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Abstract. In this paper, KKM theorems or coincidence theorems on abstract
convex spaces are applied to obtain the Fan-Browder type fixed point theorems,
existence of maximal elements, existence of economic equilibria and some
related results. Consequently, we obtain generalizations or improvements of a
number of known equilibria results, especially, in a recent work of Ding and
Wang [3] on the so-called FC-spaces.

1. INTRODUCTION

The KKM theory, first called by the author [8], is originated from the Knaster-
Kuratowski-Mazurkiewicz theorem (simply, KKM principle), and nowadays re-
garded as the study of applications of various equivalent formulations of the KKM
principle and their generalizations; see [10, 11] and references therein. At the be-
ginning, the theory was devoted to convex subsets of topological vector spaces, and
later, to convex spaces by Lassonde [7], to C-spaces (or H-spaces) by Horvath [5,
6], and to generalized convex (G-convex) spaces by the present author [11, 12, 18,
23, 24].

Recently there have appeared several imitations of G-convex spaces and a num-
ber of authors have tried to obtain generalizations of our G-convex space theory.
Most of such imitations are unified to the class of φA-spaces; see [17, 19, 21].
Moreover, in our recent works [13-17, 19-22], we introduced a new class of ab-
stract convex spaces more general than G-convex spaces and obtained basic results
in the KKM theory and fixed point theory within the new classes.

Recall that the existence theorems on equilibria in economics due to Borglin and
Keiding, Yannelis and Prabhakar, Toussiant, and Tulcea were generalized to various

Received December 3, 2007.
2000 Mathematics Subject Classification: Primary 46N10, 47H10, Secondary 47H04, 54H25, 91B50.
Key words and phrases: Abstract convex space; Generalized convex (or G-convex) space; φA-space;
FC-space; Fixed point; Coincidence point; Maximal element; Equilibria.

1365



1366 Sehie Park

abstract convex spaces by Tarafdar, Tan, Ding, Yuan, and others in a large number
of works; for the literature, see [3] and references therein. In [3], it is claimed
that most of such works are improved and generalized in the frame of the so-called
FC-spaces, which are particular forms of φA-spaces and hence of abstract convex
spaces.

In the present paper, KKM theorems or coincidence theorems on abstract convex
spaces in [13, 20] are applied to obtain the Fan-Browder type fixed point theorems,
existence of maximal elements, and existence of economic equilibria. Consequently,
we obtain generalizations or unifications of a number of known equilibria results,
especially, in a recent work of Ding and Wang [3] on FC-spaces.

In Section 2, definitions and some basic facts on abstract convex spaces and
the map classes KC, KO are introduced. Section 3 deals with φA-spaces as a
unified and generalized concept of various imitations of G-convex spaces. A KKM
theorem for φA-spaces is also given. In Section 4, general forms of the Fan-Browder
type coincidence and fixed point theorems are derived for abstract convex spaces.
Section 5 deals with various existence theorems on maximal elements in abstract
convex spaces. Finally, in Section 6, new existence theorems of maximal elements
for LF -majorized correspondences and a new equilibrium existence theorem for one
person game with LF -majorized correspondences are obtained in abstract convex
spaces.

2. ABSTRACT CONVEX SPACES

In this section, we recall definitions and some basic results on abstract convex
spaces given in [13, 20].

A multimap (simply, a map) or a correspondence F : X � Y is a function from
a set X into the power set 2Y of Y ; that is, a function with the values F (x) ⊂ Y
for x ∈ X and the fibers F−(y) := {x ∈ X | y ∈ F (x)} for y ∈ Y . For A ⊂ X ,
let F (A) :=

⋃{F (x) | x ∈ A}. For any B ⊂ Y , the (lower) inverse of B under F
is defined by

F−(B) := {x ∈ X | F (x) ∩B �= ∅}.
The following is the origin of the KKM theory; see [10, 11]:

The KKM Principle. Let D be the set of vertices of an n-simplex ∆n and
G : D � ∆n be a KKM map (that is, coA ⊂ G(A) for each A ⊂ D) with closed
[resp., open] values. Then

⋂
z∈D G(z) �= ∅.

Let 〈D〉 denote the set of all nonempty finite subsets of a set D.
Definitions. An abstract convex space (E,D; Γ) consists of a topological

space E , a nonempty set D, and a map Γ : 〈D〉 � E with nonempty values. We
may denote ΓA := Γ(A) for A ∈ 〈D〉.
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For any D′ ⊂ D, the Γ-convex hull of D′ is denoted and defined by

coΓD′ :=
⋃

{ΓA | A ∈ 〈D′〉}.

[ co is reserved for the convex hull in vector spaces].
A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to D′ ⊂ D

if for any N ∈ 〈D′〉, we have ΓN ⊂ X , that is, coΓD′ ⊂ X . This means that
(X,D′; Γ|〈D′〉) itself is an abstract convex space called a subspace of (E,D; Γ).

When D ⊂ E , the space is denoted by (E ⊃ D; Γ). In such case, a subset X
of E is said to be Γ-convex if coΓ(X ∩D) ⊂ X ; in other words, X is Γ-convex
relative to D′ := X ∩D. In case E = D, let (E; Γ) := (E,E; Γ).

We already gave plenty of examples of abstract convex spaces in [13, 20, 21].

Definitions. Let (E,D; Γ) be an abstract convex space and Z a topological
space. For a map F : E � Z with nonempty values, if a map G : D � Z satisfies

F (ΓA) ⊂ G(A) for all A ∈ 〈D〉,

then G is called a KKM map with respect to F . A KKM map G : D � E is a
KKM map with respect to the identity map 1E.

