TAIWANESE JOURNAL OF MATHEMATICS Vol. 13, No. 2A, pp. 393-402, April 2009 This paper is available online at http://www.tjm.nsysu.edu.tw/

ISOMORPHIC PATH DECOMPOSITIONS OF $\lambda K_{n,n,n}$ ($\lambda K_{n,n,n}^*$) FOR ODD n

Hung-Chih Lee*, Ming-Ju Lee and Chiang Lin

Abstract. In this paper, the isomorphic path decompositions of λ -fold balanced complete tripartite graphs $\lambda K_{n,n,n}$ and λ -fold balanced complete tripartite digraphs $\lambda K_{n,n,n}^*$ are investigated for odd n. We prove that the obvious necessary conditions for such decompositions in the undirected case are also sufficient; we also provide sufficient conditions for the directed case.

1. Introduction and Preliminaries

Let G and H be multigraphs. If there exist edge-disjoint subgraphs H_1, H_2, \cdots, H_r of G such that every edge of G appears in some H_i , and each H_i $(i=1,2,\cdots,r)$ is isomorphic to H, then we say that G has an H-decomposition. For multidigraphs G and H, H-decomposition of G is similarly defined. The H-decomposition problems of a multigraph G are widely investigated when G is a complete graph or a complete F-partite graph and F is a path or a cycle.

For a multigraph G, we use the symbol G^* to denote the multidigraph obtained from G by replacing each edge e by two opposite arcs connecting the endvertices of e. Let λ be a positive integer. For a multigraph H, we use the symbol λH to denote the multigraph obtained from H by replacing each edge e by λ edges each of which has the same endvertices as e. Similarly, for a multidigraph H, we use the symbol λH to denote the multidigraph obtained from H by replacing each arc e by λ arcs each of which has the same tail and head as e.

For a positive integer k, let P_k denote a path on k vertices and let $\overrightarrow{P_k}$ denote a directed path on k vertices.

Received October 16, 2006, accepted August 23, 2007.

Communicated by Xu-Ding Zhu.

2000 Mathematics Subject Classification: 05C38, 05C70.

Key words and phrases: Decomposition, Path, Complete tripartite graph.

This research was supported by the NSC of R.O.C. under grant 94-2115-M-008-014.

*Corresponding author.

Let K_n denote the complete graph on n vertices. Tarsi [6] established criteria for P_k -decompositions of λK_n . Recently Meszka and Skupień [4] solved the $\overrightarrow{P_k}$ -decomposition problem of λK_n^* .

Let K_{m_1,m_2,\cdots,m_r} denote the complete r-partite graph with parts of sizes m_1,m_2,\cdots,m_r , respectively. In [7] Truszczyński solved the $\overrightarrow{P_k}$ -decomposition problem of $\lambda K_{m,n}^*$, and considered the P_k -decomposition of $\lambda K_{m,n}$. The P_k -decomposition problem of $K_{m,n}$ was completely solved by Parker [5]. The condition for P_4 -decomposition of K_{m_1,m_2,\cdots,m_r} was obtained by Kumar [2].

In this paper, we consider the P_k -decomposition of $\lambda K_{n,n,n}$ and the $\overrightarrow{P_k}$ -decomposition of $\lambda K_{n,n,n}^*$. For a multigraph (multidigraph, respectively) G, we also use E(G) to denote the edge set (arc set, respectively) of G. We will obtain the following results.

Theorem A. Let n be an odd integer. Then $\lambda K_{n,n,n}$ has a P_k -decomposition if and only if $2 \le k \le 3n$ and $|E(\lambda K_{n,n,n})| \equiv 0 \pmod{k-1}$.

Theorem B. Let $n \geq 3$ be an odd integer. Suppose that k is an integer such that $2 \leq k \leq 3n-1$ and $|E(\lambda K_{n,n,n}^*)| \equiv 0 \pmod{k-1}$. Then $\lambda K_{n,n,n}^*$ has a $\overrightarrow{P_k}$ -decomposition.

