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CONVERGENCE OF THE FAMILY OF EULER-HALLEY TYPE
METHODS ON RIEMANNIAN MANIFOLDS

UNDER THE γ-CONDITION

Jin-Hua Wang and Chong Li*

Abstract. A convergence criterion of the family of Euler-Halley type methods
for the vector fields on Riemannian manifolds whose covariant derivatives
satisfy the γ-condition is established. The corresponding results due to [12]
are extended. An application to analytic vector fields is provided.

1. INTRODUCTION

Numerical problems posed on manifolds arise in many natural contexts. Clas-
sical examples are given by eigenvalue problems, symmetric eigenvalue problems,
invariant subspace computations, optimization problems with equality constraints,
etc, see for example [8, 10, 21, 22, 23]. For such problems, one often has to
compute solutions of a system of equations or to find zeros of a vector field on
a Riemannian manifold. One of the most famous methods to approximately solve
these problems is Newton’s method. An analogue of the well known Kantorovich
theorem [15, 16] was given in [9] for Newton’s method on Riemannian manifolds
while the extensions of the famous Smale’s α-theory and γ-theory in [20] to analytic
vector fields on Riemannian manifolds were done in [6]. To extend and improve the
Smale’s γ-theory and α-theory of Newton’s method for operators in Banach spaces,
Wang proposed in [25, 26] the notion of the γ-condition, which is weaker than
the Smale’s assumption in [20] for analytic operators. In the recent paper [19], we
extended the notion of the γ-condition to vector fields on Riemannian manifolds and
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then established the γ-theory and α-theory of Newton’s method for the vector fields
on Riemannian manifolds satisfying the γ-condition, which consequently extend the
results in [6]. The radii of uniqueness balls of zeroes of vector fields satisfying
the γ-conditions were studied in [24]. Other extensions about local behavior of
Newton’s method on Riemannian manifolds have been studied in paper [18], where
we estimated the radii of convergence balls of Newton’s method and uniqueness
balls of zeroes of vector fields on Riemannian manifolds under the assumption that
the covariant derivatives of the vector fields satisfy some kind of general Lipschitz
condition.

As is well known, there are several kinds of cubic generalizations for Newton’s
method. The most important two are the Euler method and the Halley method, see
e.g. [1, 4, 5, 13, 14, 28]. Another more general family of the cubic extensions is
the family of Euler-Halley type methods in Banach spaces, which includes the Euler
method and the Halley method as its special cases and has been studied extensively
in [11, 12, 27]. In particular, Han established in [12] the cubic convergence of this
family for operators satisfy the γ-condition. The purpose of the present paper is
to extend the family of Euler-Halley type methods to vector fields on Riemannian
manifolds and study the cubic convergence of this family for vector fields whose
covariant derivatives satisfying the γ-condition. The convergence criterion of the
family of Euler-Halley type methods for the vector fields on Riemannian manifolds
whose covariant derivatives satisfy the γ-condition is established in Section 3, and
an application to analytic vector fields is provided in Section 4.

2. NOTIONS AND PRELIMINARIES

Throughout this paper, M denotes a real complete connected m-dimensional
Riemannian manifold. Let p ∈ M and let TpM denote the tangent space at p to
M . Let 〈·, ·〉p be the scalar product on TpM with the associated norm ‖ · ‖p. The
subscript p is usually deleted whenever there is no possibility of confusion. For any
two distinct elements q, p ∈ M , let c : [0, 1] → M be a piecewise smooth curve

connecting q and p. Then the arc length of c is defined by l(c) :=
∫ 1

0
‖ c′(t) ‖ dt,

and the Riemannian distance from q to p by d(q, p) := infc l(c), where the infimum
is taken over all piecewise smooth curves c : [0, 1] → M connecting q and p. Thus
(M, d) is a complete metric space by the Hopf-Rinow Theorem (cf. [3, 7, 17]).

For a finitely dimensional space or Riemannian manifold Z, let BZ(p, r) and
BZ(p, r) denote respectively the open metric ball and the closed metric ball at p
with radius r, that is,

BZ(p, r) = {q ∈ Z : d(p, q)< r},
BZ(p, r) = {q ∈ Z : d(p, q) ≤ r}.
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In particular, we write respectively B(p, r) and B(p, r) for BM (p, r) and BM (p, r)
in the case when M is a Riemannian manifold.

Noting that M is complete, the exponential map at p, expp : TpM → M is
well-defined on TpM . Recall that a geodesic in M connecting q and p is called a
minimizing geodesic if its arc length equals its Riemannian distance between q and p.
Note that there is at least one minimizing geodesic connecting q and p. In particular,
the curve c : [0, 1] → M connecting q and p is a minimizing geodesic if and only
if there exists a vector v ∈ TqM such that ‖v‖ = d(q, p) and c(t) = expq(tv) for
each t ∈ [0, 1].

Let ∇ denote the Levi-Civita connection on M . For any two vector fields X
and Y on M , the covariant derivative of X with respect to Y is denoted by ∇YX .
Define the linear map DX(p) : TpM → TpM by

DX(p)(u) = ∇Y X(p), ∀u ∈ TpM, (2.1)

where Y is a vector field satisfying Y (p) = u. Then the value DX(p)(u) of DX(p)
at u depends only on the tangent vector u = Y (p) ∈ TpM since ∇ is tensorial in
Y . Let c : R →M be a C∞ curve and let Pc,·,· denote the parallel transport along
c, which is defined by

Pc,c(b),c(a)(v) = V (c(b)), ∀a, b ∈ R and v ∈ Tc(a)M,

where V is the unique C∞ vector field satisfying ∇c′(t)V = 0 and V (c(a)) = v.
Then, for any a, b ∈ R, Pc,c(b),c(a) is an isometry from Tc(a)M to Tc(b)M . Note
that, for any a, b, b1, b2 ∈ R,

Pc,c(b2),c(b1) ◦ Pc,c(b1),c(a) = Pc,c(b2),c(a) and P−1
c,c(b),c(a) = Pc,c(a),c(b).