A map F : E � Z is said to have the KKM property and called a KC-map
if, for any closed-valued KKM map G : D � Z with respect to F , the family
{G(y)}y∈D has the finite intersection property. We denote

KC(E, Z) := {F : E � Z | F is a KC-map}.

Similarly, we define a KO-map for open-valued maps G.

The following is given [20, Lemma 2]:

Lemma 2.1. Let (E,D; Γ) be an abstract convex space, (X,D ′; Γ|〈D′〉) a
subspace, and Z a topological space. If F ∈ KC(E, Z), then F |X ∈ KC(X,Z).
This also holds for KO instead of KC.

The following theorems are given in [13, 20]:

Theorem 2.2. Let (E,D; Γ) be an abstract convex space, Z a topological
space, and F : E � Z a map. Then F ∈ KC(E, Z) [ resp., F ∈ KO(E, Z)] if
and only if for any closed-valued [resp., open-valued ] map G : D � Z satisfying

(1) F (ΓN ) ⊂ G(N ) for any N ∈ 〈D〉,
we have F (E) ∩⋂{G(y) | y ∈ N} �= ∅ for each N ∈ 〈D〉.



1368 Sehie Park

Theorem 2.3. Let (E,D; Γ) be an abstract convex space, Z a topological
space, S : D � Z, T : E � Z maps, and F ∈ KC(E, Z) [resp., F ∈ KO(E, Z)].
Suppose that

(1) S is open-valued [resp., closed-valued ];
(2) for each z ∈ F (E), coΓS−(z) ⊂ T−(z) [that is, T−(z) is Γ-convex relative

to S−(z)]; and
(3) F (E) ⊂ S(N ) for some N ∈ 〈D〉.
Then there exists an x̄ ∈ E such that F (x̄) ∩ T (x̄) �= ∅.

3. φA-SPACES

The following due to the present author is a typical example of abstract convex
spaces:

Definition. generalized convex space or a G-convex space (E,D; Γ) consists
of a topological space E , a nonempty set D, and a multimap Γ : 〈D〉 � E such
that for each A ∈ 〈D〉 with the cardinality |A| = n + 1, there exists a continuous
function φA : ∆n → Γ(A) such that J ∈ 〈A〉 implies φA(∆J ) ⊂ Γ(J).

Here, ∆n is a standard n-simplex with vertices {ei}n
i=0, and ∆J the face of ∆n

corresponding to J ∈ 〈A〉; that is, if A = {a0, a1, . . . , an} and J = {ai0, ai1, . . . ,

aik} ⊂ A, then ∆J = co{ei0, ei1, . . . , eik}. For details on G-convex spaces; see
[11, 12, 18, 23, 24] and references therein.

When E = D, a G-convex space is called an L-space by Ben-El-Mechaiekh et
al. [1].

Recently, there have appeared some authors who introduced spaces of the form
(X, {ϕA}); see [1-3, 17, 19, 21]. Some of them tried to rewrite our works on
G-convex spaces by simply replacing Γ(A) by ϕA(∆n) everywhere and claimed to
obtain generalizations without giving any justifications or proper examples.

Motivated by this fact, we are concerned with a reformulation of the class of
G-convex spaces as follows [19, 21]:

Definition. A φA-space

(X,D; {φA}A∈〈D〉)

consists of a topological space X , a nonempty set D, and a family of continuous
functions φA : ∆n → X (that is, singular n-simplices) for A ∈ 〈D〉 with the
cardinality |A| = n + 1.

Note that any φA-space is an abstract convex space (X,D; Γ)with ΓA := ImφA

for A ∈ 〈D〉.
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Any G-convex space is a φA-space. The converse also holds:

Proposition 3.1. A φA-space (X,D; {φA}A∈〈D〉) can be made into a G-convex
space (X,D; Γ).

Proof. This can be done in two ways.
(1) For each A ∈ 〈D〉, by putting ΓA := X , we obtain a trivial G-convex space

(X,D; Γ).
(2) Let {Γα}α be the family of maps Γα : 〈D〉 � X giving a G-convex space

(X,D; Γα) such that φA(∆n) ⊂ Γα
A for each A ∈ 〈D〉 with |A| = n + 1.

Note that, by (1), this family is not empty. Then, for each α and each A ∈ 〈D〉
with |A| = n+ 1, we have

φA(∆n) ⊂ Γα
A and φA(∆J) ⊂ Γα

J for J ⊂ A.

Let Γ :=
⋂

α Γα, that is, ΓA =
⋂

α Γα
A for each A ∈ 〈D〉. Then

φA(∆n) ⊂ ΓA and φA(∆J) ⊂ ΓJ for J ⊂ A.

Therefore, (X,D; Γ) is a G-convex space.

Consequently, φA-spaces are another names of G-convex spaces and they are
essentially the same.

Definition. For a φA-space (X,D; {φA}A∈〈D〉), any map T : D � X satis-
fying

φA(∆J) ⊂ T (J) for each A ∈ 〈D〉 and J ∈ 〈A〉
is called a KKM map.

Proposition 3.2.
(1) A KKM map G : D � X on a G-convex space (X,D; Γ) is a KKM map on

the corresponding φA-space (X,D; {φA}A∈〈D〉).
(2) A KKM map T : D � X on a φA-space (X,D; {φA}) is a KKM map on a

new G-convex space (X,D; Γ).

