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CONVERGENCE CRITERION OF INEXACT METHODS
FOR OPERATORS WITH HÖLDER
CONTINUOUS DERIVATIVES

Weiping Shen and Chong Li*

Abstract. Convergence criterion of the inexact methods is established for
operators with hölder continuous first derivatives. An application to a special
nonlinear Hammerstein integral equation of the second kind is provided.

1. INTRODUCTION

LetX and Y be (real or complex) Banach spaces, Ω ⊆ X be an open subset and
let f : Ω ⊆ X → Y be a nonlinear operator with the continuous Frechét derivative
denoted by f ′. Finding solutions of the nonlinear operator equation

(1.1) f(x) = 0

in Banach spaces is a very general subject which is widely used in both theoret-
ical and applied areas of mathematics. The most important method to find the
approximation of a solution of (1.1) is Newton’s method which takes the following
form:

(1.2) xn+1 = xn − f ′(xn)−1f(xn), n = 0, 1, 2, · · · .

One of the important results on Newton’s method is the well-known Kantorovich
theorem (cf. [10]) which guarantees convergence of Newton’s sequence to a solution
under very mild conditions. Recent progress on convergence of Newton’s method is
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referred to [6, 9, 18, 19] and [20]. Newton’s method, as expressed in (1.2), requires
the computation of f ′(xn) and the exact solution of the linear equation:

(1.3) f ′(xn)(xn+1 − xn) = −f(xn),

which sometimes make Newton’s method inefficient from the point of view of prac-
tical calculation. To avoid the drawback of computing the derivative f ′, a number of
Newton-like methods have been proposed (cf. [2, 22]). While using linear iterative
methods to approximate the solution of (1.3) instead of solving it exactly can also
reduce some of the costs of Newton’s method which was studied extensively and
applied in [5, 1, 15, 21] (such a variant is called the inexact Newton method). Us-
ing approximations of the derivative and the solution of (1.3) simultaneously instead
of their exact values yields the inexact methods which avoid the both drawbacks
mentioned above, see for example [8, 12, 13]). In general, the inexact method has
the following general form:

Algorithm A[(Bn, rn); x0]. For n = 0 and a given initial guess x0 until
convergence do

(1) For the residual rn and the iteration xn, find the step sn satisfying

(1.4) Bnsn = −f(xn) + rn.

(2) xn+1 = xn + sn.
(3) set n = n+ 1 and turn to step 1.

Here {Bn} is a sequence of invertible operators from X to Y while {rn} is a
sequence of elements in Y (depending on {xn} in general).

In the special case when Bn = f ′(xn) for each n, Algorithm A[(Bn, rn); x0]
reduces to the inexact Newton method. As is well known, the convergence behavior
of the inexact methods depends on the residuals {rn}. Several authors (cf. [5, 21])
have analyzed the local convergence behavior in some manner such that the stopping
relative residuals {rn} satisfy ‖rn‖/‖f(xn)‖ ≤ ηn. While Morini considered in [12]
the relative residual controls:

(1.5) ‖Pnrn‖ ≤ θn‖Pnf(xn)‖ for each n ∈ N,

and obtained the local linear convergence results of the inexact methods. Such
variety of (1.5) leads to an advantage of a relaxation on the forcing terms {θn}.

Motivated by the inexact method for the inverse eigenvalue problem presented
in [3, 4], we considered in [17] the residuals {r n} satisfying
(1.6) ‖Pnrn‖ ≤ θn‖Pnf(xn)‖1+β for each n ∈ N.
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The local convergence behavior of the inexact methods with the residuals {rn}
satisfying (1.6) was analyzed in [17]. In particular, the results are successfully
applied to show the local superlinear convergence of the inexact Newton-likemethod
for the inverse eigenvalue problem.

However, the semi-local convergence of the inexact methods has been rare ex-
plored. In the present paper, we will focus our study on the semi-local convergence
of the inexact methods. Assume that the residuals satisfy (1.6) and that f ′(x0)−1f ′

satisfies the Hölder condition around x0. Then we will use the majorizing function
technique to establish a convergence criterion for the inexact method Algorithm
A[(Bn, rn); x0], which recover the result in [11] and the well-known Kantorovich
theorem for Newton’s method. We also present an application of the main results
to a special nonlinear Hammerstein integral equation of the second kind.