In particular, we write Pq,p for Pc,q,p in the case when c is a minimizing geodesic
connecting p and q. Moreover, for a positive integer i, Pi

p,q stands for the map from
(TqM)i to (TpM)i defined by

P i
p,q(v1 · · ·vi) = Pp,qv1 · · ·Pp,qvi, ∀(v1, · · · , vi) ∈ (TqM)i.

Let κ ∈ N ∪ {∞, ω}. We use Cκ(TM) to denote the set of all the Cκ-vector
fields of M . In the particular cases when κ = ∞, or ω, a Cκ-vector field X is
called a smooth vector field or an analytic vector field, respectively.

Let j be a positive integer and let X be a Cκ-vector field. We now define
inductively the covariant derivative of order j for X (cf. [7, P.102]). Recall that ∇
is the Levi-Civita connection onM . Define the map DX : Cκ(TM) → Cκ−1(TM)
by

DX(Y ) = ∇YX for each Y ∈ Cκ(TM),
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and define the map DjX : (Cκ(TM))j → Cκ−j (TM) by

DjX(Y1, · · · , Yj−1, Y ) = ∇Y (Dj−1X(Y1, · · · , Yj−1))

−
j−1∑
i=1

Dj−1X(Y1, · · · ,∇Y Yi, · · · , Yj−1)
(2.2)

for each Y1, · · · , Yj−1, Y ∈ Cκ(TM). Then, one can use mathematical induction
to prove easily that DjX(Y1, · · · , Yj−1, Y ) is tensorial with respect to each compo-
nent, that is, j multi-linear map from (Cκ(TM))j to Cκ−j (TM), where the linearity
refers to the structure of Cj(M)-module with Cj(M) the set of all Cj -mappings
from M to R. This implies that the value of DjX(Y1, · · · , Yj−1, Y ) at p ∈M only
depends on the j-tuple of tangent vectors (v1, · · · , vj) = (Y1(p), · · · , Yj−1(p), Y (p))
∈ (TpM)j . Consequently, for a given p ∈M , the map DjX(p) : (TpM)j → TpM ,
defined by

DjX(p)v1 · · ·vj := DjX(Y1, · · · , Yj)(p) for any (v1, · · · , vj) ∈ (TpM)j,

is well-defined, where Yi ∈ Cκ(TM) satisfy Yi(p) = vi for each i = 1, · · · , j. Let
p0 ∈ M be such that DX(p0)−1 exists. Thus, for any piecewise geodesic curve c
connecting p0 and p, DX(p0)−1Pc,p0,pDjX(p) is a j-multilinear map from (TpM)j

to Tp0M . We define the norm of DX(p0)−1Pc,p0,pDjX(p) by

‖ DX(p0)−1Pc,p0,pDjX(p) ‖= sup ‖ DX(p0)−1Pc,p0,pDjX(p)v1v2 · · ·vj ‖p0,

where the supremum is taken over all j-tuple of vectors (v1, · · · , vj) ∈ (TpM)j

with each ‖vi‖p = 1. Furthermore, for any geodesic c : R → M on M , since
∇c′(s)c

′(s) = 0, it follows from (2.2) that

DkX(c(s))(c′(s))k = Dc′(s)(D
k−1X(c(s))(c′(s))k−1) for each s ∈ R.

Let X be a C2 vector field on M and let p0 ∈M . The family of Euler-Halley
iterations with parameter λ ∈ [0, 2] for solving X(p) = 0 with initial point p0 is
defined by

pn+1 = TX,λ(pn) = exppn
(uX(pn) + vX,λ(pn)), n = 0, 1, 2, · · · , (2.3)

where
uX(p) = −DX(p)−1X(p),

vX,λ(p) = −1
2
DX(p)−1D2X(p)uX(p)QX,λ(p)uX(p),

QX,λ(p) = {ITpM +
λ

2
DX(p)−1D2X(p)uX(p)}−1,

and ITpM is the identity on TpM .
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The γ-condition for operators in Banach spaces was first presented by Wang
[25, 26] for the study of Smale′s point estimate theory and extended to vector fields
on Riemannian manifolds in [19]. The following definition gives an analogue of the
γ-conditions of order 1 and 2 to the case of vector fields on Riemannian manifolds
M . Throughout the whole paper, we always assume that X is a C3 vector field on
M .

Definition 2.3. Let r > 0 and γ > 0. Let p0 ∈ M be such that DX(p0)−1

exists. Then X is said to satisfy

(i) the 2-piece γ-condition of order 1 at p0 in B(p0, r), if for any two points
p, q ∈ B(p0, r), any geodesic c2 connecting p, q and minimizing geodesic c1
connecting p0, p with l(c1) + l(c2) < r,

‖DX(p0)−1Pc1,p0,p ◦ Pc2,p,qD2X(q)‖ ≤ 2γ
(1 − γ(l(c1) + l(c2)))3

; (2.4)

(ii) the 2-piece γ-condition of order 2 at p0 in B(p0, r), if for any two points
p, q ∈ B(p0, r), any geodesic c2 connecting p, q and minimizing geodesic c1
connecting p0, p with l(c1) + l(c2) < r,

‖DX(p0)−1D2X(p0)‖ ≤ 2γ. (2.5)

and

‖DX(p0)−1Pc1,p0,p ◦ Pc2,p,qD3X(q)‖ ≤ 6γ2

(1 − γ(l(c1) + l(c2)))4
. (2.6)

Note that the 2-piece γ-condition of order 1 is also called the 2-piece γ-condition
in [19]. The following lemma will play a key role.