For our discussions we need the following notations and terms. Let G be a multigraph. Suppose that W_1 is a walk $v_0v_1\cdots v_k$ and W_2 is a walk $v_kv_{k+1}\cdots v_l$ in G. Then the sum of W_1 and W_2 , denoted by W_1+W_2 , is a walk $v_0v_1\cdots v_kv_{k+1}\cdots v_l$. Suppose that W is a walk $v_0v_1\cdots v_k$ in G (no matter W is closed or not). The girth of W, denoted by g(W), is the minimum number of edges between two appearances of the same vertex along W, i.e., the minimum of j-i such that $v_i=v_j$ where $0\leqslant i< j\leqslant k$. A trail is a walk without repeated edges. An $Euler\ trail$ of G is a trail in G which traverses every edge of G. For multidigraphs, the following terms are similarly defined: the sum of directed walks, the girth of a directed walk, the directed trail, and the directed Euler trail.

In [6] Tarsi obtained the path decomposition of λK_n by cutting Euler trails into paths. We state the result of cutting method in the following remark. This remark was henceforth used in many papers, e.g. [4, 5, 7].

Remark 1.1. Suppose that a multigraph (multidigraph, respectively) G contains an Euler trail $(a \ directed \ Euler \ trail, respectively)$ with girth g, and that for $i=1,2,\cdots,r,$ k_i is an integer such that $2 \le k_i \le g$ and $|E(G)| = k_1 + k_2 + \cdots + k_r - r$. Then G can be decomposed into r paths $(directed \ paths, \ respectively)$ on k_1, k_2, \cdots, k_r vertices, respectively.

Letting $k_1 = k_2 = \cdots = k_r = k$ in the above remark, we have the following.

Remark 1.2. Suppose that a multigraph (multidigraph, respectively) G contains an Euler trail (a directed Euler trail, respectively) with girth g, and that k is an integer such that $2 \le k \le g$ and $|E(G)| \equiv 0 \pmod{k-1}$. Then G has a P_k -decomposition ($\overrightarrow{P_k}$ - decomposition, respectively).

2. Path Decompositions of $\lambda K_{n,n,n}$ for ODD n

In this section, we investigate the P_k -decomposition of $\lambda K_{n,n,n}$ for odd n. For a multigraph G, and nonempty subsets A, B of V(G) with $A \cap B = \emptyset$, we use G(A, B) to denote the set of all edges in G which have one end in A and the other end in B. We begin with some lemmas.

Lemma 2.1. Let $n \geq 3$ be an odd integer. Then

- (1) $K_{n,n,n}$ has an Euler trail with girth 3n-6,
- (2) $\lambda K_{n,n,n}$ has an Euler trail with girth 3n-3 if $\lambda \geq 2$.

Proof. For $\lambda=1,2,3,\cdots$, let (A,B,C) be the tripartition of $\lambda K_{n,n,n}$ where $A=\{a_0,a_1,\cdots,a_{n-1}\},\,B=\{b_0,\,b_1,\cdots,b_{n-1}\}$ and $C=\{c_0,\,c_1,\cdots,c_{n-1}\}.$ An edge joining a_i and b_{i+k} $(i=0,1,\cdots,n-1;k=0,1,\cdots,n-1)$ where

the indices are taken modulo n is said to be an edge between A and B with label k. Similarly an edge joining b_i and c_{i+k} is said to be an edge between B and C with label k, and an edge joining c_i and a_{i+k} is said to be an edge between C and C with label C with label C.

(1) Let $\lambda=1$. For each $i=0,1,2,\cdots,n-1$, let D_i be the following walk in $K_{n,n,n}$: $a_0b_ic_{2i}a_1b_{i+1}c_{2i+1}a_2b_{i+2}c_{2i+2}\cdots a_{n-1}b_{i+n-1}c_{2i+n-1}a_0$ where the indices are taken modulo n. Note that each D_i consists of all edges between A and B with label i, all edges between B and C with label i, and all edges between C and A with label $(1-2i)\pmod{n}$. Thus $K_{n,n,n}(A,B)$ is a disjoint union of $D_0(A,B)$, $D_1(A,B)$, \cdots , $D_{n-1}(A,B)$, and $K_{n,n,n}(B,C)$ is a disjoint union of $D_0(B,C)$, $D_1(B,C)$, \cdots , $D_{n-1}(B,C)$. Also since n is odd, we have $\{(1-2i)\pmod{n}: i=0,1,2,\cdots,n-1\}=\{0,1,2,\cdots,n-1\}$; thus $K_{n,n,n}(C,A)$ is a disjoint union of $D_0(C,A)$, $D_1(C,A)$, \cdots , $D_{n-1}(C,A)$. Hence $E(K_{n,n,n})$ is a disjoint union of $E(D_0)$, $E(D_1)$, \cdots , $E(D_{n-1})$. Let C be the walk C0 and C1 are the same function of C2. We thus see that C3 is an Euler trail in C3.

