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Multiplicity and Concentration of Solutions for Fractional Schrödinger

Equations

Zu Gao*, Xianhua Tang and Wen Zhang

Abstract. In this paper, we study the following fractional Schrödinger equations

(−∆)αu+ λV (x)u = f(x, u) + µξ(x)|u|p−2u, x ∈ RN ,

where λ > 0 is a parameter, V ∈ C(RN ) and V −1(0) has nonempty interior. Under

some mild assumptions, we establish the existence of two different nontrivial solutions.

Moreover, the concentration of these solutions is also explored on the set V −1(0)

as λ → ∞. As an application, we also give the similar results and concentration

phenomenons for the above problem with concave and convex nonlinearities.

1. Introduction

This paper is concerned with the following fractional Schrödinger equation

(1.1)

(−∆)αu+ λV (x)u = f(x, u) + µξ(x) |u|p−2 u, x ∈ RN ,

u ∈ Hα(RN ).

where 0 < α < 1, (−∆)α is the fractional Laplacian of order α, V ∈ C(RN ,R), f ∈
C(RN × R), ξ ∈ L2/(2−p)(RN ,R+) and ξ(x) 6= 0, λ > 0, µ > 0 and 1 < p < 2. We need to

make the following assumptions for potential V :

(V1) V ∈ C(RN ,R) and V (x) ≥ 0 on RN ;

(V2) there is b > 0 such that the set Vb :=
{
x ∈ RN | V (x) < b

}
has finite measure;

(V3) Ω = intV −1(0) is nonempty and has smooth boundary ∂Ω.
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In [16], the authors have proved that (−∆)α reduces to the standard Laplacian −∆

as α→ 1. When α = 1 and without parameter λ, formally, Problem (1.1) reduces to the

classical Schrödinger equation.

Recently, fractional Laplacian equations have concrete applications in many fields,

such as thin obstacle problem, optimization, finance, phase transitions, anomalous diffu-

sion and so on. For previous related results see [2, 8, 10, 13–15, 18–21, 24, 32, 40] and the

references therein. Up to now, there have been a few results appeared in the literature for

Problem (1.1). Precisely, Felmer et al. studied a similar class equations, in which V = 1,

under suitable hypotheses on nonlinearity, using variational methods, classical positive

solutions are found in [19]. Dipierro et al. studied the existence of positive and spheri-

cally symmetric solutions in [18]. The existence of bounded solutions for Problem (1.1) is

proved in [15], where the potential V is unbounded. The author proved some existence

results of solutions for fractional Schrödinger equations in [24, 25], under the assumption

that the nonlinearity satisfies the Ambrosetti-Rabinowitz condition or is indeed of pertur-

bative type. The author investigated the existence of radial solutions for Problem (1.1)

without Ambrosetti-Rabinowitz condition in [26]. The existence of positive solutions of

concave-convex Dirichlet fractional Laplacian problems in bounded domains is presented

in [5].

It is known, a great attention has been devoted to the fractional and non-local integro-

differential operators like (1.1), for the thought-provoking theoretical structure and their

impressive applications in many fields. In fact, the fractional Laplacian (−∆)α is a nonlocal

operator in the fractional Schrödinger equation, which is obvious a difficulty. And then,

Caffarelli and Silvestrein made greatest achievement in overcoming this difficulty by the

extension theorem in [9]. The authors used some extension to transform the nonlocal

problem into a local problem, and established some existence and nonexistence of Dirichlet

problem involving the fractional Laplacian on bounded domain. Furthermore, a great

deal of progress has been made to the fractional Laplacian equations after the work [9].

We refer to [11, 12, 33, 34, 38, 40–42] for the existence results and multiplicity results of

solutions, and to [6,7] for the regularity results, maximum principle, uniqueness result and

other properties. Actually, for other related topics including the superquadratic singular

perturbation problem and concentration phenomenon of semi-classical state, see also [29–

31] and the references therein.

