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APPROXIMATING ZERO POINTS OF ACCRETIVE OPERATORS
BY AN IMPLICIT ITERATIVE SEQUENCES IN BANACH SPACES

Sachiko Atsushiba

Abstract. In this paper, we introduce an implicit iterative sequence to approx-
imate zero points of accretive operators in Banach spaces and then prove weak
convergence theorems for resolvents of accretive operators in Banach spaces
satisfying Opial’s condition. Further, we discuss the strong convergence of the
iterative sequences for resolvents of accretive operators with compact domains
in general Banach spaces. Using these results, we consider the variational
inequality problem of finding a solution of a variational inequality.

1. INTRODUCTION

Let E be a real Banach space, let C be a nonempty closed convex subset of E
and let T be a nonexpansive mapping of C into itself, that is, ‖Tx−Ty‖ ≤ ‖x−y‖.
Let A ⊂ E×E be an accretive operator and let Jr be the resolvent of A for r > 0.
The problem of finding a solution u ∈ E such that 0 ∈ Au has been investigated
by many authors. One well-known scheme of approximating it is the following:
x0 = x ∈ E and

(1) xn+1 = Jrnxn,

for each n = 0, 1, 2, . . . , where {rn} is a sequence of positive real numbers. The
convergence of (1) has been studied by many authors; see, for example[16, 17, 22].
Motivated by Mann’s type [15] and Halpern’s type [11], Kamimura and Takahashi
[12, 13] proved weak and strong convergence theorems for resolvents of accretive
operators.
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Let C be a closed convex subset of a Hilbert space and let T be a nonexpansive
mapping of C into itself. For each t ∈ (0, 1), the contraction mapping Tt of C into
itself defined by

Ttx = tu + (1 − t)Tx

for every x ∈ C, has a unique fixed point xt, where u is an element of C. Brow-
der [8] proved that {xt} converges strongly to a fixed point of T as t → 0 in a Hilbert
space. Motivated by Browder’s theorem [8], Takahashi and Ueda [27] proved the
strong convergence of the following iterative process in a uniformly convex Banach
space with a uniformly Gâteaux differentiable norm (see also [19]):

(2) xk =
1
k

x +
(

1− 1
k

)
Txk

for every k = 1, 2, 3, . . . , where x ∈ C. On the other hand, Xu and Ori [28]
studied the following implicit iterative process for finite nonexpansive mappings
T1, T2, . . . , Tr in a Hilbert space: x0 = x ∈ C and

(3) xn = αnxn−1 + (1 − αn)Tnxn

for every n = 1, 2, 3, . . . , where {αn} is a sequence in (0, 1) and Tn = Tn+r. And
they proved a weak convergence of the iterates defined by (3) in a Hilbert space
(see also [24]).

In this paper, motivated by [12, 16, 17, 22, 28], we introduce an implicit iterative
sequence to approximate zero points of accretive operators in Banach spaces and then
prove weak convergence theorems for resolvents of accretive operators in Banach
spaces satisfying Opial’s condition without strict convexity. Further, we discuss the
strong convergence of the iterative sequences for resolvents of accretive operators
with compact domains in general Banach spaces (see also [6]). Using these results,
we consider the variational inequality problem of finding a solution of a variational
inequality.

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, we denote by N and Z
+ the set of all positive integers

and the set of all nonnegative integers, respectively. Let E be a real Banach space
with norm ‖ · ‖. We denote by Br the set {x ∈ E : ‖x‖ ≤ r}.

A Banach space E is said to be strictly convex if ‖x + y‖/2 < 1 for each
x, y ∈ B1 with x �= y, and it is said to be uniformly convex if for each ε > 0, there
exists δ > 0 such that ‖x+y‖/2 ≤ 1−δ for each x, y ∈ B1 with ‖x−y‖ ≥ ε. It is
well-known that a uniformly convex Banach space is reflexive and strictly convex
(see [26]). We also know that if C is a closed convex subset of a uniformly convex
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Banach space E , then for each x ∈ E , there exists a unique element u = Px ∈ C

with
‖x− u‖ = inf{‖x− y‖ : y ∈ C}.