Now we evaluate g(T). Note that each D_i is a Hamiltonian cycle of $K_{n,n,n}$. Let $i=0,1,\cdots,n-2$. Then D_i+D_{i+1} is the trail $a_0b_ic_{2i}$ $a_1b_{i+1}c_{2i+1}$ $a_2b_{i+2}c_{2i+2}$ \cdots $a_{n-1}b_{i+n-1}$ c_{2i+n-1} $a_0b_{i+1}c_{2i+2}$ $a_1b_{i+2}c_{2i+3}$ \cdots $a_{n-1}b_i$ c_{2i+1} a_0 . In D_i+D_{i+1} , there are 3n-6 edges between two appearances of

- c_j if $j=0,1,2,\cdots,2i-1,2i+2,2i+3,\cdots,n-1$, and more than 3n-6 edges between two appearances of any other vertex. Thus $g(D_i+D_{i+1})=3n-6$. Hence g(T)=3n-6, and T is a required Euler trail of $K_{n,n,n}$.
- (2) Let $\lambda \geq 2$. For $i = 0, 1, 2, \dots, n-1$, let D_i be, as in the proof of (1), the trail: $a_0b_ic_{2i}a_1b_{i+1}c_{2i+1}a_2b_{i+2}c_{2i+2}\cdots a_{n-1}b_{i+n-1}c_{2i+n-1}a_0$, and let E_i be the trail: $a_0b_{i+1}c_{2i+1}a_1b_{i+2}c_{2i+2}a_2b_{i+3}c_{2i+3}\cdots a_{n-1}b_{i+n}c_{2i+n}a_0$ where the indices are taken modulo n.

Let $G = K_{n,n,n}$ be a subgraph of $\lambda K_{n,n,n}$. As in (1), E(G) is a disjoint union of $E(D_0)$, $E(D_1)$, \cdots , $E(D_{n-1})$. Note also that each E_i consists of all edges between A and B with label $(i+1) \pmod{n}$, all edges between B and C with label i, and all edges between C and A with label $(-2i) \pmod{n}$. By similar arguments as in (1), E(G) is a disjoint union of $E(E_0)$, $E(E_1)$, \cdots , $E(E_{n-1})$. Let T be the following trail:

$$\underbrace{D_0 + D_0 + \dots + D_0}_{\lambda - 1 \text{ copies of } D_0} + E_0 + \underbrace{D_1 + D_1 + \dots + D_1}_{\lambda - 1 \text{ copies of } D_1} + E_1 + \dots + \underbrace{D_{n-2} + D_{n-2} + \dots + D_{n-2}}_{\lambda - 1 \text{ copies of } D_{n-2}} + \underbrace{D_{n-1} + D_{n-1} + \dots + D_{n-1}}_{\lambda - 1 \text{ copies of } D_{n-1}} + E_{n-1}.$$

Then T is an Euler trail of $\lambda K_{n,n,n}$. To determine g(T), we show in the following that (i) $g(D_i+D_i)=3n$ for $i=0,1,\cdots,n-1$, (ii) $g(D_i+E_i)=3n-3$ for $i=0,1,\cdots,n-1$, and (iii) $g(E_i+D_{i+1})=3n-3$ for $i=0,1,\cdots,n-2$. Note that both D_i and E_i are Hamiltonian cycles in $\lambda K_{n,n,n}$.

- (i) This is trivial.
- (ii) Let $i=0,1,\cdots,n-1$. We see that D_i+E_i is the trail $a_0b_ic_{2i}$ $a_1b_{i+1}c_{2i+1}$ $a_2b_{i+2}c_{2i+2}$ \cdots a_{n-1} $b_{i+n-1}c_{2i+n-1}$ $a_0b_{i+1}c_{2i+1}$ $a_1b_{i+2}c_{2i+2}$ $a_2b_{i+3}c_{2i+3}$ \cdots $a_{n-1}b_ic_{2i}a_0$. In D_i+E_i , there are 3n-3 edges between two appearances of b_j if $j=0,1,2,\cdots,i-1,i+1,i+2,\cdots,n-1$, and of c_j if $j=0,1,2,\cdots,2i-1,2i+1,2i+2,\cdots,n-1$, and there are more than 3n-3 edges between two appearances of any other vertex. Thus $g(D_i+E_i)=3n-3$.
- (iii) Let $i=0,1,\cdots,n-2$. We see that E_i+D_{i+1} is the trail $a_0b_{i+1}c_{2i+1}$ $a_1b_{i+2}c_{2i+2}$ $a_2b_{i+3}c_{2i+3}$ $\cdots a_{n-1}b_ic_{2i}$ $a_0b_{i+1}c_{2i+2}$ $a_1b_{i+2}c_{2i+3}$ $a_2b_{i+3}c_{2i+4}$ \cdots a_{n-1} b_i c_{2i+1} a_0 . In E_i+D_{i+1} there are 3n-3 edges between two appearances of c_j if $j=0,1,2,\cdots,2i,2i+2,2i+3,\cdots,n-1$, and more than 3n-3 edges between two appearances of any other vertex. Thus $g(E_i+D_{i+1})=3n-3$.