Proof.
(1) This is clear from the definition of a KKM map on a G-convex space.
(2) Define Γ : 〈D〉 � X by ΓA := T (A) for each A ∈ 〈D〉. Then (X,D; Γ)

becomes a G-convex space. In fact, for each A with |A| = n + 1, we have
a continuous function φA : ∆n → T (A) =: Γ(A) such that J ∈ 〈A〉 implies
φA(∆J) ⊂ T (J) =: Γ(J). Moreover, note that ΓA ⊂ T (A) for eachA ∈ 〈D〉
and hence T : D � X is a KKM map on a G-convex space (X,D; Γ).
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The following is a KKM theorem for φA-spaces. The proof is just a simple
modification of the corresponding one in [11-13]:

Proposition 3.3. For a φA-space (X,D; {φA}A∈〈D〉), let G : D � X be
a KKM map with closed [resp., open] values. Then {G(z)}z∈D has the finite
intersection property. (More precisely, for each N ∈ 〈D〉 with |N | = n + 1, we
have φN (∆n) ∩ ⋂

z∈N G(z) �= ∅.)
Further, if
(3)

⋂
z∈M G(z) is compact for some M ∈ 〈D〉,

then we have
⋂

z∈D G(z) �= ∅.
Proof. Let N = {z0, z1, . . . , zn}. Since G is a KKM map, for each vertex ei of

∆n, we have φN(ei) ∈ G(zi) for 0 ≤ i ≤ n. Then ei �→ φ−1
N G(zi) is a closed [resp.,

open] valued map such that ∆k = co{ei0 , ei1, . . . , eik} ⊂ ⋃k
j=0 φ

−1
N G(zij) for each

face∆k of∆n. Therefore, by the original KKM principle,∆n ⊃ ⋂n
i=0 φ

−1
N G(zi) �=

∅ and hence φN(∆n) ∩ (⋂
z∈N G(z)

) �= ∅.
The second conclusion is clear.

Remarks.
(1) We may assume that, for each a ∈ D and N ∈ 〈D〉, G(a)∩φN (∆n) is closed

[resp., open] in φN (∆n). This is said by some authors that G has finitely
closed [resp., open] values. However, by replacing the topology of X by its
finitely generated extension, we can eliminate “finitely”; see [12].

(2) For X = ∆n, if D is the set of vertices of ∆n and Γ = co, the convex hull,
Theorem 3.3 reduces to the original KKM principle and its open version; see
[10, 11].

(3) If D is a nonempty subset of a topological vector space X (not necessarily
Hausdorff), Theorem 3.3 extends Fan’s KKM lemma; see [4,10].

(4) Note that any KKM theorem on spaces of the form (X, {ϕA}) can not gen-
eralize the original KKM principle or Fan’s KKM lemma.

In 2005, Ding [2] introduced the following particular form of φA-spaces:

Definition. ([2]). (Y, {ϕN}) is said to be a FC-space if Y is a topological
space and for each N = {y0, . . . , yn} ∈ 〈Y 〉 where some elements in N may be
same, there exists a continuous mapping ϕN : ∆n → Y . A subset D of (Y, {ϕN})
is said to be a FC-subspace of Y if for each N = {y0, . . . , yn} ∈ 〈Y 〉 and for each
{yi0 , . . . , yik} ⊂ N ∩D, ϕN(∆k) ⊂ D where ∆k = co{eij : j = 0, . . . , k}.

Note that for each N , there should be infinitely many ϕN ’s. In [3], its authors
repeated the preceding definition where the restriction “where some elements in N
may be same” in the original definition in [2] is removed.
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Clearly an FC-space can be made into an L-space [1] by Proposition 3.1 and
is a particular φA-space (X,D; {φA}A∈〈D〉) for the case X = D. Further, Ding in
[3] still insists that “It is clear that many topological spaces with abstract convexity
structure are all FC-spaces. In particular, any convex subset of a topological vector
space, any H-space introduced by Horvath [5], any G-convex spaces introduced by
Park and Kim [24] and any L-convex spaces introduced by Ben-El-Mechaiekh et
al. [1] are all FC-spaces. Hence, it is quite reasonable and valuable to study various
nonlinear problems in FC-spaces”. This statement repeatedly appeared more than
fifteen papers of Ding and his followers within the last two years. One wonders
how could a pair (Y, {ϕN}) generalize a triple (X,D; Γ) in [24].

In Lemma 2.4 [3], its authors showed that any generalized FC-KKM mapping
is a generalized R-KKM mapping, which is already shown to be a simple KKM
map for a G-convex space; see [17,21]. Lemmas 3.1 and 3.2 [3] are particular
forms of Theorem 3.3. In [3], from their Lemma 3.2, it is routine in the KKM
theory to deduce Fan-Browder type fixed point theorems (Section 3), Ky Fan type
minimax inequalities and their geometric forms (Section 4), existence of maximal
elements (Section 5), and equilibrium existence theorems (Section 6). The authors
of [3] obtained these results for their FC-spaces, but it is evident that they can be
stated more generally for G-convex spaces or φA-spaces, even for abstract convex
spaces.

4. COINCIDENCE AND FIXED POINTS

From Theorem 2.3, we can generalize the Fan-Browder type coincidence theorem
due to Park and Kim [23,24, Theorem 1]:

Theorem 4.1. Let (E,D; Γ) be an abstract convex space, Z a topological
space, S : D � Z, T : E � Z maps, and F ∈ KC(E, Z) [resp., F ∈ KO(E, Z)].
Suppose that

(1) S is open-valued [resp., closed-valued ];

(2) for each z ∈ F (E), coΓS
−(z) ⊂ T−(z);

(3) there exists a nonempty subset K of Z such that F (E) ∩ K ⊂ S(N ) for
some N ∈ 〈D〉; and

(4) either

(i) F (E) �K ⊂ S(M) for some M ∈ 〈D〉; or
(ii) there exists a Γ-convex subset LN of E relative to some D ′ ⊂ D such that

N ⊂ D′ and F (LN ) �K ⊂ S(M) for some M ∈ 〈D ′〉.
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Then there exists an x ∈ E such that F (x) ∩ T (x) �= ∅.