There are many papers taking into account potential V see for instance [35–37, 41]

and the references therein. In fact, the hypotheses on potential V were first introduced by

Bartsch and Wang [4] (see also [3]) in the study of a nonlinear Schrödinger equation and the

potential λV with V satisfying (V1)–(V3) is referred as the steep well potential. It is worth

mentioning that the above papers always assumed the potential V is positive (V > 0).
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Compared with the case V > 0, our assumptions on V are rather weak, and perhaps more

important. Generally speaking, there may exist some behaviours and phenomenons for the

solutions of Problem (1.1) under condition (V3), such as the concentration phenomenon

of solutions. Besides, we are also interested in the case that the nonlinearity is a more

general mixed nonlinearity involving a combination of superlinear and sublinear terms.

To the best of our knowledge, few works concern on this case up to now. Motivated

by the above papers, we will consider Problem (1.1) with steep well potential, and study

the existence of nontrivial solutions and investigate the concentration phenomenon of

solutions on the set V −1(0) as λ→∞. In order to state our results, we need the following

assumptions for superlinear term f(x, u):

(F1) f ∈ C(RN × R) and |f(x, u)| ≤ c
(

1 + |u|q−1
)

for some q ∈ (2, 2∗α), where 2∗α =

2N/(N − 2α);

(F2) f(x, u) = o(|u|) as |u| → 0 uniformly for x ∈ RN ;

(F3) there exists θ > 2 such that 0 < θF (x, u) ≤ uf(x, u) for every x ∈ RN and u 6= 0,

where F (x, u) =
∫ u

0 f(x, t) dt.

On the existence of solutions we have the following results.

Theorem 1.1. Assume that (V1)–(V3) and (F1)–(F3) hold, and ξ ∈ L2/(2−p)(RN ,R+)

(1 < p < 2), then there exist two positive constants Λ0 and µ0 such that for every λ ≥ Λ0

and 0 < µ < µ0, Problem (1.1) has at least two nontrivial solutions uλ,i (i = 1, 2).

On the concentration of solutions we have the following result.

Theorem 1.2. Let uλ,i (i = 1, 2) be the solutions of Problem (1.1) obtained in Theo-

rem 1.1, then uλ,i → u0,i in Hα(RN ) as λ→∞, where u0,i are solutions of the equation

(1.2)

(−∆)αu = f(x, u) + µξ(x) |u|p−2 u, x ∈ Ω,

u = 0, x ∈ RN \ Ω.

Furthermore,

1

2

∫
Ω

∣∣∣(−∆)α/2u0,1

∣∣∣2 dx− ∫
Ω
F (x, u0,1) dx− µ

p

∫
RN

ξ(x) |u0,1|p dx > 0

and
1

2

∫
Ω

∣∣∣(−∆)α/2u0,2

∣∣∣2 dx− ∫
Ω
F (x, u0,2) dx− µ

p

∫
RN

ξ(x) |u0,2|p dx ≤ 0.

A model nonlinearity is

(1.3) g(x, u) := |u|q−2 u+ µξ(x) |u|p−2 u
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with 1 < p < 2 < q < 2∗α and ξ ∈ L2/(2−p)(RN ,R+). Clearly, g(x, u) satisfies (F1)–(F3).

Following [1], the nonlinear term g(x, u) is called concave and convex nonlinear term.

Therefore, our results can be applied to the concave and convex nonlinear term case. As

a consequence, we have

Corollary 1.3. Assume that (V1)–(V3) are satisfied and let the nonlinearity be of the

form (1.3), then there exist two positive constants Λ0 and µ0 such that for every λ ≥ Λ0

and 0 < µ < µ0, Problem (1.1) has at least two nontrivial solutions uλ,i (i = 1, 2).

Corollary 1.4. Let uλ,i (i = 1, 2) be the solutions of Problem (1.1) obtained in Corol-

lary 1.3, then uλ,i → u0,i in Hα(RN ) as λ→∞, where u0,i are solutions of the equation(−∆)αu = |u|q−2 u+ µξ(x) |u|p−2 u, in Ω,

u = 0, in RN \ Ω.

The rest of the present paper is organized as follows. In Section 2, we establish

the variational framework associated with Problem (1.1), and we also give the proof of

Theorem 1.1. In Section 3, we study the concentration of solutions and prove Theorem 1.2.