From (i), (ii) and (iii), we obtain g(T) = 3n - 3. Thus T is a required Euler trail of $\lambda K_{n,n,n}$.

Lemma 2.2. Let G be a graph of order t such that G can be decomposed into Hamiltonian cycles. Suppose that λ and k are integers with $2 \le k \le t$ and $(k-1)|\lambda t$. Then λG has a P_k -decomposition.

Proof. Suppose that G is decomposed into Hamiltonian cycles H_1, H_2, \cdots, H_v . Then λG is decomposed into $\lambda H_1, \lambda H_2, \cdots, \lambda H_v$. Since $k \leq t$, $(k-1)|\lambda t$, and λH_i $(1 \leq i \leq v)$ has an Euler trail with girth t, each λH_i has a P_k -decomposition. Thus λG has a P_k -decomposition.

In the proof of (1) in Lemma 2.1, we see that if $n \geq 3$ is an odd integer, then $K_{n,n,n}$ can be decomposed into Hamiltonian cycles $D_0, D_1, \cdots, D_{n-1}$. More generally, Laskar and Auerbach [3] proved that the complete m-partite graph $K_{n,n,\cdots,n}$ can be decomposed into Hamiltonian cycles if and only if (m-1)n is even. Thus $K_{n,n,n}$ can be decomposed into Hamiltonian cycles for any positive integer n. We are ready to prove the main result of this section.

Theorem A. Let n be an odd integer. Then $\lambda K_{n,n,n}$ has a P_k -decomposition if and only if $2 \le k \le 3n$ and $|E(\lambda K_{n,n,n})| \equiv 0 \pmod{k-1}$.

Proof. The necessity is trivial. Now we prove the sufficiency.

The case n=1 is trivial. We assume that $n\geq 3$. By the assumptions, k is an integer with $2\leq k\leq 3n$ and $|E(\lambda K_{n,n,n})|\equiv 0\pmod {k-1}$ (i.e., $(k-1)|3\lambda n^2$). We distinguish two cases for $\lambda=1$ and $\lambda\geq 2$.

Case 1. $\lambda = 1$.

By Lemma 2.1(1), $K_{n,n,n}$ has an Euler trail with girth 3n-6. Hence by Remark 1.2, $K_{n,n,n}$ has a P_k -decomposition if $k \leq 3n-6$. So we only need to consider $3n-5 \leq k \leq 3n$. Since n is odd and $(k-1)|3n^2$, we have that k is even. So it remains to consider the following subcases: k=3n-5, 3n-3, 3n-1. **Subcase 1.1.** k=3n-5.

From the assumption that $(3n-6)|3n^2$, we have $(n-2)|n^2$, which implies (n-2)|4 for $4=n^2-(n+2)(n-2)$. This implies n-2=1 since n is odd. Thus n=3 and k=4. As mentioned in the paragraph preceding this theorem, $K_{3,3,3}$ can be decomposed into Hamiltonian cycles. Then by Lemma 2.2, $K_{3,3,3}$ has P_4 -decomposition. This completes Subcase 1.1.

Subcase 1.2. k = 3n - 3.

From the assumption that $(3n-4)|3n^2$, we have (3n-4)|16 for $16 = 3 \cdot 3n^2 - (3n+4)(3n-4)$. This is impossible since n is odd.

Subcase 1.3. k = 3n - 1.

From the assumption that $(3n-2)|3n^2$, we have (3n-2)|4 since $4=3\cdot 3n^2-(3n+2)(3n-2)$. Thus n=1 since n is odd. This is a contradiction since we assumed that n > 3.