Lemma 2.1. Let c : R → M be a geodesic and Y a Ck vector field on M
such that ∇c′(s)Y (c(s)) = 0. Then, for each k = 0, 1, 2,

Pc,c(0),c(t)DkX(c(t))Y (c(t))k = DkX(c(0))Y (c(0))k

+
∫ t

0
Pc,c(0),c(s)(D

k+1X(c(s))(c(s))kc′(s))ds.
(2.7)

In particular,

Pc,c(0),c(t)DkX(c(t))c′(t)k = DkX(c(0))c′(0)k

+
∫ t

0
Pc,c(0),c(s)(D

k+1X(c(s))(c′(s))k+1))ds.
(2.8)
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Proof. The case when k = 0 results from [9, p.308]. Below, we will show that
the case when k = 1 is true, that is,

Pc,c(0),c(t)DX(c(t))Y (c(t)) = DX(c(0))Y (c(0))

+
∫ t

0
Pc,c(0),c(s)(D

2X(c(s))Y (c(s))c′(s))ds,
(2.9)

while the proof for the case when k = 2 is similar and so is omitted here. To this
end, let ξ = DX(Y ). Since (2.7) is true for k = 0, it follows that

Pc,c(0),c(t)ξ(c(t)) = ξ(c(0)) +
∫ t

0

Pc,c(0),c(s)(Dξ(c(s))c
′(s))ds. (2.10)

By (2.2) (with j = 2), one has

(D2X(c(s))Y (c(s))c′(s) = ∇c′(s)((DX(c(s))Y (c(s)))−DX(c(s))(∇c′(s)Y (c(s)))

= ∇c′(s)((DX(c(s))Y (c(s)))

= ∇c′(s)ξ(c(s))

= Dξ(c(s))c′(s)

thanks to the assumption that ∇c′(s)Y (c(s)) = 0. This combining with (2.10) yields
(2.9). The proof is complete.

The following proposition shows that the 2-piece γ-condition of order 2 implies
the 2-piece γ-condition of order 1.

Proposition 2.2. Let r > 0 and γ > 0. Let p0 ∈M be such that DX(p0)−1

exists. Suppose thatX satisfies the 2-piece γ-condition of order 2 at p 0 in B(p0, r).
Then X satisfies the 2-piece γ-condition of order 1 at p 0 in B(p0, r).

Proof. For any p, q ∈ B(p0, r), let c1 be a minimizing geodesic connecting
p0, p and c2 a geodesic connecting p, q such that l(c1) + l(c2) < r. To complete
the proof, it suffices to show that

‖DX(p0)−1Pc1,p0,p ◦ Pc2,p,qD2X(q)‖ ≤ 2γ
(1− γ(l(c1) + l(c2)))3

. (2.11)

By the assumption that X satisfies the 2-piece γ-condition of order 2 at p0 in
B(p0, r), we have that

‖DX(p0)−1D2X(p0)‖ ≤ 2γ (2.12)
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and

‖DX(p0)−1Pc1,p0,p ◦ Pc2,p,qD3X(q)‖ ≤ 6γ2

(1 − γ(l(c1) + l(c2)))4
. (2.13)

Below, we claim that

‖DX(p0)−1Pc1,p0,pPc2,p,qD2X(q)P 2
c2,q,pP

2
c1,p,p0

−DX(p0)−1D2X(p0)‖

≤ 2γ
(1 − γ(l(c1) + l(c2)))3

− 2γ.
(2.14)

Granting this, by (2.12), (2.11) is seen to hold because Pc2,q,p and Pc1,p,p0 are
isometries.

To verify (2.14), let v ∈ Tp0M . Let v1 ∈ Tp0M and v2 ∈ TpM be such
that c1(t) := expp0

(tv1), t ∈ [0, 1], and c2(t) := expp(tv2), t ∈ [0, 1]. Note that
there exist vector fields Y1 and Y2 such that Y1(c1(0)) = v, Dc′1(t)Y1(c1(t)) = 0,
Y2(c2(0)) = Pc1,p,p0v and Dc′2(t)Y2(c2(t)) = 0. Then we apply Lemma 2.1 (with
k = 2) to conclude that

(DX(p0)−1Pc1,p0,p ◦ Pc2,p,qD2X(q)P 2
c2,q,p ◦ P 2

p,p0
− DX(p0)−1D2X(p0))v2

= DX(p0)−1Pc1,p0,p[Pc2,p,qD2X(q)Y2(c2(1))2 − D2X(p)Y2(c2(0))2]

+DX(p0)−1[Pc1,p0,pD2X(p)Y1(c1(1))2 − D2X(p0)Y1(c1(0))2]

= DX(p0)−1Pc1,p0,p

∫ 1

0
Pc2,p,c2(s)D

3X(c2(s))Y2(c2(s))2c′2(s)ds

+DX(p0)−1

∫ 1

0
Pc1,p0,c1(s)D

3X(c1(s))Y1(c1(s))2c′1(s)ds.

Hence, it follows from (2.13) that

‖(DX(p0)−1Pc1,p0,p◦Pc2,p,qD2X(q)P 2
c2,q,p◦P 2

p,p0

−DX(p0)−1D2X(p0))v2‖

≤
∫ 1

0

‖DX(p0)−1Pc1,p0,pPc2,p,c2(s)D
3X(c2(s))‖‖Y2(c2(s))2‖‖c′2(s)‖ds

+
∫ 1

0

‖DX(p0)−1Pc1,p0,c1(s)D
3X(c1(s))‖‖Y1(c1(s))2‖‖c′1(s)‖ds

≤
∫ 1

0

6γ2

(1 − γ(‖v1‖ + s‖v2‖))4 ‖v‖
2‖v2‖ds

+
∫ 1

0

6γ2

(1 − γs‖v1‖)4 ‖v‖
2‖v1‖ds

=
(

2γ
(1 − γ(l(c1) + l(c2)))3

− 2γ
)
‖v‖2,

(2.15)
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where the last equation is because ‖v1‖ = l(c1) and ‖v2‖ = l(c2). As v ∈ Tp0M

is arbitrary, (2.14) is seen to hold.