2. PRELIMINARIES

Let X and Y be (real or complex) Banach spaces. Throughout the whole paper,
we use B(x, r) and B(x, r) to stand for the open and closed ball in X with center
x and radius r > 0 respectively, and assume that 0 < β ≤ p ≤ 1. Let a and b be
positive constants. We define two real-valued functions ϕβ and ψβ respectively by

(2.1) ϕβ(t) =
21−βa

1 + β
t1+β − t+ b for each t ≥ 0

and

(2.2) ψp(t) =
a

1 + p
t1+p − t+ b for each t ≥ 0.

The following lemma describes some properties about the zeros of the function
ϕβ .

Lemma 2.1. ϕβ is decreasing on [0, (21−βa)−
1
β ] but increasing on [(21−βa)−

1
β ,

+∞). Furthermore, if

(2.3) 21−βabβ ≤
(

β

1 + β

)β

,

then equation ϕβ(t) = 0 has two solutions t∗, t∗∗ in (0,+∞) satisfying

(2.4) b < t∗ ≤ 1 + β

β
b ≤ t∗∗.
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Proof. The first assertion is trivial because the derivative of ϕβ is

ϕ′
β(t) = 21−βatβ − 1

and the unique zero in [0,+∞) of ϕ′
β is (21−βa)−

1
β . Now suppose that (2.3) holds.

Then
ϕβ((21−βa)−

1
β ) = − β

1 + β
(21−βa)−

1
β + b ≤ 0.

Since ϕβ(0) = b > 0 and ϕβ(+∞) = +∞, equation ϕβ(t) = 0 has two solutions
t∗ ≤ t∗∗ in (0,+∞). It remains to prove (2.4). Noting that ϕβ(b) > 0 and that
(2.3) implies b ≤ (21−βa)−

1
β , we have

(2.5) b < t∗ ≤ (21−βa)−
1
β ≤ t∗∗.

Thus,

t∗ = ϕβ(t∗) + t∗ =
21−βat∗β

1 + β
t∗ + b ≤ t∗

1 + β
+ b.

It follows that

(2.6) t∗ ≤ 1 + β

β
b.

Other hand, by (2.3), one has

ϕβ(
1 + β

β
b) =

b

β

(
21−βabβ

(
1 + β

β

)β

− 1

)
≤ 0.

Hence, 1+β
β b ≤ t∗∗. Combining this with (2.5) and (2.6), one sees that (2.4) holds

and completes the proof.

Let {tn} denote the sequence generated by the Newton-like method with initial
point t0 = 0, which is defined by

(2.7) tn+1 = tn − ϕβ(tn)
ψ′

p(tn)
for each n = 0, 1, · · · .

The convergence property of the sequence {tn}, which will play a key role, is
described in the following lemma.

Lemma 2.2. Suppose that (2.3) holds. Let t∗ be the smaller nonnegative
solution of equation ϕβ(t) = 0. Suppose also that

(2.8)
(

1 + β

β
b

)p−β

≤ 1.
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Then the sequence {tn} generated by (2.7) satisfies that

(2.9) tn+1 − tn ≤ b

β
and tn <

1 + β

β
b for each n ∈ N.

Consequently, {tn} converges increasingly to t∗.

Proof. Suppose that (2.3) holds. Then, by Lemma 2.1, equation ϕβ(t) = 0 has
two solutions t∗ ≤ t∗∗ satisfying

(2.10) b < t∗ ≤ 1 + β

β
b ≤ t∗∗.

Below we will verify that for each n ∈ N,

(2.11) tn+1 > tn and tn < t∗.