2. Variational setting and proof of Theorem 1.1

Below we denote by ‖·‖s the usual Ls-norm for 2 ≤ s ≤ 2∗α and by û the usual Fourier

transform of u, ci, C, Ci stand for different positive constants. Now, we establish the

variational setting of Problem (1.1) in fractional Sobolev spaces.

A complete introduction to fractional Sobolev spaces can be found in [16], we offer

below a short review. We recall that the Sobolev spaces Wα,p(RN ) is defined for any

p ∈ [1,+∞) and α ∈ (0, 1) as

Wα,p(RN ) =

{
u ∈ Lp(RN ) :

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|αp+N
dxdy < +∞

}
.

This space is endowed with the Gagliardo norm

‖u‖Wα,p =

(∫
RN
|u|p dx+

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|αp+N
dxdy

)1/p

.

When p = 2, these spaces are also denoted by Hα(RN ).

If p = 2, an equivalent definition of fractional Sobolev spaces is possible, based on

Fourier analysis. Indeed, it turns out that

Hα(RN ) =

{
u ∈ L2(RN ) :

∫
RN

(1 + |ξ|2α) |û|2 dξ < +∞
}
,
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and the norm can be equivalently written by

‖u‖Hα(RN ) =

(
‖û‖22 +

∫
RN
|ξ|2α |û|2 dξ

)1/2

.

Furthermore, we know that ‖·‖Hα(RN ) is equivalent to the norm

‖u‖Hα(RN ) =

(∫
RN

(∣∣∣(−∆)α/2u
∣∣∣2 + u2

)
dx

)1/2

.

In this article, in view of the potential V (x), we consider its subspace

E =

{
u ∈ Hα(RN ) :

∫
RN

(∣∣∣(−∆)α/2u
∣∣∣2 + V (x)u2

)
dx < +∞

}
.

Then, by [24], E is a Hilbert space with the inner product

(u, v)E =

∫
RN

(
|ξ|2α û(ξ)v̂(ξ) + û(ξ)v̂(ξ)

)
dξ +

∫
RN

V (x)u(x)v(x) dx, ∀u, v ∈ E,

and the norm

‖u‖E =

(∫
RN

(
|ξ|2α û2 + û2

)
dξ +

∫
RN

V (x)u2 dx

)1/2

, u ∈ E.

Furthermore, we know that ‖·‖E is equivalent to the norm

‖u‖ =

(∫
RN

(∣∣∣(−∆)α/2u
∣∣∣2 + V (x)u2

)
dx

)1/2

, u ∈ E.

The corresponding inner product is

(u, v) =

∫
RN

(
(−∆)α/2u(x)(−∆)α/2v(x) + V (x)u(x)v(x)

)
dx, ∀u, v ∈ E.

For λ > 0, we also need the following inner product

(u, v)λ =

∫
RN

(
(−∆)α/2u(−∆)α/2v + λV (x)uv

)
dx, ∀u, v ∈ E,

and the corresponding norm ‖u‖2λ = (u, u)λ. It is clear that ‖u‖ ≤ ‖u‖λ for λ ≥ 1.

Set Eλ = (E, ‖·‖λ), then Eλ is a Hilbert space. By (V1)–(V2) and the Sobolev inequal-

ity, we can demonstrate that there exist positive constants λ0, γ0 (independent of λ) such

that

‖u‖Hα(RN ) ≤ γ0 ‖u‖λ for all u ∈ Eλ, λ ≥ λ0.
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In fact, by using (V1)–(V2) and the Sobolev inequality, we have∫
RN

(∣∣∣(−∆)α/2u
∣∣∣2 + u2

)
dx

=

∫
RN

∣∣∣(−∆)α/2u
∣∣∣2 dx+

∫
Vb

u2 dx+

∫
RN\Vb

u2 dx

≤
∫
RN

∣∣∣(−∆)α/2u
∣∣∣2 dx+ (meas(Vb))

2α/N

(∫
RN

u2∗α dx

)(N−2α)/N

+

∫
RN\Vb

u2 dx

≤
∫
RN

∣∣∣(−∆)α/2u
∣∣∣2 dx+ (meas(Vb))