Lemma 2.2. Let γ > 0 and 0 < r ≤ 2−√
2

2γ . Let p0 ∈ M be such that
DX(p0)−1 exists. Suppose that X satisfies the 2-piece γ-condition of order 2 at
p0 in B(p0, r). Then,

(i) for each point q ∈ B(p0, r), DX(q)−1 exists and, for any two points q, p ∈
B(p0, r), any geodesic c2 connecting p, q and minimizing geodesic c1 con-
necting p0, p with l(c1) + l(c2) < r,

‖DX(q)−1Pc2,q,p ◦ Pc1,p,p0DX(p0)‖

≤ (1 − γ(l(c1) + l(c2)))2

1 − 4γ(l(c1) + l(c2)) + 2γ2(l(c1) + l(c2))2
;

(2.16)

(ii) for any two points p, q ∈ B(p0, r), any geodesic c2 connecting p, q and
minimizing geodesic c1 connecting p0, p with l(c1) + l(c2) < r,‖DX(p0)−1Pc1,p0,p(Pc2,p,qD2X(q)P 2

c2,q,p − D2X(p))‖

≤ 2γ
(1− γ(l(c1) + l(c2)))3

− 2γ
(1 − γl(c1))3

.
(2.17)

Proof. (i) This result follows from Proposition 2.2 and [19, Lemma 2.3.].
(ii) To verify (2.17), let v ∈ TpM . For any p, q ∈ B(p0, r), let c1 be a

minimizing geodesic connecting p0, p and c2 a geodesic connecting p, q such that
l(c1)+l(c2) < r. Let v1 ∈ TpM be such that c2(t) := expp(tv1), t ∈ [0, 1]. Note
that there exists a vector field Y such that Y (c2(0)) = v and Dc′2(t)Y (c2(t)) = 0.
Using Lemma 2.1 with k = 2, one gets that

(DX(p0)−1Pc1,p0,p(Pp,qD2X(q)P 2
q,p − D2X(p)))v2

= DX(p0)−1Pc1,p0,p(Pp,qD2X(q)Y (c2(1))2 − D2X(p)Y (c2(0))2)

= DX(p0)−1Pc1,p0,p

∫ 1

0
Pc2,p,c2(s)D

3X(c2(s))Y (c2(s))2c′2(s)ds.

(2.18)

Thus, it follows from (2.18) and (2.6) that

‖(DX(p0)−1Pc1,p0,p(Pp,qD2X(q)P 2
q,p − D2X(p)))v2‖

≤
∫ 1

0
‖DX(p0)−1Pc1,p0,pPc2,p,c2(s)D

3X(c2(s))‖‖v‖2‖v1‖ds

≤
∫ 1

0

6γ2

(1− γ(l(c1) + s‖v1‖))4‖v‖
2‖v1‖ds

=
(

2γ
(1 − γ(l(c1) + l(c2)))3

− 2γ
(1− γl(c1))3

)
‖v‖2.

(2.19)
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As v ∈ Tp0M is arbitrary, (2.17) is seen to hold.

Finally we introduce the majoring function h used by Wang [25, 26] and some
related properties. Let β > 0 and γ > 0. Define

h(t) = β − t+
γt2

1 − γt
for each 0 ≤ t <

1
γ
. (2.20)

Then we have the following lemma, see [25, 26].

Lemma 2.3. Assume that α = γβ ≤ 3 − 2
√

2. Then the zeros of h are

r1 =
1 + α−√(1 + α)2 − 8α

4γ
, r2 =

1 + α+
√

(1 + α)2 − 8α
4γ

(2.21)

and satisfy
β ≤ r1 ≤ (1 +

1√
2
)β ≤ (1− 1√

2
)
1
γ
≤ r2 ≤ 1

2γ
. (2.22)

Let {tn} denote the sequence generated by the Euler-Halley iteration (with pa-
rameter λ ∈ [0, 2]) for h(t) with initial point t0 = 0, that is,

tn+1 = Th,λ(tn) = tn + uh(tn) + vh,λ(tn), n = 0, 1, 2, · · · ,

where
uh(t) = −h′(t)−1h(t)

vh,λ(t) = −1
2
h′(t)−1h′′(t)uh(t)Qh,λ(t)uh(t)

Qh,λ(t) =
(

1 +
λ

2
h′(t)−1h′′(t)uh(t)

)−1

.

Then the following lemma holds from [27].

Lemma 2.4. Suppose that α = γβ ≤ 3− 2
√

2. Then, for each t ∈ [0, r1],
(i) 0 < Hh(t) = h′(t)−2h′′(t)h(t) < 1;
(ii) Th,λ(t) ∈ [0, r1] and Th,λ(t) is monotonically increasing on [0, r1] for each

λ ∈ [0, 2];
(iii) t ≤ Th,λ(t).
(iv) {tn} is increasing monotonically and convergent to r1.

3. CONVERGENCE CRITERION

Recall that h is defined by (2.20) and tn+1 = Th,λ(tn) = tn+uh(tn)+vh,λ(tn))
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for each n = 0, 1, 2, · · · , with t0 = 0. The following lemma is taken from [11],
see also [27].

