorithm for finding a fixed point of a single strict pseudo-contraction,
which has strong convergence, was obtained in [17]. Subsequently, a modification of
Mann’s algorithm for finding a common fixed point of N strict pseudo-contractions,
which has strong convergence, was considered in [19], where N ≥ 1 is an integer.

Inspired by Acedo and Xu [19], below we purpose and analyze an iterative
algorithm for finding a common element of the set of common fixed points of
N strict pseudo-contractions and the set of solutions of the variational inequality
(VI(A, C)).

Theorem 5.1. Let C be a nonempty closed convex subset of a real Hilbert
space H and A : C → H be a monotone, k-Lipschitz continuous mapping. Given
an integer N ≥ 1, let, for each 1 ≤ i ≤ N, Si : C → C be a κi-strict pseudo-
contraction for some 0 ≤ κ i < 1 such that

⋂N
i=1 F (Si)∩Ω �= ∅. Let κ = max{κi :

1 ≤ i ≤ N}. Assume that for each n, {λ(n)
i }N

i=1 is a finite sequence of positive
numbers such that

∑N
i=1 λ

(n)
i = 1 and infn≥1 λ

(n)
i > 0 for all 1 ≤ i ≤ N . Let the

mapping Tn be defined by

Tnx =
N∑

i=1

λ
(n)
i Six, ∀x ∈ C.

Given any x0 ∈ C, let {xn}∞n=0, {yn}∞n=0 be the sequences generated by


yn = PC(xn − λnAxn),
tn = PC(xn − λnAyn),

zn = αntn + (1− αn)
N∑

i=1

λ
(n)
i Sitn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖tn − z‖2

−(1 − αn)(αn − κ)‖tn − Tntn‖2},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, n ≥ 0,

(5.1)

where there hold the following conditions

(i) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(ii) 0 ≤ αn < 1 for all n ≥ 0.

Then, the sequences {xn}, {yn} converge strongly to the same point P⋂N
i=1 F (Si)∩Ωx0

provided limn→∞ ‖xn − yn‖ = 0.
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Proof. We divide the proof into several steps.
First observe that Cn is convex by Lemma 2.2. Next, let us show that

⋂N
i=1 F (Si)∩

Ω ⊂ Cn for all n. Indeed, let u ∈ ⋂N
i=1 F (Si) ∩ Ω be an arbitrary element. As in

the proof of (3.4), we can derive

‖zn − u‖2 ≤ ‖tn − u‖2 − (1− αn)(αn − κ)‖tn − Tntn‖2. (5.2)

So u ∈ Cn for all n. Next let us show that

N⋂
i=1

F (Si) ∩ Ω ⊂ Qn for all n ≥ 0. (5.3)

We prove this by induction. For n = 0, we have
⋂N

i=1 F (Si) ∩ Ω ⊂ C = Q0.
Assume that

⋂N
i=1 F (Si) ∩ Ω ⊂ Qn for some n > 0. Since xn+1 is the projection

of x0 onto Cn ∩ Qn, by Lemma 2.3 we have

〈xn+1 − z, x0 − xn+1〉 ≥ 0, ∀z ∈ Cn ∩ Qn.

As
⋂N

i=1 F (Si) ∩ Ω ⊂ Cn ∩ Qn by the induction assumption, the last inequality
holds, in particular, for all z ∈ ⋂N

i=1 F (Si) ∩ Ω. This together with the definition
of Qn+1 implies that

⋂N
i=1 F (Si) ∩ Ω ⊂ Qn+1. Hence (5.3) holds for all n ≥ 0.

Notice that the definition of Qn actually implies xn = PQnx0. This together
with that fact

⋂N
i=1 F (Si) ∩ Ω ⊂ Qn further implies

‖xn − x0‖ ≤ ‖u − x0‖, ∀u ∈
N⋂

i=1

F (Si) ∩ Ω.

In particular, {xn} is bounded and

‖xn − x0‖ ≤ ‖q − x0‖, where q = P⋂N
i=1 F (Si)∩Ωx0. (5.4)

The fact that xn+1 ∈ Qn asserts that 〈xn+1 − xn, xn − x0〉 ≥ 0. This together
with Lemma 2.1 (i) implies

‖xn+1 − xn‖2 = ‖(xn+1 − x0) − (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉
≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2.

It turns out that
‖xn+1 − xn‖ → 0. (5.5)



628 L. C. Ceng, A. Petruşel, C. Lee and M. M. Wong

By the fact xn+1 ∈ Cn we get

‖xn+1 − zn‖2 ≤ ‖xn+1 − tn‖2 − (1 − αn)(αn − κ)‖tn − Tntn‖2. (5.6)

Moreover, since zn = αntn + (1 − αn)Tntn, we deduce that

‖xn+1 − zn‖2 = αn‖xn+1 − tn‖2

+(1 − αn)‖xn+1 − Tntn‖2 − αn(1− αn)‖tn − Tntn‖2.
(5.7)

Substituting (5.7) into (5.6) we get

(1− αn)‖xn+1 − Tntn‖2 ≤ (1− αn)‖xn+1 − tn‖2 + (1− αn)κ‖tn − Tntn‖2.