Case 2. $\lambda > 2$.

By Lemma 2.1(2), $\lambda K_{n,n,n}$ has an Euler trail with girth 3n-3. Hence $\lambda K_{n,n,n}$ has a P_k -decomposition if $k \leq 3n-3$. So we only need to consider k=3n-2,3n-1,3n. We first show that $(k-1)|3\lambda$ for these k. Subcase 2.1. k=3n-2.

From the assumption $(3n-3)|3\lambda n^2$, we have $(n-1)|\lambda n^2$, which implies $(n-1)|\lambda$ since $\gcd(n-1,n)=1$. Thus $3(n-1)|3\lambda$ (i.e., $(k-1)|3\lambda$). Subcase 2.2. k=3n-1.

Since n is odd, it is easy to see that $\gcd(3n-2,n)=1$, and hence $\gcd(3n-2,n^2)=1$. Thus the assumption $(3n-2)|3\lambda n^2$ implies $(3n-2)|3\lambda$ (i.e., $(k-1)|3\lambda$). Subcase 2.3. k=3n.

It is trivial that gcd(3n-1,n)=1, and hence $gcd(3n-1,n^2)=1$. Thus the assumption $(3n-1)|3\lambda n^2$ implies $(3n-1)|3\lambda$ (i.e., $(k-1)|3\lambda$).

Now we have that $K_{n,n,n}$ has order 3n and can be decomposed into Hamiltonian cycles, and that $k \leq 3n$, $(k-1)|\lambda \cdot 3n$. Thus by Lemma 2.2, $\lambda K_{n,n,n}$ has a P_k -decomposition. This completes Case 2.

3. Directed Path Decompositions of $\lambda K_{n,n,n}^*$ for ODD n

In this section, we investigate the $\overrightarrow{P_k}$ -decomposition of $\lambda K_{n,n,n}^*$ for odd n. Let us begin with n=1. First the result for the decomposition of λK_n^* into directed Hamiltonian paths is the following [1, 4]: λK_n^* can be decomposed into directed Hamiltonian paths if and only if neither n=3 and λ is odd nor n=5 and $\lambda=1$. It follows from the case n=3 that λK_3^* has a $\overrightarrow{P_3}$ -decomposition if and only if λ is even. Thus we can see that $\lambda K_{1,1,1}^* = \lambda K_3^*$ has a $\overrightarrow{P_k}$ -decomposition if and only if either k=2 or k=3 and λ is even.

Remark 3.1. If a multigraph G has a P_k -decomposition, then G^* has a $\overrightarrow{P_k}$ -decomposition.

For a multidigraph G and nonempty subsets A, B of V(G) with $A \cap B = \emptyset$, let G(A, B) denote the set of all arcs of G which have their tails in A and their heads in B.

Lemma 3.2. Let $n \ge 3$ be an odd integer. Then $\lambda K_{n,n,n}^*$ has a directed Euler trail with girth 3n-4.

Proof. Let (A, B, C) be the tripartition of $\lambda K_{n,n,n}^*$ where $A = \{a_0, a_1, \cdots, a_{n-1}\}$, $B = \{b_0, b_1, \cdots, b_{n-1}\}$ and $C = \{c_0, c_1, \cdots, c_{n-1}\}$.

An arc joining a_i to b_{i+k} $(i=0,1,\cdots,n-1,k=0,1,\cdots,n-1)$ where the indices are taken modulo n is said to be an arc from A to B with label k. An arc from B to C with label k and an arc from C to A with label k are similarly defined.

For $i=0,1,2,\cdots,n-1$, let D_i be the directed trail: $a_0\to b_i\to c_{2i}\to a_1\to b_{i+1}\to c_{2i+1}\to a_2\to b_{i+2}\to c_{2i+2}\to\cdots \to a_{n-1}\to b_{i+n-1}\to c_{2i+n-1}\to a_0$, and let \overrightarrow{F}_i be the directed trail: $a_0\to c_{2i+1}\to b_{i+1}\to a_1\to c_{2i+2}\to b_{i+2}\to a_2\to c_{2i+3}\to b_{i+3}\to\cdots \to a_{n-1}\to c_{2i+n}\to b_{i+n}\to a_0$ where the indices are taken modulo n.