Lemma 3.1. For any n = 0, 1, 2, · · · ,

h(tn+1) =
1
2
h′′(tn){(2− λ)uh(tn) + vh,λ(tn)}vh,λ(tn)

+
∫ 1

0

∫ τ

0
{h′′(tn + s(tn+1 − tn))− h′′(tn)}dsdτ(tn+1 − tn)2.

The similar expression for vector fields is described in the following lemma.
Recall that

pn+1 = exppn
(uX(pn) + vX,λ(pn)), n = 0, 1, 2, · · · .

Lemma 3.2. Let n be a nonnegative integer and write

wn = uX(pn) + vX,λ(pn). (3.1)

Let cn be the curve defined by cn(t) := exppn
(twn) for each t ∈ [0, 1]. Then

Pcn,pn,pn+1X(pn+1)

=
1
2
D2X(pn){(2− λ)uX(pn) + vX,λ(pn)}vX,λ(pn)

+
∫ 1

0

∫ τ

0
(Pcn,pn,cn(s)D

2X(cn(s))P 2
cn,cn(τ ),pn

− D2X(pn))w2
ndsdτ.

(3.2)

Proof. By Lemma 2.1 with k = 0, we have

Pcn,pn,pn+1X(pn+1) −X(pn) =
∫ 1

0
Pcn,pn,cn(τ )DX(cn(τ))c′n(τ)dτ. (3.3)

Since c′n(0) = wn, one has by Lemma 2.1 (with k = 0, 1) that

Pcn,pn,pn+1X(pn+1) −X(pn) − DX(pn)wn

=
∫ 1

0
(Pcn,pn,cn(τ )DX(cn(τ))c′n(τ) − DX(pn)c′n(0))dτ

=
∫ 1

0

∫ τ

0
Pcn,pn,cn(s)D

2X(cn(s))c′n(s)2dsdτ

=
∫ 1

0

∫ τ

0
Pcn,pn,cn(s)D

2X(cn(s))P 2
cn,cn(τ ),pn

w2
ndsdτ

(3.4)
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Consequently,

Pcn,pn,pn+1X(pn+1)

= X(pn) + DX(pn)wn +
1
2
D2X(pn)w2

n

+
∫ 1

0

∫ τ

0
(Pcn,pn,cn(s)D

2X(cn(s))P 2
cn,cn(τ ),pn

− D2X(pn))w2
ndsdτ.

(3.5)

Below, we will show that

X(pn) + DX(pn)wn +
1
2
D2X(pn)w2

n

=
1
2
D2X(pn){(2− λ)uX(pn) + vX,λ(pn)}vX,λ(pn).

(3.6)

Granting this, (3.2) results from (3.5) and (3.6). Since wn = uX(pn) + vX,λ(pn)
and uX(pn) = −DX(pn)−1X(pn), to prove (3.6), it’s sufficient to verify that

DX(pn)vX,λ(pn) +
1
2
D2X(pn)uX(pn)2 = −λ

2
D2X(pn)uX(pn)vX,λ(pn). (3.7)

Recalling that vX,λ(pn) = −1
2DX(pn)−1D2X(pn)uX(pn)QX,λ(pn)uX(pn) and

QX,λ(pn) = {ITpnM + λ
2 DX(pn)−1D2X(pn)uX(pn)}−1, one has

DX(pn)vX,λ(pn) +
1
2
D2X(pn)uX(pn)2

= DX(pn)(−1
2
DX(pn)−1D2X(pn)uX(pn)QX,λ(pn)uX(pn))

+
1
2
D2X(pn)uX(pn)2

=
1
2
D2X(pn)uX(pn)(ITpnM −QX,λ(pn))uX(pn)

=
1
2
D2X(pn)uX(pn)

λ

2
DX(pn)−1D2X(pn)uX(pn)QX,λ(pn)uX(pn)

= −λ
2
D2X(pn)uX(pn)vX,λ(pn).

Hence, (3.7) is seen to hold and the proof is completed.

In the remainder of this paper, we always assume that X is a C3 vector field
and that p0 ∈M such that DX(p0)−1 exists. Furthermore, we define

β =‖ DX(p0)−1X(p0) ‖, α = γβ.

Then the main theorem of the present paper is stated as follows.
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Theorem 3.1. Suppose that

α = βγ ≤ 3 − 2
√

2

and X satisfies the 2-piece γ-condition of order 2 at p 0 in B(p0, r1), where r1
is given by (2.21). Then the sequence {pn} generated by (2.3) with initial point
p0 is well-defined for all λ ∈ [0, 2] and converges to a singular point p ∗ of X in
B(p0, r1). Moreover,

d(p∗, pn) ≤ r1 − tn.

Proof. It’s sufficient to show that the sequence {pn} generated by (2.3) with
initial point p0 is well-defined for all λ ∈ [0, 2] and satisfies

d(pn, pn+1) ≤ ‖uX(pn)‖+ ‖vX,λ(pn)‖ ≤ tn+1 − tn

for each n = 0, 1, · · · . To do this, we will use mathematical induction to prove that
the generated sequence {pn} is well-defined and the following statements hold for
each n = 0, 1, · · · :

(a) ‖uX(pn)‖ ≤ uh(tn);
(b) QX,λ(pn) exits and ‖QX,λ(pn)‖ ≤ Qh,λ(tn);
(c) ‖vX,λ(pn)‖ ≤ vh,λ(tn);
(d) d(pn, pn+1) ≤ ‖wn‖ ≤ ‖uX(pn)‖ + ‖vX,λ(pn)‖ ≤ tn+1 − tn, where wn is

defined by (3.1).

Indeed, in the case when n = 0, (a) results from

‖uX(p0)‖ = ‖DX(p0)−1X(p0)‖ = β = uh(t0). (3.8)

By (2.5), (3.8) and Lemma 2.4 (i), we have

‖ − λ

2
DX(p0)−1D2X(p0)uX(p0)‖ ≤ −λ

2
h′(t0)−1h′′(t0)uh(t0) < 1.