Proof.

Case (i). In view of Theorem 2.3, it suffices to show that condition (3) there
holds. Since

F (E) = (F (E) �K) ∪ (F (E) ∩K) ⊂ S(M) ∪ S(N ) = S(N ′),

where N ′ := M ∪N , the conclusion follows from Theorem 2.3.

Case (ii). Since LN is a Γ-convex subset relative to D′, (LN , D
′; Γ |〈D′〉) is a

subspace. Instead of S and T , we can use S|D′ and T |LN
. Note that F (LN)�K ⊂

S(M) for some M ∈ 〈D′〉. Now the conclusion follows from Case (i).

Corollary 4.2. In Theorem 4.1, condition (ii) can be replaced by the following
without affecting its conclusion:

(ii)′ E ⊃ D and there exists a Γ-convex subset LN of E containing N such
that F (LN ) ⊂ S(M) for some M ∈ 〈LN ∩D〉.

Proof. Choose D′ := LN ∩D and apply (ii).

Corollary 4.2 generalizes [23, 24, Theorem 1] and leads too many modifications
of the Fan-Browder coincidence theorem for G-convex spaces or φA-spaces in the
literature. All of them might be particular cases of Theorem 4.1. Most of such
modifications assume compactness of K and LN and S has open values.

For E = Z and F = 1E, the identity map on E , Theorem 4.1 reduces to the
following Fan-Browder type fixed point theorem:

Theorem 4.3. Let (E,D; Γ) be an abstract convex space satisfying 1E ∈
KC(E,E) [resp., 1E ∈ KO(E,E)], and S : D � E , T : E � E maps. Suppose
that

(1) S is open-valued [resp., closed-valued ];
(2) for each x ∈ E , coΓS−(x) ⊂ T−(x);
(3) there exists a nonempty subset K of E such that K ⊂ S(N ) for some

N ∈ 〈D〉; and
(4) either

(i) E �K ⊂ S(M) for some M ∈ 〈D〉; or
(ii) there exists a Γ-convex subset LN of E relative to some D ′ ⊂ D such that

N ⊂ D′ and LN �K ⊂ S(M) for some M ∈ 〈D ′〉.
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Then T has a fixed point x ∈ E , that is, x ∈ T (x).

Remarks.
(1) Note that Theorem 4.3 works for G-convex spaces or φA-spaces and has nu-

merous particular forms. Moreover, there are abstract convex spaces (E,D; Γ)
satisfying 1E ∈ KC(E,E) [resp., 1E ∈ KO(E,E)] which are not G-convex
spaces; see [22]. Therefore Theorem 4.3 properly generalizes the particular
case for G-convex spaces.

(2) Usually Condition (ii) is called a coercivity or compactness condition. On the
surface, Case (ii) seems to generalize Case (i), but both cases are equivalent
as can be seen in the proof of Theorem 4.1.

The following is a new variant of Theorem 4.3(ii):

Theorem 4.4. Let (X ⊃ D; Γ) be an abstract convex space satisfying 1X ∈
KC(X,X), F : D � X , G : X � X , and K a nonempty compact subset of X
such that

(1) for each x ∈ X, F−(x) ⊂ G−(x) and G−(x) is Γ-convex;
(2) for each z ∈ D, F (z) is open in X;
(3) for each N ∈ 〈D〉, there exists a compact Γ-convex subset LN of X relative

to some D′ ⊂ D containing N such that⋂
z∈D′

clLN
(LN �G(z)) ⊂ K;

(4) for each x ∈ K, F−(x) �= ∅.
Then there exists ŷ ∈ X such that ŷ ∈ G(ŷ).

Proof 1. By (4), K ⊂ ⋃
z∈D F (z). Note that F (z) ⊂ G(z) for each z ∈ D by

(1). Since each F (z) is open by (2) and K is compact, we have an N ∈ 〈D〉 such
that K ⊂ ⋃

z∈N F (z) ⊂ ⋃
z∈N intXG(z) by (1). Note that

clLN
(LN � (G(z)) = clLN

(LN � (G(z) ∩ LN)) = LN � intLN
(G(z) ∩ LN ).

Hence, by (3), we have

LN �K ⊂
⋃

z∈D′
[clLN

(LN �G(z))]c =
⋃

z∈D′
[LN � intLN

(G(z) ∩ LN)]c

⊂
⋃

z∈D′
intLN

(G(z) ∩ LN ) ⊂
⋃

z∈D′
intXG(z),
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where c denotes the complement with respect to LN . Therefore

LN ⊂ (LN �K) ∪K ⊂
⋃

z∈D′
intXG(z) ∪

⋃
z∈N

intXG(z).

Since LN is compact and N ⊂ D′, there exists an M ∈ 〈D′〉 such that LN �K ⊂⋃
z∈M intXG(z).
Now let S(z) := intXG(z) ⊂ G(z) for z ∈ D and T (x) := G(x) for x ∈ X .