Let $G=K_{n,n,n}^*$ be a subgraph of $\lambda K_{n,n,n}^*$. Note that each $\overrightarrow{D_i}$ consists of the following arcs in G: all arcs from A to B with label i, all arcs from B to C with label i, and all arcs from C to A with label $(1-2i)\pmod{n}$. Thus G(A,B) is a disjoint union of $\overrightarrow{D_0}(A,B)$, $\overrightarrow{D_1}(A,B)$, \cdots , $\overrightarrow{D}_{n-1}(A,B)$, and G(B,C) is a disjoint union of $\overrightarrow{D_0}(B,C)$, $\overrightarrow{D_1}(B,C)$, \cdots , $\overrightarrow{D}_{n-1}(B,C)$. And since n is odd, we have $\{(1-2i)\pmod{n}: i=0,1,2,\cdots,n-1\}=\{0,1,2,\cdots,n-1\}$; thus G(C,A) is a disjoint union of $\overrightarrow{D_0}(C,A)$, $\overrightarrow{D_1}(C,A)$, \cdots , $\overrightarrow{D}_{n-1}(C,A)$. Hence $G(A,B)\cup G(B,C)\cup G(C,A)=E(\overrightarrow{D_0})\cup E(\overrightarrow{D_1})\cup\cdots\cup E(\overrightarrow{D_{n-1}})$. By similar arguments, we have $G(A,C)\cup G(C,B)\cup G(B,A)=E(\overrightarrow{P_0})\cup E(\overrightarrow{P_1})\cup\cdots\cup E(\overrightarrow{P_{n-1}})$. Therefore E(G) is a disjoint union of $E(\overrightarrow{D_0})$, $E(\overrightarrow{P_1})$, \cdots , $E(\overrightarrow{P_{n-1}})$.

Let \overrightarrow{T} be the following directed trail:

$$\underbrace{\overrightarrow{D_0} + \overrightarrow{D_0} + \cdots + \overrightarrow{D_0}}_{\lambda \text{ copies of } \overrightarrow{\overline{D_0}}} + \underbrace{\overrightarrow{F_0} + \overrightarrow{F_0} + \overrightarrow{F_0} + \overrightarrow{D_1} + \overrightarrow{D_1} + \overrightarrow{D_1} + \overrightarrow{D_1} + \overrightarrow{F_1} + \overrightarrow{F_1} + \cdots + \overrightarrow{F_1}}_{\lambda \text{ copies of } \overrightarrow{\overline{D_0}}} + \underbrace{\overrightarrow{D_1} + \overrightarrow{D_1} + \overrightarrow{D_1} + \overrightarrow{D_1} + \overrightarrow{D_1} + \overrightarrow{F_{n-1}} + \overrightarrow{F_{n-1}} + \cdots + \overrightarrow{F_{n-1}}}_{\lambda \text{ copies of } \overrightarrow{F_{n-1}}}.$$

$$\lambda \text{ copies of } \overrightarrow{\overline{D}_{n-1}} + \underbrace{\overrightarrow{D}_{n-1} + \overrightarrow{D}_{n-1} + \overrightarrow{F_{n-1}} + \overrightarrow{F_{n-1}} + \cdots + \overrightarrow{F_{n-1}}}_{\lambda \text{ copies of } \overrightarrow{F_{n-1}}}.$$

We see that \overrightarrow{T} is a directed Euler trail of $\lambda K_{n,n,n}^*$.

To evaluate $g(\overrightarrow{T})$, we show in the following that for $i=0,1,\cdots,n-1$ we have (i) $g(\overrightarrow{D}_i+\overrightarrow{D}_i)=3n, \ g(\overrightarrow{F}_i+\overrightarrow{F}_i)=3n$ (ii) $g(\overrightarrow{D}_i+\overrightarrow{F}_i)=3n-4$ and (iii) $g(\overrightarrow{F}_i+\overrightarrow{D}_{i+1})=3n-2$. Note that each \overrightarrow{D}_i is a directed Hamiltonian cycle of $\lambda K_{n,n}^*$, and so is each \overrightarrow{F}_i .