Granting this, one sees that sequence {tn} is increasing and

(2.12) tn+1 − tn < t∗ − t1 ≤ 1 + β

β
b− b =

b

β
for each n = 1, 2, · · ·

thanks to (2.10). Hence (2.9) follows.
To show (2.11), note that t0 < t1 = b < t∗, which means (2.11) holds for

n = 0. Assume that t1 < t2 < · · ·< tn < t∗. Then, by (2.10) and (2.8), one has

tp−β
n ≤ (t∗)p−β ≤

(
1 + β

β
b

)p−β

≤ 1;

hence,

(2.13) −ψ′
p(tn) = 1 − atpn ≥ 1 − 21−βatβn = −ϕ′

β(tn) > 0.

Moreover, the function N defined by

N (t) := t− ϕβ(t)
ϕ′

β(t)
for each t ≥ 0

is monotonically increasing on [0, t∗]. It follows that

(2.14) tn < tn − ϕβ(tn)
ψ′

p(tn)
= tn+1 ≤ tn − ϕβ(tn)

ϕ′
β(tn)

< t∗

because of (2.13) and ϕβ(t∗) = 0. The proof is complete.
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3. CONVERGENCE ANALYSIS

Recall that f : Ω −→ Y is an operator with the continuous Frechét derivative
denoted by f ′. Let x0 ∈ Ω be such that the inverse f ′(x0)−1 exists. In the
remainder, we assume that the residuals {rn} satisfy (1.6) and that f ′(x0)−1f ′

satisfies the following (L, p)-Hölder condition:

(3.1) ‖f ′(x0)−1
(
f ′(x)− f ′(y)

)‖ ≤ L‖x− y‖p for all x, y ∈ B(x0, r).

Moreover, we assume that B(x0, L
− 1

p ) ⊆ Ω and adopt the convention that 1
0 = +∞

throughout the whole paper. Then we have the following lemma, which can be
proved by Banach’s Lemma with a standard argument, see for example [18].

Lemma 3.1. Let r ≤ L
− 1

p and let x ∈ B(x0, r). Then f ′(x) is invertible and
satisfies that

(3.2) ‖ f ′(x)−1f ′(x0) ‖≤ (1 − L‖x− x0‖p)−1 .

To estimate the radius of the convergence ball of the inexact methods around
solution x∗ of (1.1), Morini introduced the quantity v̂ := supn≥0 θncond(‖PnBn‖),
and took Bn = B̂(xn) in [12], where B̂(·) is an approximation to f ′(·) around x∗
and satisfies

‖B̂(·)−1f ′(·)− I‖ ≤ τ1 and ‖B̂(·)−1f ′(·)‖ ≤ τ2

for some nonnegative constants τ1 and τ2. Note that the quantity v̂ is closely related
to the sequence {xn}.

In order to obtain a convergence criterion depending mainly on the initial point
x0, we use the quantity

(3.3) v := sup
n≥0

θn‖f ′(x0)−1P−1
n ‖‖Pnf

′(x0)‖1+β.

Let ω1 ≥ 1, ω2 ≥ 0 and assume that the sequence {Bn} satisfies
(C1) ‖ B−1

n f ′(xn) ‖≤ ω1 for each n ∈ N,
(C2) ‖ f ′(x0)−1(Bn − f ′(xn)) ‖≤ ω2‖f ′(x0)−1f(xn)‖β for each n ∈ N.

Let

(3.4) α := ‖f ′(x0)−1f(x0)‖,
and write

(3.5) a = ω1(1 + v
1

1+β ) (L+ (1 + β)(ω2 + v)) , b = (1 + v
1

1+β )ω1α.
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Recall that {tn} is the sequence generated by the Newton-like method (2.7). Thus,
we obtain the main result of this paper.

Theorem 3.1. Suppose that f ′(x0)−1f ′ satisfies the (L,p)-Hölder condition
(3.1) with r = 1+β

β b. Suppose that

(3.6) α ≤




β

ω1(1 + β)(1 + v
1

1+β )
min

{
1, 21− 1

β a
− 1

β

}
0 < β < p,

βmin

{
1

v
1

1+β

,
21− 1

β a
− 1

β

ω1(1 + β)(1 + v
1

1+β )

}
β = p.