Such a P is called the metric projection of E onto C.
Let E∗ be the dual space of a Banach space E . The value of x∗ ∈ E∗ at

x ∈ E will be denoted by 〈x, x∗〉. We say that a Banach space E satisfies Opial’s
condition [18] if for each sequence {xn} in E which converges weakly to x,

lim
n→∞

‖xn − x‖ < lim
n→∞

‖xn − y‖

for each y ∈ E with y �= x. Since if the duality mapping x 
→ {x∗ ∈ E∗ :
〈x, x∗〉 = ‖x‖2 = ‖x∗‖2} from E into E∗ is single-valued and weakly sequentially
continuous, then E satisfies Opial’s condition. Each Hilbert space and the sequence
spaces �p with 1 < p < ∞ satisfy Opial’s condition (see [14, 18]). Though an Lp-
space with p �= 2 does not usually satisfy Opial’s condition, each separable Banach
space can be equivalently renormed so that it satisfies Opial’s condition (see [9,
18]). The following plays an important role in the proofs of our results (see [18]).

Proposition 2.1. [18]. Let C be a nonempty weakly compact convex subset
of a Banach space which satisfies Opial’s condition and let T be a nonexpansive
mapping of C into itself. Let {xn} be a sequence in C such that it converges
weakly to an element x of C and {xn − Txn} converges strongly to 0. Then x is
a fixed point of T .

Let C be a closed subset of a Banach space and let T be a mapping of C into
itself. We denote by F (T ) the set {x ∈ C : x = Tx}. We write xn → x (or
lim

n→∞xn = x) to indicate that the sequence {xn} of vectors converges strongly to x.

Similarly, we write xn ⇀ x (or w- lim
n→∞xn = x) will symbolize weak convergence.

Let I denote the identity operator on E . The duality mapping J from E into 2E∗

is defined by

J(x) = {y∗ ∈ E∗ : 〈x, y∗〉 = ‖x‖2 = ‖y∗‖2}, x ∈ E.

Let A ⊂ E × E be a malutivalued opeartor. We denote by D(A) and A−10 the
effective domain of A, that is D(A) = {z ∈ E : Az �= ∅} and the set of zero points
of A, that is, A−10 = {x ∈ E : 0 ∈ Ax}, respectively. We also denote by R(A)
the range of A, that is, R(A) =

⋃{Az : z ∈ D(A)}. An operator A is said to be
accretive if for each xi ∈ D(A) and yi ∈ Axi, i = 1, 2, there exists j ∈ J(x1 −x2)
such that 〈y1 − y2, j〉 ≥ 0. If A is accretive, then we have

‖x1 − x2‖ ≤ ‖x1 − x2 + r(y1 − y2)‖
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for all xi ∈ D(A) and yi ∈ Axi, i = 1, 2 and r > 0. An accretive operator A is said
to be m-accretive if R(I + rA) = E for all r > 0. If A is accretive, we can define,
for each r > 0, a nonexpansive single valued mapping Jr : R(I + rA) → D(A)
by Jr = (I + rA)−1. It is called the resolvent of A. We also define the Yosida
approximation Ar by (I−Jr)/r. We know that Arx ∈ AJrx for all x ∈ R(I +rA)
and ‖Arx‖ ≤ inf{‖y‖ : y ∈ Ax} for all x ∈ D(A) ∩ R(I + rA). We also know
that for an m-accretive operator A, we have A−10 = F (Jr) for all r > 0. In a
Hilbert space, an operator A is m-accretive if and only if A is maximal monotone.

In the sequel, unless otherwise stated, we assume that A ⊂ E × E is an m-
accretive operator and Jr is the resolvent of A for all r > 0.

3. WEAK CONVERGENCE THEOREM

In the section, we study the weak convergence of the following implicit iterative
sequences in a Banach space satisfying Opial’s condition (see also [28]): x0 = x ∈
E and

(4) xn = αnxn−1 + (1 − αn)Jrnxn

for every n ∈ N, where {αn} is a sequence in (0, 1) and {rn} is a sequence in
(0,∞). Before proving convergence theorems, we need some lemmas.

Lemma 3.1. Let E be a Banach space. Let {αn} be a sequence of real
numbers such that 0 < αn < 1 for every n ∈ N and let {rn} be a sequence of
positive real numbers. Let x ∈ E and let {xn} be the sequence defined by x0 = x
and

xn = αnxn−1 + (1 − αn)Jrnxn

for every n ∈ N. If A−10 �= ∅, then ‖xn+1 − w‖ ≤ ‖xn − w‖ and lim
n→∞ ‖xn − w‖

exists for each w ∈ A−10.