Then coΓS−(x) ⊂ coΓG−(x) = G−(x) = T−(x). Hence all of the requirements of
Theorem 4.3(ii) are satisfied. Therefore there exists ŷ ∈ X such that ŷ ∈ T (ŷ) =
G(ŷ). This completes our proof.

Proof 2. Suppose that the conclusion does not hold; that is, x �∈ G(x) for each
x ∈ X . Define T, S : D � X by

T (z) := clX(K �G(z)) and S(z) := K � F (z)

for z ∈ D.
Let N ∈ 〈D〉. By (3), there exists a compact Γ-convex subset LN of X relative

to some D′ containing N . Define T0, S0 : D′ � LN by

T0(z) := clLN
(LN �G(z)) and S0(z) := LN � F (z)

for z ∈ D′. Note that each T0(z) is compact, each S0(z) is relatively closed by (2),
and T0(z) ⊂ S0(z) by (1).

(i) T0 is a KKM map.
Indeed, it suffices to show the map T ∗ : D′ � LN defined by

T ∗(z) := LN �G(z) for z ∈ D′

is a KKM map. If this were not, there exist A ∈ 〈D′〉 and x ∈ coΓ(A) such that

x �∈ T ∗(A) = LN �

⋂
z∈A

G(z) ⊂ X �

⋂
z∈A

G(z).

Hence x ∈ ⋂
z∈A G(z) and A ⊂ G−(x). Therefore x ∈ coΓ(A) ⊂ G−(x) by (1).

This contradicts our assumption.
(ii) T is a KKM map.
Since 1X ∈ KC(X,X), this also holds for (LN , D

′; Γ|〈D′〉) by Lemma 2.1.
Since T0 is a closed-compact-valued KKM map,

⋂
z∈D′ T0(z) �= ∅. Then there

exists
ŷ ∈

⋂
z∈D′

T0(z) =
⋂

z∈D′
clLN

(LN �G(z)) ⊂ LN ∩K
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by (3). Therefore

ŷ ∈
⋂

z∈D′
clX(K �G(z)) ⊂

⋂
z∈D′

T (z) ⊂
⋂
z∈N

T (z).

Hence, T is a closed-compact-valued KKM map. Since 1X ∈ KC(X,X), we have⋂
z∈D T (z) �= ∅. Since T (z) ⊂ S(z) for each z ∈ D, we have

K �

⋃
z∈D

F (z) =
⋂
z∈D

(K � F (z)) =
⋂
z∈D

S(z) �= ∅.

This contradicts (4). This completes our proof.

Remarks.

(1) Note that Theorem 4.4 works for G-convex spaces or φA-spaces.
(2) In Proof 2, we followed the proof of [3, Theorem 3.1] and its notation. This

might be convenient to compare those proofs.

The following main result for FC-spaces in [3] is a particular form:

Corollary 4.5. ([3, Theorem 3.1]). Let (X, ϕN) be an FC-space, F,G : X →
2X and K be a nonempty compact subset of X such that

(1) for each x ∈ X , F (x) ⊂ G(x),
(2) for each y ∈ X , F−1(y) is compactly open in X ,
(3) for each N ∈ 〈X〉, there exists a compact FC-subspace LN of X containing

N such that

LN

⋂ ⋂
x∈LN

clLN

(
(X � (FC(G))−1(x))

⋂
LN

)
⊂ K,

(4) for each x ∈ K, F (x) �= ∅.
Then there exists ŷ ∈ X such that ŷ ∈ FC(G(ŷ)).

Proof. In Theorem 4.4, let X = D, ΓN := ImϕN , and (F,G) := (F−, (FC
(G))−1) where FC(G) = coΓG. Then (X,Γ) becomes an abstract convex space sat-
isfying 1X ∈ KC(X,X) by Theorem 3.3. Moreover condition (3) can be simplified
to that of Theorem 4.4. Now the conclusion follows.

Remarks.

(1) In condition (2), “compactly” is obsolete; see [12].
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(2) Note that the coercivity or compactness condition (3) of Corollary 4.5 is
artificial, not practical, not elegant, and it should be replaced by the one in
Theorem 4.4. The condition (3) or its equivalents are used to all of the key
results in [3].

(3) As our Theorem 4.4 improves [3, Theorem 3.1], other theorems in Sections
3 and 4 of [3] can be easily improved by following Theorem 4.4.

(4) In [3], its authors stated that Corollary 4.5 generalizes corresponding results
due to Ding, Ding and Tarafdar, Ding and Tan, and Taraftar. Similar remarks
are also stated for other key results in [3].

5. MAXIMAL ELEMENTS

Any binary relation R in a set X can be regarded as a map T : X � X and
conversely by the following obvious way:

y ∈ T (x) if and only if (x, y) ∈ R.

Therefore, a point x0 ∈ X is called a maximal element of a map T if T (x0) = ∅.
From Theorem 4.1, by interchanging S and S−, we have the following existence

theorem for maximal elements:

Theorem 5.1. Let (E,D; Γ) be an abstract convex space, Z a topological
space, S : Z � D, T : E � Z maps, and F ∈ KC(E, Z). Suppose that

(1) for each y ∈ D, S−(y) is open in Z;
(2) for each z ∈ F (E), coΓS(z) ⊂ T−(z);
(3) there exists a nonempty compact subset K of Z; and
(4) either

(i) F (E) �K ⊂ S−(M) for some M ∈ 〈D〉; or
(ii) for each N ∈ 〈D〉, there exists a Γ-convex subset LN of E relative to some

D′ ⊂ D such that N ⊂ D ′ and F (LN ) �K ⊂ S−(M) for some M ∈ 〈D ′〉.