Then the sequence {xn} generated by the inexact methodAlgorithm A[(Bn, rn); x0]
converges to a solution x∗ of (1.1) satisfying

(3.7) ‖xn − x∗‖ ≤ t∗ − tn for each n ∈ N.

Proof. In view of the definition of b, one sees that

(3.8) 21−βabβ ≤
(

β

1 + β

)β

⇐⇒ α ≤ β21− 1
β a

− 1
β

ω1(1 + β)(1 + v
1

1+β )

and

(3.9)
1 + β

β
b ≤ 1 ⇐⇒ α ≤ β

ω1(1 + β)(1 + v
1

1+β )
.

Furthermore, it is clear that

α ≤ β

ω1(1 + β)(1 + v
1

1+β )
=⇒ 1

β
v

1
1+βα ≤ 1.

Hence, (3.6) holds if and only if

(3.10)
(

1 + β

β
b

)p−β

≤ 1,
1
β
v

1
1+βα ≤ 1 and 21−βabβ ≤

(
β

1 + β

)β

.

Now suppose that (3.6) holds. Then (2.3) holds and Lemma 2.2 is applicable to
concluding that

(3.11) tn+1 − tn ≤ b

β
and tn <

1 + β

β
b for each n ∈ N.

To complete the proof, it is sufficient to verify that

(3.12)
ω1(1 + v

1
1+β )

1 − Ltpn
‖f ′(x0)−1f(xn)‖ ≤ tn+1 − tn
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and

(3.13) ‖xn+1 − xn‖ ≤ tn+1 − tn

hold for each n ∈ N. We will proceed by mathematical induction. (3.12) is clear
for n = 0 thanks to definitions of α and b. Note that, by (1.6), if n ∈ N is such
that xn is well-defined then

(3.14)
‖f ′(x0)−1rn‖ ≤ θn‖f ′(x0)−1P−1

n ‖‖Pnf(xn)‖1+β

≤ v‖f ′(x0)−1f(xn)‖1+β.

It follows from (3.14), (3.10) and definition of b that

(3.15)
‖x1 − x0‖ = ‖ − B−1

0 f(x0) +B−1
0 r0‖ ≤ ω1(α+ vα1+β)

≤ (1 + v
1

1+β )ω1α = t1 − t0,

that is, (3.13) holds for n = 0. Assume now that (3.12) and (3.13) hold for all
n ≤ m− 1. We have to prove (3.12) and (3.13) hold for n = m. For this end, we
apply Algorithm A[(Bn, rn); x0] to get that

f(xm) = f(xm) − f(xm−1) −Bm−1(xm − xm−1) + rm−1

=
∫ 1

0
f ′(xτ

m−1)dτ(xm − xm−1)− Bm−1(xm − xm−1) + rm−1,

where xτ
n = xn + τ(xn+1 − xn) for each 0 ≤ τ ≤ 1. Hence,

(3.16)

‖f ′(x0)−1f(xm)‖

≤
∥∥∥∥f ′(x0)−1

∫ 1

0

(
f ′(xτ

m−1) − f ′(xm−1)
)
dτ(xm − xm−1)

∥∥∥∥
+‖f ′(x0)−1(Bm−1−f ′(xm−1))(xm−xm−1)‖+‖f ′(x0)−1rm−1‖.

Below we will show that

(3.17)

∥∥∥∥f ′(x0)−1

∫ 1

0

(
f ′(xτ

m−1) − f ′(xm−1)
)
(xm − xm−1)dτ

∥∥∥∥
≤ L

1+p(tm − tm−1)1+β ,

(3.18) ‖f ′(x0)−1(Bm−1 − f ′(xm−1))(xm − xm−1)‖ ≤ ω2(tm − tm−1)1+β

and

(3.19) ‖f ′(x0)−1rm−1‖ ≤ v(tm − tm−1)1+β.
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Since (3.13) holds for all n ≤ m− 1, one has that

(3.20)

‖xτ
m−1 − x0‖ ≤

m−2∑
i=0

‖xi+1 − xi‖ + τ‖xm − xm−1‖

≤
m−2∑
i=0

(ti+1 − ti) + τ(tm − tm−1).