Then, using the Banach Lemma, QX,λ(p0) exits and

‖QX,λ(p0)‖ ≤ 1
1 + λ

2h
′(t0)−1h′′(t0)uh(t0)

= Qh,λ(t0). (3.9)

Thus, (b) and (c) follow. As ‖w0‖ ≤ ‖uX(p0)‖ + ‖vX,λ(p0)‖ ≤ t1 − t0 ≤ β and
p1 = expp0

(w0),

d(p0, p1) ≤ ‖w0‖ ≤ ‖uX(p0)‖+ ‖vX,λ(p0)‖ ≤ t1 − t0. (3.10)
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Therefore, (d) holds for n = 0. Now assume that p1, · · · , pk+1 are well-defined
and that (a)-(d) are true for n = 0, 1, · · · , k. Then,

d(pk, pk+1) ≤ ‖wk‖ ≤ ‖uX(pk)‖+ ‖vX,λ(pk)‖ ≤ tk+1 − tk (3.11)

and
d(p0, pk+1) ≤ tk+1 < r1. (3.12)

Below, we will show that (a)-(d) are true for n = k + 1. Let c be a minimizing
geodesic connecting p0 and pk. Define the curve ck by ck(t) := exppk

(twk), t ∈
[0, 1]. By (3.12) and Lemma 2.2 (i), DX(pk+1)−1 exists and

‖DX(pk+1)−1Pck,pk+1,pk
◦ Pc,pk,p0DX(p0)‖ ≤ −h′(tk+1)−1. (3.13)

By Lemma 3.2, one has

‖DX(p0)−1Pc,p0,pk
◦ Pck ,pk,pk+1

X(pk+1)‖

≤ 1
2
‖DX(p0)−1Pc,p0,pk

D2X(pk)‖{(2− λ)‖uX(pk)‖
+‖vX,λ(pk)‖}‖vX,λ(pk)‖

+
∫ 1

0

∫ τ

0

DX(p0)−1Pc,p0,pk
(Pck,pk,ck(s)D

2X(cnk(s))P 2
ck,ck(τ ),pk

−D2X(pk))w2
kdsdτ.

(3.14)

By Propositions 2.2 and (2.4), one has

‖DX(p0)−1Pc,p0,pk
◦ Pck,pk,pk+1

D2X(pk+1)‖

≤ 2γ
(1− γ(l(c)+ l(ck))3

≤ h′′(tk+1)
(3.15)

and
‖DX(p0)−1Pc,p0,pk

D2X(pk)‖ ≤ 2γ
(1 − γl(c))3

≤ h′′(tk) (3.16)

By induction assumptions, we have

‖uX(pk)‖ ≤ uh(tk), ‖vX,λ(pk)‖ ≤ vh,λ(tk) and ‖wk‖ ≤ tk+1 − tk. (3.17)

Moreover, it follows from Lemma 2.2 (ii) that

‖DX(p0)−1Pc,p0,pk
(Pck,pk,ck(τ )D

2X(ck(τ))P 2
ck,ck(τ ),pk

−D2X(pk))‖
≤ h′′(tk + τ(tk+1 − tk)) − h′′(tk).

(3.18)

Thus, combining (3.14), (3.15-3.17) and Lemma 3.1 yields that

‖DX(p0)−1Pc,p0,pk
◦ Pck,pk,pk+1

X(pk+1)‖ ≤ h(tk+1). (3.19)
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Since

‖uX(pk+1)‖ = ‖ − DX(pk+1)−1X(pk+1)‖
≤ ‖DX(pk+1)−1Pck ,pk+1,pk

◦ Pc,pk,p0DX(p0)‖
·‖DX(p0)−1Pc,p0,pk

◦ Pck,pk,pk+1
X(pk+1)‖

≤ uh(tk+1)

(3.20)

thanks to (3.13) and (3.19), (a) is true for k + 1, that is,

‖uX(pk+1)‖ ≤ uh(tk+1). (3.21)

Note that

‖ − λ

2
DX(pk+1)−1D2X(pk+1)uX(pk+1)‖

≤ λ

2
‖DX(pk+1)−1Pck,pk+1,pk

◦ Pc,pk,p0DX(p0)‖

·‖DX(p0)−1Pc,p0,pk
◦ Pck ,pk,pk+1

D2X(pk+1)‖ · ‖uX(pk+1)‖.

(3.22)

It follows from (3.13), (3.15) and (3.21) that

‖ − λ

2
DX(pk+1)−1D2X(pk+1)uX(pk+1)‖

≤ −λ
2
h′(tk+1)−1h′′(tk+1)uh(ttk+1

) < 1,
(3.23)

where the last inequality is because of Lemma 2.4 (i). Thus, by the Banach Lemma,
(3.23) implies that QX,λ(pk+1) exists and

QX,λ(pk+1) = ‖(ITpk
M +

λ

2
DX(pk+1)−1D2X(pk+1)uX(pk+1))−1‖

≤ 1

1 +
λ

2
h′(tk+1)−1h′′(tk+1)uh(tk+1)

= Qh,λ(tk+1).

(3.24)

Hence, pk+2 is well-defined and (b) is true for n = k + 1. Since

‖vX,λ(pk+1)‖

= ‖ − 1
2
DX(pk+1)−1D2X(pk+1)uX(pk+1)QX,λ(pk+1)uX(pk+1)‖

≤ 1
2
‖DX(pk+1)−1D2X(pk+1)uX(pk+1)‖‖QX,λ(pk+1)‖‖uX(pk+1)‖,
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it follows from (3.23), (3.24) and (3.21) that (c) holds for k + 1. Consequently,

‖wk+1‖≤‖uX(pk+1)‖+‖vX,λ(pk+1)‖≤‖uh(tk+1)‖+‖vh,λ(tk+1)‖ = tk+2−tk+1.