- (i) This is trivial.
- (ii) We see that $\overrightarrow{D}_i + \overrightarrow{F}_i$ is the directed trail $a_0 \to b_i \to c_{2i} \to a_1 \to b_{i+1} \to c_{2i+1} \to \cdots \to a_{n-1} \to b_{i+n-1} \to c_{2i+n-1} \to a_0 \to c_{2i+1} \to b_{i+1} \to a_1 \to c_{2i+2} \to b_{i+2} \to \cdots \to a_{n-1} \to c_{2i} \to b_i \to a_0$. In $\overrightarrow{D}_i + \overrightarrow{F}_i$, there are 3n-4 arcs between two appearances of c_j if $j=0,1,\cdots,2i-1,2i+1,\cdots,n-1$, and more than 3n-4 arcs between two appearances of any other vertex. Thus

$$g(\overrightarrow{D}_i + \overrightarrow{F}_i) = 3n - 4.$$

(iii) $\overrightarrow{F}_i + \overrightarrow{D}_{i+1}$ is the directed trail $a_0 \to c_{2i+1} \to b_{i+1} \to a_1 \to c_{2i+2} \to b_{i+2} \to \cdots \to a_{n-1} \to c_{2i} \to b_i \to a_0 \to b_{i+1} \to c_{2i+2} \to a_1 \to b_{i+2} \to c_{2i+3} \to \cdots \to a_{n-1} \to b_i \to c_{2i+1} \to a_0$. In $\overrightarrow{F}_i + \overrightarrow{D}_{i+1}$, there are 3n-2 arcs between two appearances of c_j if $j=0,1,\cdots,2i,2i+2,\cdots,n-1$, and more than 3n-2 arcs between two appearances of any other vertex. Thus $g(\overrightarrow{F}_i + \overrightarrow{D}_{i+1}) = 3n-2$.

From (i), (ii) and (iii), we obtain
$$g(\overrightarrow{T}) = 3n - 4$$
.

Now we prove the main result of this section.

Theorem B. Let $n \geq 3$ be an odd integer. Suppose that k is a positive integer such that $2 \leq k \leq 3n-1$ and $|E(\lambda K_{n,n,n}^*)| \equiv 0 \pmod{k-1}$. Then $\lambda K_{n,n,n}^*$ has a $\overrightarrow{P_k}$ -decomposition.

Proof. Since $|E(\lambda K_{n,n,n}^*)| \equiv 0 \pmod{k-1}$ (i.e., $(k-1)|6\lambda n^2$), by Lemma 3.2 and Remark 1.2 $\lambda K_{n,n,n}^*$ has a $\overrightarrow{P_k}$ -decomposition if $2 \leq k \leq 3n-4$. So we only need to consider $3n-3 \leq k \leq 3n-1$. We distinguish two cases: Case 1. k=3n-3 or k=3n-1, Case 2. k=3n-2.

Case 1. k = 3n - 3 or k = 3n - 1.

Then k-1 is odd. Thus $(k-1)|6\lambda n^2$ implies $(k-1)|3\lambda n^2$. By Theorem A and Remark 3.1, $\lambda K_{n,n,n}^*$ has a $\overrightarrow{P_k}$ -decomposition.

Case 2. k = 3n - 2.

From the assumption $(3n-3)|6\lambda n^2$, we have $(n-1)|2\lambda n^2$, which implies $(n-1)|2\lambda$ since $\gcd(n,n-1)=1$. Hence we have $(k-1)|6\lambda$.

For $i=0,1,\cdots,n-1$, let \overrightarrow{D}_i , \overrightarrow{F}_i be the directed trails defined in Lemma 3.2, and let \overrightarrow{W}_i be the following directed trail:

 $\overrightarrow{F_i} + \cdots + \overrightarrow{F_i} + \overrightarrow{D}_{i+1} + \cdots + \overrightarrow{D}_{i+1}$, where the indices are taken modulo n.

 λ copies of \overrightarrow{F}_i λ copies of \overrightarrow{D}_{i+1}

In the proof of Lemma 3.2, we see that a subgraph $K_{n,n,n}^*$ of $\lambda K_{n,n,n}^*$ can be decomposed into $\overrightarrow{D_0}, \overrightarrow{D_1}, \cdots, \overrightarrow{D}_{n-1}, \overrightarrow{F_0}, \overrightarrow{F_1}, \cdots, \overrightarrow{F}_{n-1}$. Thus $\lambda K_{n,n,n}^*$ can be decomposed into $\overrightarrow{W}_0, \overrightarrow{W}_1, \cdots, \overrightarrow{W}_{n-1}$.