Hence, by (3.11),

(3.21) ‖xτ
m−1 − x0‖ ≤ τtm + (1− τ)tm−1 <

1 + β

β
b.

In particular,

(3.22) ‖xm − x0‖ ≤ tm <
1 + β

β
b and ‖xm−1 − x0‖ ≤ tm−1 <

1 + β

β
b.

Then, (3.1) is applicable and

(3.23)

∥∥∥∥f ′(x0)−1

∫ 1

0

(
f ′(xτ

m−1)− f ′(xm−1)
)
(xm − xm−1)dτ

∥∥∥∥
≤
∫ 1

0

L‖xτ
m−1 − xm−1‖p‖xm − xm−1‖dτ

=
L

1 + p
‖xm − xm−1‖1+p

≤ L

1 + p
(tm − tm−1)1+p,

where the last inequality holds because of (3.13) (with n = m− 1). By (3.10),

(
b

β

)p−β

≤
(

1 + β

β
b

)p−β

≤ 1.

This together with (3.11) gives that,

(3.24) (tm − tm−1)1+p ≤ (tm − tm−1)1+β

(
b

β

)p−β

≤ (tm − tm−1)1+β;

and (3.17) follows. To show (3.18) and (3.19), we note by (3.12) (with n = m−1)
that

‖f ′(x0)−1f(xm−1)‖ ≤ tm − tm−1.
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Thus, we have that

‖f ′(x0)−1(Bm−1 − f ′(xm−1))(xm − xm−1)‖
≤ ω2‖f ′(x0)−1f(xm−1)‖β‖xm − xm−1‖
≤ ω2(tm − tm−1)1+β

thanks to (C2) and (3.13) (with n = m− 1), and

(3.25) ‖f ′(x0)−1rm−1‖ ≤ v‖f ′(x0)−1f(xm−1)‖1+β ≤ v(tm − tm−1)1+β

thanks to (3.14). Therefore, (3.18) and (3.19) are proved. Combining (3.16)-(3.19),
one has that

(3.26) ‖f ′(x0)−1f(xm)‖ ≤
(

L

1 + p
+ ω2 + v

)
(tm − tm−1)1+β.

Thus, in view of definition of a,

(3.27)
ω1(1 + v

1
1+β )

1− Ltpm
‖f ′(x0)−1f(xm)‖ ≤ a(tm − tm−1)1+β

(1 + β)(1− Ltpm)
.

Moreover, by (3.10),

(3.28) atpm < a

(
1 + β

β
b

)p

≤ a

(
1 + β

β
b

)β

≤ 2β−1 ≤ 1.

It follows from (3.27) and the fact that a ≥ L that

(3.29)
ω1(1 + v

1
1+β )

1 − Ltpm
‖f ′(x0)−1f(xm)‖ ≤ a(tm − tm−1)1+β

(1 + β)(1− atpm)
.

Since

(3.30)
ω1(1+v

1
1+β )

1−Ltp1
‖f ′(x0)−1f(x1)‖≤ 21−βat1+β

1

(1+β)(1−atp1)
= −ϕβ(t1)

ψ′
p(t1)

=t2−t1,

(3.12) is seen to hold in the case when m = 1. For the case when m > 1, as

t1+β

1 + β
+ t ≤ 21−β (1 + t)1+β − 1

1 + β
for each t ≥ 0,

we have that

(3.31)

1
1 + β

(
tm − tm−1

tm−1

)1+β

+
tm − tm−1

tm−1

≤ 21−β

1+β

((
1 +

tm − tm−1

tm−1

)1+β

− 1

)
.
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Note by (3.10) and (3.11) that

(3.32) −atpm−1 = −atβm−1t
p−β
m−1 ≥ −atβm−1

(
1 + β

β
b

)p−β

≥ −atβm−1.