Since αn < 1 for all n, the last inequality becomes

‖xn+1 − Tntn‖2 ≤ ‖xn+1 − tn‖2 + κ‖tn − Tntn‖2. (5.8)

But, on the other hand, we compute

‖xn+1−Tntn‖2 = ‖xn+1 − tn‖2 +2〈xn+1 − tn, tn−Tntn〉+‖tn −Tntn‖2. (5.9)

Combining (5.9) with (5.8) we obtain

(1 − κ)‖tn − Tntn‖2 ≤ −2〈xn+1 − tn, tn − Tntn〉.

Therefore,
‖tn − Tntn‖ ≤ 2

1 − κ
‖xn+1 − tn‖. (5.10)

Furthermore, from ‖xn − yn‖ → 0 it follows that

‖tn − yn‖ = ‖PC(xn − λnAyn) − PC(xn − λnAxn)‖ ≤ λnk‖xn − yn‖.

This implies that limn→∞ ‖yn−tn‖ = 0. From ‖xn−tn‖ ≤ ‖xn−yn‖+‖yn−tn‖,
we also have limn→∞ ‖xn − tn‖ = 0. Consequently, from (5.10) we derive

‖tn − Tntn‖ ≤ 2
1 − κ

‖xn+1 − tn‖ ≤ 2
1 − κ

[‖xn+1 − xn‖ + ‖xn − tn‖] → 0.

Utilizing the Lipschitz continuity of Tn, we have

‖xn − Tnxn‖ ≤ ‖xn − tn‖ + ‖tn − Tntn‖ + ‖Tntn − Tnxn‖

≤ ‖tn − Tntn‖ +
2

1 − κ
‖tn − xn‖,

which hence implies that limn→∞ ‖xn − Tnxn‖ = 0.
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As in Step 4 of the proof of Theorem 3.1 we can deduce that ωw(xn) ⊂⋂N
i=1 F (Si)∩Ω. Then by virtue of (5.4) and Lemma 2.4, we conclude that xn → q

as n → ∞, where q = P⋂N
i=1 F (Si)∩Ωx0.

Regarding the cyclic-extragradient algorithm (4.1), we have the following mod-
ification which has strong convergence.

Theorem 5.2. Let C be a nonempty closed convex subset of a real Hilbert
space H and A : C → H be a monotone, k-Lipschitz continuous mapping. Given
a positive integer N ≥ 1, let, for each 0 ≤ i ≤ N − 1, S i : C → C be a κi-strict
pseudo-contraction for some 0 ≤ κ i < 1 such that

⋂N−1
i=0 F (Si) ∩ Ω �= ∅. Let

κ = max{κi : 0 ≤ i ≤ N − 1}. Given any x0 ∈ C, let {xn}∞n=0, {yn}∞n=0 be the
sequences generated by the following algorithm



yn = PC(xn − λnAxn),

tn = PC(xn − λnAyn),

zn = αntn + (1− αn)S[n]tn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖tn − z‖2

−(1 − αn)(αn − κ)‖tn − S[n]tn‖2},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, n ≥ 0,

(5.11)

where there hold the following conditions

(i) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(ii) 0 ≤ αn < 1 for all n ≥ 0.

Then, the sequences {xn}, {yn} converge strongly to the same point P⋂N
i=1 F (Si)∩Ωx0

provided limn→∞ ‖xn − yn‖ = 0.

Proof. The proof of this theorem is similar to that of Theorem 5.1. The main
points include

(i) xn is well defined for all n ≥ 1;
(ii) ‖xn − x0‖ ≤ ‖q − x0‖ for all n, where q = P⋂N−1

i=0 F (Si)∩Ωx0;

(iii) ‖xn+1 − xn‖ → 0;

(iv) ‖tn − S[n]tn‖ → 0 and ‖xn − S[n]xn‖ → 0;

(v) ωw(xn) ⊂ ⋂N−1
i=0 F (Si) ∩ Ω;

(vi) xn → q.
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To prove (i)-(iv), one simply replaces Tn with S[n] in the proof of Theorem 5.1.
One can prove (v) by repeating the argument in Step 4 of the proof of Theorem
4.1. Finally the strong convergence to q of {xn} is the consequence of (ii), (v) and
Lemma 2.4.

Remark 5.1. As in Sections 3 and 4, we can derive the corresponding corol-
laries from Theorems 5.1 and 5.2, respectively.
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