Also from (iii) in the proof of Lemma 3.2, we have $g(\overrightarrow{F}_i+\overrightarrow{D}_{i+1})=3n-2$ for $i=0,1,\cdots,n-1$. Thus $g(\overrightarrow{W}_i)=3n-2$ for $i=0,1,\cdots,n-1$. Now we see that $k\leq g(\overrightarrow{W}_i),\ (k-1)|6\lambda$ and the length of \overrightarrow{W}_i is $6n\lambda$. Thus we can cut

each \overrightarrow{W}_i from the starting vertex into $6n\lambda/(k-1)$ directed paths of length k-1. Hence $\lambda K_{n,n,n}^*$ is decomposed into directed paths of order k.

For the P_k -decomposition of $\lambda K_{n,n,n}^*$, the trivial necessities are $2 \leq k \leq 3n$ and $|E(\lambda K_{n,n,n}^*)| \equiv 0 \pmod{k-1}$. Comparing with Theorem B, we see that for odd n the undetermined case for the sufficiency is k=3n.

Using Remark 1.1, we can decompose a multigraph (multidigraph, respectively) into paths (directed paths, respectively) which need not to have equal orders. Thus Lemmas 2.1 and 3.2 imply the following:

- 1. Let $n \geq 3$ be an odd integer. Suppose that for $i=1,2,\cdots,r,\ k_i$ is an integer such that $2 \leq k_i \leq 3n-6$ and $|E(K_{n,n,n})|=k_1+k_2+\cdots+k_r-r$. Then $K_{n,n,n}$ can be decomposed into r paths on k_1,k_2,\cdots,k_r vertices, respectively.
- 2. Let $n\geq 3$ be an odd integer and $\lambda\geq 2$ be an integer. Suppose that for $i=1,2,\cdots,r,$ k_i is an integer such that $2\leq k_i\leq 3n-3$ and $|E(\lambda K_{n,n,n})|=k_1+k_2+\cdots+k_r-r$. Then $\lambda K_{n,n,n}$ can be decomposed into r paths on k_1,k_2,\cdots,k_r vertices, respectively.
- 3. Let $n \geq 3$ be an odd integer. Suppose that for $i = 1, 2, \dots, r$, k_i is an integer such that $2 \leq k_i \leq 3n-4$ and $|E(\lambda K_{n,n,n}^*)| = k_1 + k_2 + \dots + k_r r$. Then $\lambda K_{n,n,n}^*$ can be decomposed into r paths on k_1, k_2, \dots, k_r vertices, respectively.

The decompositions into paths with even less restrictive orders are much more challenging.

In this paper the P_k -decomposition of $\lambda K_{n,n,n}$ and the $\overrightarrow{P_k}$ -decomposition of $\lambda K_{n,n,n}^*$ have been studied for odd n. We use the property $\gcd(2,n)=1$ in Lemmas 2.1 and 3.2. We do not have this advantage for even n. Up to now we can only deal with this case for even λ .

ACKNOWLEDGMENT

The Authors are grateful to the referee for the helpful comments which improve the readability of this paper.

REFERENCES

- 1. J. Bosák, Decompositions of Graphs, Kluwer, Dordrecht, Netherlands, 1990.
- 2. C. S. Kumar, On P_4 -decomposition of graphs, *Taiwanese J. Math.* **7** (2003), 657-664.
- 3. R. Laskar and B. Auerbach, On decomposition of *r*-partite graphs into edge disjoint Hamilton circuits, *Discrete Math.* **14** (1976), 265-268.

- 4. M. Meszka and Z. Skupień, Decompositions of a complete multidigraph into non-hamiltonian paths, *J. Graph Theory* **51** (2006), 82-91.
- 5. C. A. Parker, *Complete bipartite graph path decompositions*, Thesis, Auburn University, Auburn, Alabama 1998.
- 6. M. Tarsi, Decomposition of a complete multigraph into simple paths: nonbalanced handcuffed designs, *J. Combin. Theory, Ser. A* **34** (1983), 60-70.
- 7. M. Truszczyński, Note on the decomposition of $\lambda K_{m,n}(\lambda K_{m,n}^*)$ into paths, *Discrete Math.* **55** (1985), 89-96.

Hung-Chih Lee Department of Information Technology, Ling Tung University, Taichung, Taiwan 408, R.O.C. E-mail: birdy@mail.ltu.edu.tw

Ming-Ju Lee Jen-Teh Junior College of Medicine, Nursing and Management, Houlong, Miaoli, Taiwan 356, R.O.C.

Chiang Lin
Department of Mathematics,
National Central University,
Chung-Li, Taiwan 320, R.O.C.
E-mail: chiang@math.ncu.edu.tw