It follows from (3.31) and (3.32) that

(3.33)

a

1 + β
(tm − tm−1)1+β

= at1+β
m−1

(
1

1+β

(
tm−tm−1

tm−1

)1+β

+
tm−tm−1

tm−1

)
−atβm−1(tm−tm−1)

≤ 21−βat1+β
m

1 + β
− 21−βat1+β

m−1

1 + β
− atpm−1(tm − tm−1)

= ϕβ(tm) − ϕβ(tm−1) − ψ′
p(tm−1)(tm − tm−1).

This together with (3.29) implies that

(3.34)

ω1(1 + v
1

1+β )
1 − Ltpm

‖f ′(x0)−1f(xm)‖

≤ −ϕβ(tm) − ϕβ(tm−1) − ψ′
p(tm−1)(tm − tm−1)

ψ′
p(tm)

= tm+1 − tm,

and (3.12) holds for n = m. To verify (3.13) holds for n = m, we note by (3.10)
and definition of a that

(3.35)
(

1 + β

β
b

)p

≤
(

1 + β

β
b

)β

≤ 2β−1a−1 ≤ L−1.

Hence,

(3.36) r =
1 + β

β
b ≤ L− 1

p .

Thus, by (3.22), Lemma 3.1 is applicable to concluding that f ′(xm)−1 exists and

(3.37) ‖f ′(xm)−1f ′(x0)‖ ≤ 1
1 − L‖xm − x0‖p

≤ 1
1 − Ltpm

.

Combining this with (C1) and (3.14), we get that

(3.38)

‖xm+1−xm‖ ≤ ‖B−1
m f ′(xm)‖‖f ′(xm)−1f ′(x0)

‖(‖f ′(x0)−1f(xm)‖ + ‖f ′(x0)−1rm‖)

≤ ω1

1−Ltpm (‖f ′(x0)−1f(xm)‖+v‖f ′(x0)−1f(xm)‖1+β).
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Since ω1 ≥ 1 and b = (1 + v
1

1+β )ω1α, it follows from (3.12) (with n = m), (3.11)
and (3.10) that

v
1

1+β ‖f ′(x0)−1f(xm)‖ ≤ v
1

1+β (1 − Ltpm)

ω1(1 + v
1

1+β )
(tm+1 − tm)

≤ v
1

1+β

ω1(1 + v
1

1+β )

(
b

β

)
=

1
β
v

1
1+βα ≤ 1,

which implies that v‖f ′(x0)−1f(xm)‖1+β ≤ v
1

1+β ‖f ′(x0)−1f(xm)‖. This in turn
together with (3.38) implies that

(3.39) ‖xm+1 − xm‖ ≤ ω1(1 + v
1

1+β )
1 − Ltpm

‖f ′(x0)−1f(xm)‖ ≤ tm+1 − tm,

where we have used (3.12) just proved for n = m. Therefore, (3.13) holds for
n = m and the proof is complete.

In particular, in the case when Bn = f ′(xn) for each n ∈ N, one has that
conditions (C1) and (C2) are satisfied with ω1 = 1 and ω2 = 0. Hence, a =
(1 + v

1
1+β )(L + (1 + β)v) and b = (1 + v

1
1+β )α. Consequently, the following

corollary for the inexact Newton method results directly from Theorem 3.1.

Corollary 3.1. Suppose that f ′(x0)−1f ′ satisfies the (L, p)-Hölder condition
(3.1) with r = 1+β

β b. Suppose that

α ≤




β

(1 + β)(1 + v
1

1+β )
min

{
1, 21− 1

β a
− 1

β

}
0 < β < p,

βmin

{
1

v
1

1+β

,
21− 1

β a
− 1

β

(1 + β)(1 + v
1

1+β )

}
β = p.

Then the sequence {xn} generated by the inexact Newton method converges to a
solution x∗ of (1.1) satisfying

‖xn − x∗‖ ≤ t∗ − tn for each n ∈ N.

Furthermore, taking v = 0 in Corollary 3.1, one has the following corollary for
Newton’s method which includes the corresponding result in [11] for β = p as a
special case.

Corollary 3.2. Suppose that f ′(x0)−1f ′ satisfies the (L, p)-Hölder condition
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(3.1) with r = 1+β
β α. Suppose that

α ≤




β

1 + β
min

{
1, 21− 1

βL
− 1

β

}
0 < β < p,

β

1 + β
21− 1

βL
− 1

β β = p.