If F (x) ∩ T (x) = ∅ for all x ∈ E , then there exists a z ∈ F (E)∩K such that
S(z) = ∅.

Proof. Suppose that for each z ∈ F (E) ∩ K , there exists a y ∈ S(z) ⊂ D.
Then F (E) ∩ K ⊂ S−(D). Since F (E) ∩ K is compact, by (1), there exists an
N ∈ 〈D〉 such that F (E) ∩K ⊂ S−(N ). Therefore, by Theorem 4.1, there exists
an x ∈ E such that F (x) ∩ T (x) �= ∅, a contradiction.
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Remark. If X = D is a convex space, Theorem 5.1 reduces to Park [9,
Theorem 3.1], which includes earlier works of Yannelis and Prabhakar, Mehta,
Kim, and Mehta and Sessa.

For E = Z and F = 1E, Theorem 5.1 reduces to the following:

Theorem 5.2. Let (E,D; Γ) be an abstract convex space satisfying 1E ∈
KC(E,E), and S : E � D, T : E � E maps. Suppose that

(1) S− is open-valued;
(2) for each x ∈ E , coΓS(x) ⊂ T (x) and x �∈ T (x);
(3) there exists a nonempty compact subset K of E; and
(4) either
(i) E �K ⊂ S−(M) for some M ∈ 〈D〉; or
(ii) there exists a Γ-convex subset LN of E relative to some D ′ ⊂ D such that

N ⊂ D′ and LN �K ⊂ S−(M) for some M ∈ 〈D ′〉.

Then S has a maximal point x ∈ K , that is, S(x) = ∅.

From Theorem 4.4, we have the following:

Theorem 5.3. Let (X ⊃ D; Γ) be an abstract convex space satisfying 1X ∈
KC(X,X), F : X � D, G : X � X and K a nonempty compact subset of X
such that

(1) for each x ∈ X, F (x) ⊂ G(x) and G(x) is Γ-convex;
(2) for each z ∈ D, F−(z) is open in X;
(3) for each N ∈ 〈D〉, there exists a compact Γ-convex subset LN of X relative

to some D′ ⊂ D containing N such that⋂
z∈D′

clLN

(
LN �G−(z)

) ⊂ K;

(4) for each x ∈ X , x �∈ G(x).

Then there exists ŷ ∈ K such that F (ŷ) = ∅.

Corollary 5.4. ([3, Theorem 5.1]). Let (X, ϕN) be an FC-space, F,G : X →
2X and K be a nonempty compact subset of X such that

(1) for each x ∈ X , F (x) ⊂ G(x),
(2) for each y ∈ X , F−(y) is compactly open in X ,
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(3) for each N ∈ 〈X〉, there exists a compact FC-subspace LN of X containing
N such that

LN

⋂ ⋂
x∈LN

clLN

(
(X � (FC(G))−1(x))

⋂
LN

)
⊂ K,

(4) for each x ∈ K, x �∈ FC(G(x)).

Then F has a maximal element ŷ ∈ K , that is, F (ŷ) = ∅.

6. EQUILIBRIA OF ABSTRACT ECONOMIES IN ABSTRACT CONVEX SPACES

We introduce the following generalization of [3, Definition 2.4]:

Definitions. Let X be a topological space, (E ⊃ Y ; Γ) an abstract convex
space, θ : X → E a function, and φ : X � Y a map. Then

(1) φ is said to be of class Lθ,F if

(a) for each x ∈ X , coΓ φ(x) ⊂ Y and θ(x) �∈ coΓ φ(x) for each x ∈ X ,
(b) there exists a map ψ : X � Y such that ψ(x) ⊂ φ(x) for each x ∈ X

and ψ−(y) is open in X for each y ∈ Y , and
(c) {x ∈ X | φ(x) �= ∅} = {x ∈ X | ψ(x) �= ∅};

(2) (φx, ψx, Nx) is called a Lθ,F -majorant of φ at x if φx, ψx : X � Y and Nx

is an open neighborhood of x in X such that

(a) for each z ∈ Nx, φ(z) ⊂ φx(z) and θ(z) �∈ coΓ φx(z),
(b) for each z ∈ X , ψx(z) ⊂ φx(z) and coΓ φx(z) ⊂ Y ,
(c) for each y ∈ Y , ψ−

x (y) is open in X ;

(3) φ is said to be Lθ,F -majorized if for each x ∈ X with φ(x) �= ∅, there exists
an Lθ,F -majorant (φx, ψx, Nx) of φ at x such that for any nonempty finite
subset A of the set {x ∈ X | φ(x) �= ∅},{
z ∈

⋂
x∈A

Nx |
⋂
x∈A

coΓφx(z) �= ∅
}

=

{
z ∈

⋂
x∈A

Nx |
⋂
x∈A

coΓψx(z) �= ∅
}
.

It is clear that every map of class Lθ,F is Lθ,F -majorized. The above definitions
generalize the corresponding ones for FC-spaces in [3], which were stated there to
generalize the ones due to Ding and Tan; Ding, Kim and Tan; Tan and Yuan; Ding
and Tarafdar; and Tulcea.
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In the present paper, we will restrict ourselves to the case X = Y is an abstract
convex space and θ = 1X and write LF instead of Lθ,F .

Theorem 6.1. Let (X ; Γ) be an abstract convex space satisfying 1X ∈
KC(X,X), G : X � X be of class LF and K a nonempty compact subset of
X . Suppose that

(1) for each x ∈ X , G(x) is Γ-convex;
(2) for each N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X con-

taining N such that ⋂
x∈LN

clLN

(
LN �G−(x)

) ⊂ K.