This implies that (d) is true for n = k + 1. The proof is complete.

4. APPLICATION TO ANALYTIC VECTOR FIELDS

Throughout this section, we always assume that M is an analytic complete m-
dimensional Riemannian Manifold and X is analytic on M . Let p0 ∈ M be such
that DX(p0)−1 exists. Following [6], we define

γ(X, p0) = sup
k≥2

‖ DX(p0)−1 DkX(p0)
k!

‖
1

k−1
p0 . (4.1)

Also we adopt the convention that γ(X, p0) = ∞ if DX(p0) is not invertible.
Note that this definition is justified and in the case when DX(p 0) is invertible, by
analyticity, γ(X, p0) is finite. The following Taylor formula for vector fields will
play a key role in the remainder of the present paper.

Lemma 4.1. Let r = 1
γ(X,p0)

. Let p ∈ B(p0, r) and v ∈ Tp0M be such that
p = expp0

(v) and ‖v‖ < r. Then, for each j = 0, 1, 2, · · · ,

DjX(p) = Pc,p,p0(
∞∑

k=0

1
k!

Dk+jX(p0)vk)P j
c,p0,p, (4.2)

where c is the geodesic defined by c(t) := expp0
(tv) for each t ∈ [0, 1] and

c(1) = p.

Proof. We first verify (4.2) for the case when j = 0:

X(p) = Pc,p,p0

( ∞∑
k=0

1
k!

DkX(p0)vk

)
. (4.3)

Let {ei} be a basis of Tp0M such that {DX(p0)−1ei} is an orthonormal basis of
Tp0M . Since X is an analytic vector field, there exist m analytic functions Xi(t),
i = 1, 2, · · · , m, such that

X(c(t)) =
m∑

i=1

X i(t)Pc,c(t),p0
ei (4.4)
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(cf [17, p.19]). Then by (2.2) and mathematical induction, one has

DkX(c(t))(c′(t))k =
m∑

i=1

dkX i(t)
dtk

Pc,c(t),p0
ei for each k = 0, 1, · · · . (4.5)

In particular, as c′(0) = v, we get

DkX(p0)vk =
m∑

i=1

dkX i(t)
dtk

|t=0 ei for each k = 0, 1, · · · . (4.6)

Let j = 1, 2, · · · , m. It follows that

〈DX(p0)−1DkX(p0)vk,DX(p0)−1ej〉

=
dkX j(t)

dtk
|t=0 for each k = 0, 1, · · · ,

(4.7)

because {DX(p0)−1ei} is an orthonormal basis of Tp0M . Note that

lim
k→∞

(‖DX(p0)−1DkX(p0)‖
k!

)1
k

≤ sup
k≥2

(‖DX(p0)−1DkX(p0)‖
k!

) 1
k − 1 = γ(X, p0).

This together with (4.7) yields that

lim
k→∞

(
1
k!

∣∣∣∣dkX j(t)
dtk

|t=0

∣∣∣∣
) 1

k

≤ lim
k→∞

(
1
k!
‖DX(p0)−1DkX(p0)‖

) 1
k

‖v‖ < 1

(4.8)

since ‖v‖ < r = 1
γ(X,p0)

. Hence

X j(t) =
∞∑

k=0

1
k!

dkX j(t)
dtk

|t=0 t
k for each t ∈ [0, 1]. (4.9)

Combining this with (4.4) and the fact that p = c(1) gives that

X(p) =
m∑

i=1

X i(1)Pc,p,p0ei =
m∑

i=1

∞∑
k=0

1
k!

dkX i(t)
dtk

|t=0 Pc,p,p0ei. (4.10)
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Noting that Pc,p,p0 is a linear isomorphism from Tp0M to TpM , one has that

X(p) =
∞∑

k=0

1
k!

m∑
i=1

dkX i(t)
dtk

|t=0 Pc,p,p0ei = Pc,p,p0

( ∞∑
k=0

1
k!

m∑
i=1

dkX i(t)
dtk

|t=0 ei

)
.

This, together with (4.6), implies (4.3).
Below we will show that (4.2) holds. To do this, let j = 1, 2, · · · and v1, · · · , vj ∈

TpM . It’s sufficient to prove that

DjX(p)(v1, · · · , vj)

= Pc,p,p0


 ∞∑

k=0

1
k!
Dk+jX(p0)(Pc,p0,pv1, · · · , Pc,p0,pvj, v, · · · , v︸ ︷︷ ︸

k

)


 (4.11)

because, by the analyticity of X ,

Dk+jX(p0)(v, · · · , v︸ ︷︷ ︸
k

, Pc,p0,pv1, · · · , Pc,p0,pvj)

= Dk+jX(p0)(Pc,p0,pv1, · · · , Pc,p0,pvj , v, · · · , v︸ ︷︷ ︸
k

)

holds for each k.
To show (4.11), for each i = 1, · · · , j, let Yi be the vector field such that

Yi(p) = vi, ∇c′(s)Yi = 0 and Yi(p0) = Pc,p0,pvi. Let η = DjX(Y1, · · · , Yj). Then
η is a vector field. Thus, applying (4.3) with X replaced by η, we have

η(p) = Pc,p,p0

( ∞∑
k=0

1
k!
Dkη(p0)vk

)
. (4.12)

In view of the definitions of η and Dkη, one can use mathematical induction to
verify that

Dkη(c′(s), · · · , c′(s)︸ ︷︷ ︸
k

)=Dk+jX(Y1, · · · , Yj, c
′(s), · · · , c′(s)︸ ︷︷ ︸

k

) for each k=0, 1, · · · .