Proof. We know that Jr is a nonexpansive mapping and A−10 = F (Jr) for
each r > 0. Let w ∈ A−10. For x ∈ E , put R0 = ‖x − w‖ and set D = {u ∈
E : ‖u − w‖ ≤ R0}. Then, D is a nonempty bounded closed convex subset of
E which is Jr-invariant for each r > 0 and contains x0 = x. So, without loss of
generality, we may assume that Jr is a nonexpansive mapping of a bounded closed
convex subset D into itself for each r > 0. Define a mapping T1 of D into itself
by T1y = α1x0 + (1 − α1)Jr1y for all y ∈ D. Then, we have, for y1, y2 ∈ D,

‖T1y1 − T1y2‖ = (1− α1)‖Jr1y1 − Jr1y2‖
≤ (1− α1)‖y1 − y2‖.
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So, we obtain that T1 is a contraction mapping of D into itself. By the Banach
contraction principle, there exists a unique point x1 ∈ D such that x1 = T1x1.
Similarly, for each n ∈ N, we define a mapping Tn of D into itself by Tny =
αnxn−1 + (1−αn)Jrny for all y ∈ D and obtain a unique point xn ∈ D such that
xn = Tnxn. By w ∈ A−10 and the definition of {xn}, we obtain that

‖xn − w‖ = ‖αn(xn−1 − w) + (1− αn)(Jrnxn − w)‖
≤ αn‖xn−1 − w‖ + (1 − αn)‖Jrnxn − w‖
≤ αn‖xn−1 − w‖ + (1 − αn)‖xn − w‖

and hence αn‖xn − w‖ ≤ αn‖xn−1 − w‖. It follows from αn > 0 that

‖xn − w‖ ≤ ‖xn−1 − w‖.
Hence, it follows that lim

n→∞‖xn − w‖ exists.

The following lemma is crucial in the proof of the main result (Theorem 3.3).

Lemma 3.2. Let C be a weakly compact convex subset of a Banach space E

which satisfies Opial’s condition. Let A ⊂ E×E be an m-accretive operator such
that D(A) ⊂ C. Let {αn} be a sequence of real numbers such that 0 < αn < 1
for every n ∈ N and limn→∞ αn = 0 and let {rn} be a sequence of positive real
numbers such that lim n→∞ rn > 0. Let x ∈ C and let {xn} be the sequence
defined by x0 = x and

xn = αnxn−1 + (1 − αn)Jrnxn

for every n ∈ N. Then, weak subsequential limit of {xn} is an element of A−10.

Proof. As in the proof of Lemma 3.1, without loss of generality, we may
assume that Jr is a nonexpansive mapping of a bounded closed convex subset C

into itself for each r > 0. We see that {xn} ⊂ C is bounded.
By the definition of {xn}, we have

(xn − Jrnxn) = αn(xn−1 − Jrnxn).

So, it follows that

‖xn − Jrnxn‖ = αn‖xn−1 − Jrnxn‖ ≤ 2αnM,

where M = supz∈C ‖z‖. So, by limn→∞ αn = 0, we have

(5) lim
n→∞ ‖Jrnxn − xn‖ = 0.
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So, by

‖Jrnxn − J1Jrnxn‖ = ‖(I − J1)Jrnxn‖ = ‖A1Jrnxn‖
≤ inf{‖z‖ : z ∈ AJrnxn}
≤ ‖Arnxn‖

=
∥∥∥∥xn − Jrnxn

rn

∥∥∥∥
and lim n→∞ rn > 0, we have

(6) lim
n→∞ ‖Jrnxn − J1Jrnxn‖ = 0.

We remark that C is weakly compact. Letting v be a weak subsequential limit of
{xn} such that xnk

⇀ v. Then, we also obtain that Jrnk
xnk

⇀ v by (5). Then,
it follows from (6) and Proposition 2.1 that v ∈ F (J1) = A−10. Since {xnk

} is
arbitrary, we have the desired result.

Now, we can prove a weak convergence theorem in a Banach space satisfying
Opial’s condition without strict convexity (see also [12]).

Theorem 3.3. Let C be a weakly compact convex subset of a Banach space E

which satisfies Opial’s condition. Let A ⊂ E×E be an m-accretive operator such
that D(A) ⊂ C. Let {αn} be a sequence of real numbers such that 0 < αn < 1
for every n ∈ N and limn→∞ αn = 0 and let {rn} be a sequence of positive real
numbers such that lim n→∞ rn > 0. Let x ∈ C and let {xn} be the sequence
defined by x0 = x and

xn = αnxn−1 + (1 − αn)Jrnxn

for every n ∈ N. Then, {xn} converges weakly to an element of A−10.

Proof. Since {xn} ⊂ C and C is weakly compact, {xn} must contain a
subsequence of {xn} which converges weakly to a point in C. Let {xni} and {xnj}
be two subsequences of {xn} which converge weakly to y and z, respectively. By
Lemma 3.2, we have y, z ∈ A−10. We will show y = z. Suppose not. Then from
Lemma 3.1 and Opial’s condition, we have

lim
n→∞ ‖xn − y‖ = lim

i→∞
‖xni − y‖
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< lim
i→∞

‖xni − z‖ = lim
n→∞ ‖xn − z‖

= lim
j→∞

‖xnj − z‖

< lim
j→∞

‖xnj − y‖ = lim
j→∞

‖xn − y‖.