Then there exists ŷ ∈ K such that G(ŷ) = ∅.

Proof. Since G is of class LF , we have

(i) for each x ∈ X , x �∈ coΓG(x) = G(x);
(ii) there exists a map F : X � X such that (a) F (x) ⊂ G(x) for each x ∈ X ;

(b) F−(y) is open in X for each y ∈ X ; and (c) {x ∈ X | F (x) �= ∅} =
{x ∈ X | G(x) �= ∅}.

Suppose G(x) �= ∅ for all x ∈ K . Then, by (iii), F (x) �= ∅ for all x ∈ K .
We apply Theorem 4.4 with X = D and replacing F and G by F− and G−,
respectively. Then G has a fixed point ŷ ∈ X and this contradicts (i). Hence the
conclusion follows.

Remark. Theorem 6.1 works forG-convex spaces or φA-spaces and generalizes
[3, Theorem 5.2], which was stated there to generalize corresponding ones due to
Ding, Ding and Tarafdar, Ding and Tan, Tan and Yuan, and others.

Closely examining the proof of [3, Lemma 5.1] with replacing FC(·) by coΓ(·),
it leads to the following generalization:

Theorem 6.2. Let X be a regular topological space and (E ⊃ Y ; Γ) an
abstract convex space. Let θ : X → E and P : X � Y be Lθ,F -majorized. If
each open subset of X containing B := {x ∈ X | P (x) �= ∅} is paracompact,
then there exists a map φ : X � Y of class Lθ,F such that P (x) ⊂ φ(x) for all
x ∈ X .

Remark. For FC-spaces, Lemma 6.2 reduces to [3, Lemma 5.1], which was
said in [3] to generalize results of Ding; Ding and Tan; Ding, Kim and Tan; Tan
and Yuan, and Tulcea.
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From Theorem 4.4 and Lemma 6.2, we deduce the following generalization of
Theorem 6.2 on the existence of maximal elements of LF -majorized maps:

Theorem 6.3. Let (X ; Γ) be an abstract convex paracompact space satisfying
1X ∈ KC(X,X), P : X � X an LF -majorized map, and K a nonempty compact
subset of X . Suppose that

(1) for each x ∈ X , P (x) is Γ-convex;
(2) for each N ∈ 〈D〉, there exists a compact Γ-convex subset LN of X con-

taining N such that ⋂
x∈LN

clLN

(
LN � P−(x)

) ⊂ K.

Then there exists ŷ ∈ K such that P (ŷ) = ∅.

Proof. We prove first that P (y) �= ∅ for each y ∈ X �K. For this y, by (2),
we have

y �∈
⋂

x∈L{y}

(
L{y} � P−(x)

)
.

Hence, there exists an x ∈ L{y} such that y ∈ P−(x). So x ∈ P (y) and P (y) �= ∅.
Suppose the conclusion does not hold, that is, P (y) �= ∅ for all y ∈ X . Hence

the set {x ∈ X | P (x) �= ∅} = X is paracompact. By Lemma 6.2, there exists a
Γ-convex-valued map φ : X � X of class LF such that P (x) ⊂ φ(x) for each
x ∈ X . Then for each N ∈ 〈X〉, we have⋂

x∈LN

clLN

(
LN � φ−(x)

) ⊂
⋂

x∈LN

clLN

(
LN � P−(x)

) ⊂ K.

Hence, by Theorem 6.1, there exists a ŷ ∈ K such that φ(ŷ) = ∅ so that P (ŷ) = ∅,
which is a contradiction. Therefore the conclusion follows.

Remark. For FC-spaces, Theorem 6.3 reduces to [3, Theorem 5.3], which
was said in [3] to generalize results of Ding and Tan; Tan and Yuan; Ding, Ding
and Tan; and Borglin and Keiding.

As an application of Theorem 6.1, we deduce the following equilibriumexistence
theorem for a one-person game:

Theorem 6.4. Let (X ; Γ) be an abstract convex space satisfying 1X ∈
KC(X,X), A,B, P : X � X , and K a nonempty compact subset of X . Suppose
that
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(1) for each x ∈ X , coΓA(x) ⊂ B(x);
(2) for each y ∈ X , A−(y) is open in X;
(3) A ∩ P is of class LF and has Γ-convex values;
(4) for each N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X con-

taining N such that⋂
x∈LN

clLN

(
LN � (A ∩ P )−(x)

) ⊂ K;

(5) for each x ∈ K, A(x) �= ∅.
Then there exists x̂ ∈ K such that x̂ ∈ B(x̂) and A(ŷ) ∩ P (ŷ) = ∅.

Proof. Let Y := {x ∈ X | x �∈ B(x)}. Then Y is open. Define φ : X � X

by

φ(x) :=

{
A(x) ∩ P (x), for x �∈ Y ;

A(x), for x ∈ Y.

Since A ∩ P is of class LF , for each x ∈ X , we have x �∈ coΓ(A(x) ∩ P (x)) =
A(x) ∩ P (x) and a map β : X � X such that

(a) for each x ∈ X , β(x) ⊂ A(x) ∩ P (x);
(b) for each y ∈ X , β−(y) is open in X ; and
(c) {x ∈ X | β(x) �= ∅} = {x ∈ X | A(x) ∩ P (x) �= ∅}.
We define a map ψ : X � X by

ψ(x) :=

{
β(x), for x /∈ Y ;
A(x), for x ∈ Y.