Since DjX(p)(v1, · · · , vj) = η(p) and Yi(p0) = Pc,p0,pvi for each i = 1, · · · , j, it
follows that

Dkη(p0)(v, · · ·, v︸ ︷︷ ︸
k

)=Dk+jX(p0)(Y1(p0), · · ·, Yj(p0), v, · · ·, v︸ ︷︷ ︸
k

) for each k=0, 1, · · ·.

Combining this with (4.12), (4.11) is seen to hold and the proof is complete.
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The following two lemmas will be used. The first one was given in [2] while
the proof for the second one is almost the same as that of [6, Lemma 4.3]. Let
p0 ∈ M be such that DX(p0)−1 exists. For convenience, we use the function ψ
defined by

ψ(u) := 1 − 4u+ 2u2, u ∈ [0, 1−
√

2
2

).

Note that ψ is strictly monotonically decreasing on [0, 1−
√

2
2 ).

Lemma 4.2. Let |r| < 1 and let k be a positive integer. Then

∞∑
j=0

(k + j)!
k!j!

rj =
1

(1 − r)k+1
.

Lemma 4.3. Let p ∈M and let c be a geodesic connecting p0 and p such that
u := γ l(c) < 1−

√
2

2 , where l(c) is the arc length of c. Then DX(p)−1 exists and

γ(X, p)≤ γ(X, p0)
(1 − u)ψ(u)

. (4.13)

Recall that p0 ∈ M such that DX(p0)−1 exists. The following lemma shows
that an analytic vector field satisfies the 2-piece γ-condition of order 2 at p0 in
B(p0,

2−√
2

2γ(X,p0)
).

Lemma 4.4. Let γ = γ(X, p0) and 0 < r ≤ 2−√
2

2γ . Then X satisfies the
2-piece γ-condition of order 2 at p0 in B(p0, r).

Proof. Note that

γ = γ(X, p0) = sup
k≥2

‖ DX(p0)−1 DkX(p0)
k!

‖ 1
k−1 . (4.14)

Then
‖DX(p0)−1D2X(p0)‖ ≤ 2γ. (4.15)

For any p, q ∈ B(p0, r), let c1 be a minimizing geodesic connecting p0, p and c2
a geodesic connecting p, q such that l(c1) + l(c2) < r. To complete the proof, it
remains to verify that

‖DX(p0)−1Pc1,p0,p ◦ Pc2,p,qD3X(q)‖ ≤ 6γ2

(1− γ(l(c1) + l(c2)))4
. (4.16)
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Since

u = γ(X, p0)l(c1) < r ≤ 2 −√
2

2γ
, (4.17)

Lemma 4.3 is applicable. It follows that

γ(X, p) ≤ γ(X, p0)
(1− u)ψ(u)

. (4.18)

Since (1− u)ψ(u) ≥ 1 −
√

2
2 − u, we obtain that

(1 − u)ψ(u)
γ(X, p0)

≥ 2 −√
2

2γ(X, p0)
− l(c1).

This, together with (4.18), implies that

l(c2) ≤ 2−√
2

2γ(X, p0)
− l(c1) ≤ (1 − u)ψ(u)

γ(X, p0)
≤ 1
γ(X, p)

, (4.19)

thanks to the fact that l(c1)+ l(c2) < r ≤ 2−√
2

2γ(X,p0)
. Let v0 ∈ Tp0M and v1 ∈ TpM

such that c1(t) = expp0
(tv0) for each t ∈ [0, 1] and c2(t) = expp(tv1) for each

t ∈ [0, 1]. As l(c1) = ‖v0‖ and l(c2) = ‖v1‖, by (4.17) and (4.19), Lemma 4.1 is
applicable to concluding that

DX(p0)−1Pp0,p ◦ Pp,qD3X(q)

= DX(p0)−1Pp0,p

∞∑
l=0

1
l!

Dl+3X(p)vl
1P

3
p,q

= DX(p0)−1
∞∑
l=0

1
l!

∞∑
j=0

1
j!

Dl+j+3X(p0)v
j
0P

l+3
p0,pv

l
1P

3
p,q.

(4.20)

Noting that
‖DX(p0)−1Dl+j+3X(p)‖

(l + j + 3)!
≤ γ(X, p0)l+j+2,

one has from (4.20) that

‖DX(p0)−1Pp0,p ◦ Pp,qD3X(q)‖

≤
∞∑
l=0

(l+ 3)!
l!

∞∑
j=0

(l+ j + 3)!
j!(l+ 3)!

γ(X, p0)l+j+2‖v0‖j‖v1‖l.
(4.21)
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Using Lemma 4.2 to calculate the quantity on the right-hand side of inequality
(4.21), we get that

‖DX(p0)−1Pp0,p ◦ Pp,qD3X(q)‖ ≤ 6γ(X, p0)2

(1− γ(X, p0)(‖v0‖ + ‖v1‖)4 . (4.22)

Since ‖v0‖ = l(c1), ‖v1‖ = l(c2) and γ = γ(X, p0), (4.16) follows from (4.22).
The proof is complete.

Recall that p0 ∈M is such that DX(p0)−1 exists and that

β =‖ DX(p0)−1X(p0) ‖, α = γβ,

where γ = γ(X, p0). Then, by Theorem 3.1, Lemma 4.4 and (2.22), we have the
following corollary.

Corollary 4.1. Suppose that

α = βγ ≤ 3 − 2
√

2.

Then the sequence {pn} generated by (2.3) with initial point p 0 is well-defined for
all λ ∈ [0, 2] and converges to a singular point p ∗ of X in B(p0, r1), where r1 is
given by (2.21).
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