Then the sequence {xn} generated by Newton’s method converges to a solution x ∗

of (1.1) satisfying

‖xn − x∗‖ ≤ t∗ − tn for each n ∈ N.

Consider the special case p = β = 1. Then {tn} defined by (2.7) reduces to the
Newton sequence with initial point t0 = 0; in particular, one has that (cf. [18])

(3.40) t∗ − tn =
λ2n−1 − λ2n

1 − λ2n t∗ for each n ∈ N,

where

(3.41) t∗ =
1 −√

1 − 2ab
a

, λ =
1−√

1 − 2ab
1 +

√
1 − 2ab

.

Thus applying Corollary 3.1, we have the following corollary.

Corollary 3.3. Suppose that f ′(x0)−1f ′ satisfies the Lipschitz condition on
B(x0, 2b) with the Lipschitz constant L. Suppose that β = 1 and that

α ≤ min
{

1√
v
,

1
2(1 +

√
v)2(L+ 2v)

}
.

Then the sequence {xn} generated by the inexact Newton method converges to a
solution x∗ of (1.1) satisfying

‖xn − x∗‖ ≤ λ2n−1 − λ2n

1 − λ2n t∗ for each n ∈ N,

where

t∗ =
1−

√
1 − 2(1 +

√
v)2(L+ 2v)α

(1 +
√
v)(L+ 2v)

, λ =
1−

√
1 − 2(1 +

√
v)2(L+ 2v)α

1 +
√

1 − 2(1 +
√
v)2(L+ 2v)α

.
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4. APPLICATION TO A NONLINEAR INTEGRAL EQUATION OF HAMMERSTEIN TYPE

In this section, we provide an application of the main result to a special nonlinear
Hammerstein integral equation of the second kind (cf. [14]). Letting µ ∈ R and
p ∈ (0, 1], we consider

(4.1) x(s) = l(s) +
∫ b

a
G(s, t)[x(t)1+p + µx(t)]dt, s ∈ [a, b],

where l is a continuous function such that l(s) > 0 for all s ∈ [a, b] and the kernel
G is a non-negative continuous function on [a, b] × [a, b]. This kind of nonlinear
Hammerstein integral equation has been already studied by many authors, see for
example [6, 7] and etc.

Note that if G is the Green function defined by

(4.2) G(s, t) =




(b− s)(t− a)
b− a

t ≤ s,

(s− a)(b− t)
b− a

s ≤ t,

equation (4.1) is equivalent to the following boundary value problem (cf. [16]):{
x′′ = −x1+p − µx

x(a) = v(a), x(b) = v(b).

To apply Theorem 3.1, let X = Y = C[a, b], the Banach space of real-valued
continuous functions on [a, b] with the uniform norm. Let Q denote the set of all
rationals p ∈ (0, 1] such that p = u

q for some odd number q and positive integer u.
Let

Ωp =

{ {x ∈ C[a, b] : x(s) > 0, s ∈ [a, b]} p ∈ (0, 1] \ Q,

C[a, b] p ∈ Q.

Define f : Ωp → C[a, b] by

(4.3) [f(x)](s) = x(s)− l(s)−
∫ b

a
G(s, t)[x(t)1+p + µx(t)]dt, s ∈ [a, b].

Then solving equation (4.1) is equivalent to solving equation (1.1) with f being
defined by (4.3).

We start by calculating the parameter α in the study. Firstly, we have

[f ′(x)u](s) = u(s) −
∫ b

a
G(s, t)[(1 + p)x(t)p + µ]u(t)dt, s ∈ [a, b].
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Let x0 ∈ Ωp be fixed. Then

‖I− f ′(x0)‖ ≤M((1 + p)‖x0‖p + µ),

where

M = max
s∈[a,b]

∫ b

a
|G(s, t)|dt.

By Banach’s Lemma, if M((1 + p)‖x0‖p + µ) < 1, one has

(4.4) ‖f ′(x0)−1‖ ≤ 1
1 −M((1 + p)‖x0‖p + µ)

.