This is a contradiction. Hence, we obtain y = z. This implies that {xn} converges
weakly to an element of A−10.

4. STRONG CONVERGENCE THEOREMS

In this section, we study the strong convergence of the iterates defined by (4)
in general Banach spaces (see also [6, 7]). Futher, we prove a strong convergence
theorem which is connected with the metric projections.

Theorem 4.1. Let C be a compact convex subset of a Banach space E .
Let A ⊂ E × E be an m-accretive operator such that D(A) ⊂ C. Let {αn}
be a sequence of real numbers such that 0 < αn < 1 for every n ∈ N and
limn→∞ αn = 0 and let {rn} be a sequence of positive real numbers such that
lim n→∞ rn > 0. Let x ∈ C and let {xn} be the sequence defined by x0 = x and

xn = αnxn−1 + (1 − αn)Jrnxn

for every n ∈ N. Then, {xn} converges strongly to an element of A−10.

Proof. By the definition of {xn}, we have

(xn − Jrnxn) = αn(xn−1 − Jrnxn).

So, it follows that

‖xn − Jrnxn‖ = αn‖xn−1 − Jrnxn‖ ≤ 2αnM

where M = supz∈C ‖z‖. By limn→∞ αn = 0, we have

(7) lim
n→∞ ‖Jrnxn − xn‖ = 0.

By

‖Jrnxn − J1Jrnxn‖ = ‖(I − J1)Jrnxn‖ = ‖A1Jrnxn‖
≤ inf{‖z‖ : z ∈ AJrnxn}
≤ ‖Arnxn‖

=
∥∥∥∥xn − Jrnxn

rn

∥∥∥∥
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and lim n→∞ rn > 0, we have

(8) lim
n→∞ ‖Jrnxn − J1Jrnxn‖ = 0.

Since C is compact, there exists a subsequence {xnk
} of {xn} and z ∈ C such that

xnk
→ z. Then, we also obtain that Jrnk

xnk
→ z by (7) and hence

0 = lim
n→∞ ‖Jrnxn − J1Jrnxnk

‖ = lim
k→∞

‖Jrnk
xnk

− J1Jrnk
xnk

‖ = ‖z − J1z‖.

So, we have z ∈ F (J1) = A−10. By Lemma 3.1, we obtain

lim
n→∞ ‖xn − z‖ = lim

i→∞
‖xnk

− z‖ = 0.

This completes the proof.

The following is a strong convergence theorem which is connected with the
metric projections.

Theorem 4.2. Let E be a uniformly convex Banach space E . Let {αn} be
a sequence of real numbers such that 0 < αn < 1 for every n ∈ N and let {rn}
be a sequence of positive real numbers. Suppose A−10 �= ∅. Let P be the metric
projection of E onto A−10. Let x ∈ E and let {xn} be the sequence defined by
x0 = x and

xn = αnxn−1 + (1 − αn)Jrnxn

for every n ∈ N. Then, Pxn converges strongly to a unique element z 0 of A−10
such that

lim
n→∞ ‖xn − z0‖ = inf{ lim

n→∞ ‖xn − w‖ : w ∈ A−10}.

Proof. First, we remark again that for each w ∈ A−10, {‖xn − w‖} is a
nonincreasing sequence by Lemma 3.1. Set R = inf{limn→∞ ‖xn − w‖ : w ∈
A−10} and K = {w ∈ A−10 : limn→∞ ‖xn − w‖ = R}. Since E is a uniformly
convex Banach space, K consists of the exact one point, say z, i.e., z is the unique
point satisfying limn→∞ ‖xn − z‖ = R. Suppose that {Pxn} does not converge
strongly to the point z, i.e., limn→∞ ‖Pxn − z‖ > 0. In this case, R > 0. By
‖xn − Pxn‖ ≤ ‖xn − z‖ for each n ∈ N, we have limn→∞ ‖xn −Pxn‖ ≤ R. By
the uniform convexity of E , we have limn→∞ ‖xn− (Pxn +z)/2‖ < R (see [26]).
Since (Pxn+z)/2 ∈ A−10, we have ‖xm+n−(Pxn+z)/2‖ ≤ ‖xn−(Pxn+z)/2‖
and hence

R ≤ lim
m→∞

∥∥∥∥xm − (Pxn + z)
2

∥∥∥∥ = lim
m→∞

∥∥∥∥xm+n − (Pxn + z)
2

∥∥∥∥
≤

∥∥∥∥xn − (Pxn + z)
2

∥∥∥∥
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for each n ∈ N. Then, we obtain

R ≤ lim
n→∞

lim
m→∞

∥∥∥∥xm − Pxn + z

2

∥∥∥∥ ≤ lim
n→∞

∥∥∥∥xn − Pxn + z

2

∥∥∥∥ < R,

which is a contradiction. Therefore {Pxn} converges strongly to z.