2α/N

(∫
RN

u2∗α dx

)(N−2α)/N

+
1

λb

∫
RN\Vb

λV (x)u2 dx

≤
∫
RN

∣∣∣(−∆)α/2u
∣∣∣2 dx+ (meas(Vb))

2α/N

(∫
RN

u2∗α dx

)(N−2α)/N

+
1

λb

∫
RN

λV (x)u2 dx

≤
∫
RN

∣∣∣(−∆)α/2u
∣∣∣2 dx+ (meas(Vb))

2α/N

(∫
RN

u2∗α dx

)(N−2α)/N

+
1

λb

∫
RN

λV (x)u2 dx

≤
∫
RN

∣∣∣(−∆)α/2u
∣∣∣2 dx+ (meas(Vb))

2α/NC−2
2∗α

∫
RN

∣∣∣(−∆)α/2u
∣∣∣2 dx+

1

λb

∫
RN

λV (x)u2 dx

≤
[
1 + (meas(Vb))

2α/NC−2
2∗α

] ∫
RN

(∣∣∣(−∆)α/2u
∣∣∣2 + λV (x)u2

)
dx,

:= γ0

∫
RN

(∣∣∣(−∆)α/2u
∣∣∣2 + λV (x)u2

)
dx, λ ≥ λ0 :=

1

b

[
1 + (meas(Vb))

2α/NC−2
2∗α

]−1
.

This shows that Eλ ↪→ Hα(RN ) for λ ≥ λ0. By [16], Hα(RN ) ↪→ Ls(RN ) is continuous for

s ∈ [2, 2∗α] and Hα(RN ) ↪→ Lsloc(RN ) is compact for s ∈ [2, 2∗α), therefore the embedding

Eλ ↪→ Ls(RN ) is continuous for s ∈ [2, 2∗α] and Eλ ↪→ Lsloc(RN ) is compact for s ∈ [2, 2∗α),

i.e., there are constants γs, γ0 > 0 such that

(2.1) ‖u‖s ≤ γs ‖u‖Hα(RN ) ≤ γsγ0 ‖u‖λ for all u ∈ Eλ, 2 ≤ s ≤ 2∗α.

Let

(2.2) Φλ(u) =
1

2

∫
RN

(∣∣∣(−∆)α/2u
∣∣∣2 + λV (x)u2

)
dx−Ψ(u),

where

Ψ(u) =

∫
RN

F (x, u) dx+
µ

p

∫
RN

ξ(x) |u|p dx.

By a standard argument and the Hölder inequality, it is easy to verify that Φλ ∈ C1(Eλ,R)

and

(2.3)
〈
Φ′λ(u), v

〉
=

∫
RN

(
(−∆)α/2u(−∆)α/2v + λV (x)uv

)
dx−

〈
Ψ′(u), v

〉
for all u, v ∈ Eλ, where〈

Ψ′(u), v
〉

=

∫
RN

f(x, u)v dx+ µ

∫
RN

ξ(x) |u|p−2 uv dx.
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We say that I ∈ C1(X,R) satisfies (PS) condition if any sequence {un} such that

I(un) → d, I ′(un) → 0 has a convergent subsequence. To prove our result, we need the

following Mountain Pass Theorem.

Theorem 2.1. [23, Theorem 2.2] Let X be a real Banach space and I ∈ C1(X,R) satis-

fying (PS) condition. Suppose I(0) = 0 and

(I1) there are constants ρ, η > 0 such that I∂Bρ(0) ≥ η,

(I2) there is an element e ∈ X \Bρ(0) such that I(e) ≤ 0,

then I possesses a critical value β ≥ η.

Lemma 2.2. Assume that (F1), (F2) are satisfied, and ξ ∈ L2/(2−p)(RN ,R+). Then

there exist three positive constants µ0, ρ and η such that Φλ(u)
∣∣
‖u‖λ=ρ

≥ η > 0 for all

µ ∈ (0, µ0).

Proof. For any ε > 0, it follows from the conditions (F1) and (F2) that there exists Cε > 0

such that

(2.4) |F (x, t)| ≤ ε

2
|t|2 +

Cε
q
|t|q for all t ∈ R.