It is clear that for each x ∈ X , ψ(x) ⊂ φ(x) and {x ∈ X | ψ(x) �= ∅} = {x ∈
X | φ(x) �= ∅} by (c). Note that, for each y ∈ X , ψ−(y) = (Y ∪β−(y))∩A−(y) is
open in X by (2) and (b). Let x ∈ X . If x ∈ Y , then x /∈ B(x) and x /∈ coΓφ(x);
if x /∈ Y , then x /∈ coΓ(A(x) ∩ P (x))= coΓφ(x). Consequently, φ is of class LF .
From (4) and the definition of φ, for each N ∈ 〈X〉, we have

⋂
x∈LN

clLN

(
LN � φ−(x)

) ⊂ K.

Now by Theorem 6.1, we have a point x̂ ∈ K such that φ(x̂) = ∅. Note that
A(x) �= ∅ for each x ∈ K and that (4) implies A(x) �= ∅ for each x ∈ X � K.
Therefore A(x) �= ∅ for each x ∈ X so that x̂ ∈ B(x̂) and A(ŷ) ∩ P (ŷ) = ∅.
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Remark. For FC-spaces, Theorem 6.4 reduces to [3, Theorem 6.1], which
was claimed in [3] to improve and generalize results of Ding and Tarafdar; Ding
and Tan; Tan and Yuan; Ding; and Ding and Tan.

Final Remark. Until now we showed that Lemmas 3.1, 3.2, and 5.1, Theorems
3.1, 5.1, 5.2, 5.3, and 6.1 for FC-spces in [3] are generalized to our abstract convex
spaces in better forms. Other results in [3] can also be improved by following our
method in this paper.

REFERENCES

1. H. Ben-El-Mechaiekh, S. Chebbi, M. Florenzano and J.-V. Llinares, Abstract con-
vexity and fixed points, J. Math. Anal. Appl., 222 (1998), 138-150.

2. X. P. Ding, Maximal element theorems in product FC-spaces and generalized games,
J. Math. Anal. Appl., 305 (2005), 29-42.

3. X. P. Ding and L. Wang, Fixed points, minimax inequalities and equilibria of noncom-
pact abstract economies in FC-spaces, Nonlinear Anal. (2007), doi:10.1016/j.na.2007.
06.006.

4. Ky Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann., 142
(1961), 305-310.

5. C. D. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl., 156
(1991), 341-357.

6. C. D. Horvath, Extension and selection theorems in topological spaces with a gener-
alized convexity structure, Ann. Fac. Sci. Toulouse, 2 (1993), 253-269.

7. M. Lassonde, On the use of KKM multifunctions in fixed point theory and related
topics, J. Math. Anal. Appl., 97 (1983), 151-201.

8. S. Park, Some coincidence theorems on acyclic multifunctions and applications to
KKM theory, Fixed Point Theory and Applications (K.-K. Tan, ed.), 248-277, World
Sci., River Edge, NJ, 1992.

9. S. Park, Coincidence points and maximal elements of multifunctions on convex
spaces, Comm. Math. Univ. Carolinae, 36 (1995), 57-67.

10. S. Park, Ninety years of the Brouwer fixed point theorem, Vietnam J. Math., 27
(1999), 193-232.

11. S. Park, Elements of the KKM theory for generalized convex spaces, Korean J.
Comput. Appl. Math., 7 (2000), 1-28.

12. S. Park, Remarks on topologies of generalized convex spaces, Nonlinear Func. Anal.
Appl., 5 (2000), 67-79.

13. S. Park, On generalizations of the KKM principle on abstract convex spaces, Non-
linear Anal. Forum, 11(1) (2006), 67-77.



Remarks on Fixed Points, Maximal Elements, and Equilibria of Economies 1383

14. S. Park, Fixed point theorems on KC-maps in abstract convex spaces, Nonlinear Anal.
Forum, 11(2) (2006), 117-127.

15. S. Park, Remarks on KC-maps and KO-maps on abstract convex spaces, Nonlinear
Anal. Forum, 12(1) (2007), 29-40.

16. S. Park, Examples of KC-maps and KO-maps on abstract convex spaces, Soochow
J. Math., 33(3) (2007) 477-486.

17. S. Park, Comments on some abstract convex spaces and the KKM maps, Nonlinear
Analysis Forum, 12(2) (2007), 125-139.

18. S. Park, A unified fixed point theory in generalized convex spaces, Acta Math. Sinica,
English Ser., 23(8) (2007), 1509-1536.

19. S. Park Comments on recent studies on abstract convex spaces, Nonlinear Anal.
Forum, 13(1) (2008), 1-17.

20. S. Park, Elements of the KKM theory on abstract convex spaces, J. Korean Math.
Soc., 45(1) (2008), 1-27.

21. S. Park, Various subclasses of abstract convex spaces for the KKM theory, Proc.
Nat. Inst. Math. Sci., 2(4) (2007), 35-47.

22. S. Park, Equilibrium existence theorems in KKM spaces, Nonlinear Analysis (2007),
doi:10.1016/j.na.2007.10.058.

23. S. Park and H. Kim, Coincidence theorems on admissible maps on generalized convex
spaces, J. Math. Anal. Appl., 197 (1996), 173-187.

24. S. Park and H. Kim, Foundations of the KKM theory on generalized convex spaces,
J. Math. Anal. Appl., 209 (1997), 551-571.

Sehie Park
The National Academy of Sciences,
Seoul 137-044,
Korea
and
Department of Mathematical Sciences,
Seoul National University,
Seoul 151-747,
Korea
E-mail: shpark@math.snu.ac.kr