Remark 4.3. From the proof above, we know that the following holds: Let W
be a nonempty, closed, convex subset of a uniformly convex Banach space E and
let P be the metric projection from E onto W . Let {yn} be a sequence of points in
E such that {‖yn−w‖} is nonincreasing for each w ∈ W . Then {Pyn} converges
strongly to the unique point z satisfying lim n→∞ ‖yn−z‖ = inf{limn→∞ ‖yn−w‖ :
w ∈ W} (see 3, 26).

Combining Theorems 3.3 and 4.2, we obtain the following results.

Theorem 4.4. Let H be a Hilbert space and let A ⊂ H × H be a maximal
monotone operator. Let Jr be the resolvent of A for r > 0. Let {αn} and {rn} be
as in Theorem 3.3. Let x ∈ H and let {xn} be the sequence defined by x0 = x
and

xn = αnxn−1 + (1 − αn)Jrnxn

for every n ∈ N. If A−10 �= ∅ and P is the metric projection of H onto A−10, then
{xn} converges weakly to v ∈ A−10, where v = limn→∞ Pxn.

Proof. By Theorem 3.3, {xn} converges weakly to v ∈ A−10 and by Theorem
4.2, {Pxn} converges strongly to a unique element z0 of A−10 such that

lim
n→∞ ‖xn − z0‖ = inf{ lim

n→∞ ‖xn − w‖ : w ∈ A−10}.

Since P is the metric projection of H onto A−10, from [26], we have

〈xn − Pxn, w − Pxn〉 ≤ 0

for all w ∈ A−10. Then,

0 ≥ lim
n→∞〈xn − Pxn, w − Pxn〉 = 〈v − z0, w − z0〉

for all w ∈ A−10. Putting w = v, we have ‖v − z0‖2 ≤ 0 and hence v = z0. This
completes the proof.
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5. DEDUCED THEOREMS FROM MAIN RESULTS

In this section, we give applications of Theorems 3.3 and 4.1. Throughout this
section, we assume that H is a Hilbert space. We consider the variational inequality
problem. Let X be a nonempty closed convex subset of H and let T be a single
valued operator of X into H . We denote by

V I(X, T ) = {w ∈ X : 〈u − w, Tw〉 ≥ 0, ∀u ∈ X}.

A single valued operator T is called hemicontinuous if T is continuous from each
line segment of X to H with the weak topology. Let F be a single valued, monotone
and hemicontinuous operator of X into H and let NXz be the normal cone to X

at z ∈ X , i.e.,

NXz = {w ∈ H : 〈z − u, w〉 ≥ 0, ∀u ∈ X} .

Letting

Az =

{
Fz + NXz, z ∈ X

∅, z ∈ H\X,

we have that A is a maximal monotone operator (see [21, Theorem 3]). We can
also check that 0 ∈ Av if and only if v ∈ V I(X, F ) and that Jrx = V I(X, Fr,x)
for all r > 0 and x ∈ H , where Fr,xz = Fz + (z − x)/r for all z ∈ X . Then, we
have the following results.

Corollary 5.1. Let X be a nonempty closed convex subset of H and let F be
a single valued, monotone and hemicontinuous operator of X into H . Let {α n}
and {rn} be as in Theorem 3.3. Let x ∈ X and let {xn} be the sequence defined
by x0 = x and

xn = αnxn−1 + (1 − αn)V I(X, Frn,xn)

for each n ∈ N. If V I(X, F ) �= ∅, and P is the metric projection of H onto
V I(X, F ), then {xn} converges weakly to v ∈ V I(X, F ), where v = limn→∞ Pxn.

Corollary 5.2. Let X be a nonempty compact convex subset of H and let F
be a single valued, monotone and hemicontinuous operator of X into H . Let {α n}
and {rn} be as in Theorem 4.1. Let x ∈ X and let {xn} be the sequence defined
by x0 = x and

xn = αnxn−1 + (1 − αn)V I(X, Frn,xn)

for each n ∈ N. Then, {xn} converges strongly to v ∈ V I(X, F ).
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