Since
‖f(x0)‖ ≤ ‖x0 − l‖ +M(‖x0‖1+p + µ‖x0‖),

it follows that

(4.5) ‖f ′(x0)−1f(x0)‖ ≤ ‖x0 − l‖+M(‖x0‖1+p + µ‖x0‖)
1 −M((1 + p)‖x0‖p + µ)

.

Therefore, α is estimated. On the other hand, for x, y ∈ Ωp,

[(f ′(x)− f ′(y))u](s) = −
∫ b

a
G(s, t)[(1 + p)(x(t)p − y(t)p)]u(t)dt, s ∈ [a, b]

and consequently,

‖f ′(x) − f ′(y)‖ ≤M(1 + p)‖x− y‖p, x, y ∈ Ωp.

This together with (4.4) implies

(4.6)
‖f ′(x0)−1(f ′(x)− f ′(y))‖

≤ M(1 + p)
1 −M((1 + p)‖x0‖p + µ)

‖x− y‖p, x, y ∈ Ωp.

Hence L is estimated and so are the corresponding a and b. Consequently, one can
use Theorems 3.1 and its corollaries to function f defined by (4.3) to establish the
convergence criterions of the inexact methods for solving the nonlinear Hammerstein
integral Eq. (4.1). As examples, below we list the results corresponding to Corollary
3.1 for the inexact Newton method to find the approximative solution of Eq. (4.1).

Theorem 4.1. Let x0 ∈ Ωp be a point such that M((1 + p)‖x0‖p + µ) < 1.
Let v be such that

sup
n≥0

θn‖f ′(x0)−1P−1
n ‖‖Pnf

′(x0)‖1+β ≤ v,
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and let
a = (1 + v

1
1+β ) (L+ (1 + β)v) , b = (1 + v

1
1+β )α.

Suppose that

(4.7) α ≤




β

(1 + β)(1 + v
1

1+β )
min

{
1, 21− 1

β a
− 1

β

}
0 < β < p,

βmin

{
1

v
1

1+β

,
21− 1

β a
− 1

β

(1 + β)(1 + v
1

1+β )

}
β = p.

Then the sequence {xn} generated by the inexact Newton method converges to a
solution x∗ of Eq. (4.1).

We end with an example to illustrate the concrete applications of the results of
this section.

Example 4.1. Let G be Green’s function on [0, 1] × [0, 1] defined by (4.1).
Consider the following particular case of (4.1):

x(s) =
1
32

+
∫ 1

0
G(s, t)

(
x(t)4/3 + x(t)

)
dt, s ∈ [0, 1].

The corresponding operator f : Ωp → C[0, 1] is equivalent to

[f(x)](s) = x(s) − 1
32

−
∫ 1

0
G(s, t)

(
x(t)4/3 + x(t)

)
dt, s ∈ [0, 1].

Clearly p = 1
3 , µ = 1 and Ωp = C[0, 1]. Furthermore,M = 1

8 . Let x0 ∈ Ωp. Then,
we can take

L =
1

5.25− x
1/3
0

and α =
|96x0 − 3| + 12(x

4
3
0 + x0)

84 − 16x1/3
0

.

In order to apply Theorems 4.1, we choose, for each n ∈ N, Pn = I . Then we
estimate v to get

v =
( 9
8 + 1

6x
1/3
0 )1+β

7
8 − 1

6x
1/3
0

θn.

For different choices of β, θn and x0, the TF values of (4.7) (that is, “T ” and
“F” represent that (4.7) holds and fails, respectively) are illustrated in the following
Table 1.
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Table 1. The TF values of (4.7) for different β and θn
x0 = 0 x0 = 0.1

β θn=0.01 0.05 0.1 0.2 0.5 θn=0.01 0.05 0.1 0.2 0.5
0.001 F F F F F F F F F F
0.005 F F F F F F F F F F
0.1 T T T F F F F F F F
0.2 T T T T F T T T F F
0.3 T T T T F T T T F F
1/3 T T T T F T T T F F
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