Thus, from (2.1), (2.4) and the Sobolev inequality, we have for all u ∈ Eλ,∫
RN

F (x, u) dx ≤ ε

2

∫
RN

u2 dx+
Cε
q

∫
RN
|u|q dx

≤ γ2
2γ

2
0ε

2
‖u‖2λ +

Cεγ
q
qγ

q
0

q
‖u‖qλ ,

which implies

Φλ(u) =
1

2
‖u‖2λ −

∫
RN

F (x, u) dx− µ

p

∫
RN

ξ(x) |u|p dx

≥ 1

2
‖u‖2λ −

γ2
2γ

2
0ε

2
‖u‖2λ −

Cεγ
q
qγ

q
0

q
‖u‖qλ −

µγp2γ
p
0

p
‖ξ‖2/(2−p) ‖u‖

p
λ

= ‖u‖pλ

[
1

2
(1− γ2

2γ
2
0ε) ‖u‖

2−p
λ − Cεγ

q
qγ

q
0

q
‖u‖q−pλ − µγp2γ

p
0

p
‖ξ‖2/(2−p)

]
.

(2.5)

Take ε = 1/(2γ2
2γ

2
0) and define

g(t) =
1

4
t2−p − Cεγ

q
qγ

q
0

q
tq−p for t ≥ 0.

It is easy to prove that there exists ρ > 0 such that

max
t≥0

g(t) = g(ρ) =
q − 2

4(q − p)

[
(2− p)q

4Cεγ
q
qγ

q
0(q − p)

](2−p)/(q−2)

.

Then it follows from (2.5) that there exist two positive constants µ0 and η such that

Φλ(u)
∣∣
‖u‖λ=ρ

≥ η for all µ ∈ (0, µ0).
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Lemma 2.3. Assume that (F1), (F2) and (F3) are satisfied, and ξ ∈ L2/(2−p)(RN ,R+).

Let ρ be as in Lemma 2.2. Then there exists e ∈ Eλ with ‖e‖λ > ρ such that Φλ(e) < 0

for all µ ≥ 0.

Proof. By (2.4) and (F3), there exists c > 0 such that

F (x, u) ≥ c
(
|u|θ − |u|2

)
, ∀ (x, u) ∈ RN × R.

Thus, for t > 0, u ∈ Eλ, we have

Φλ(tu) =
t2

2
‖u‖2λ −

∫
RN

F (x, tu) dx− µ

p

∫
RN

ξ(x) |tu|p dx

≤ t2

2
‖u‖2λ − ct

θ

∫
RN
|u|θ dx+ ct2

∫
RN
|u|2 dx− µ

p
tp
∫
RN

ξ(x) |u|p dx,

which implies that Φλ(tu) → −∞ as t → ∞. Therefore, there exist t0 > 0 and e := t0u

with ‖e‖λ > ρ such that Φλ(e) < 0. This completes the proof.

To find critical points of Φλ, we shall show that Φλ satisfies the (PS) condition, i.e., any

(PS) sequence {un} has a convergent subsequence in Eλ. Since there is no compactness

of the Sobolev embedding, the situation is more difficult. To overcome this difficulty, we

need the following convergence results.

Lemma 2.4. Suppose that un ⇀ u0 in Eλ. Then, passing to a subsequence

(2.6) Φλ(un) = Φλ(un − u0) + Φλ(u0) + o(1)

and

(2.7) Φ′λ(un) = Φ′λ(un − u0) + Φ′λ(u0) + o(1).

In particular, if {un} is a (PS) sequence such that Φλ(un)→ d for some d ∈ R, then

(2.8) Φλ(un − u0)→ d− Φλ(u0) and Φ′λ(un − u0)→ 0

after passing to a subsequence.

Proof. Since un ⇀ u0 in Eλ, we have

(un, u0)λ → (u0, u0)λ,

which yields

‖un‖2λ = (un − u0, un − u0)λ + (u0, un)λ + (un − u0, u0)λ

= ‖un − u0‖2λ + ‖u0‖2λ + o(1).
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It is clear that

(un, φ)λ = (un − u0, φ)λ + (u0, φ)λ for all φ ∈ Eλ.

Hence, to obtain (2.6) and (2.7), it suffices to check that∫
RN

[F (x, un)− F (x, un − u0)− F (x, u0)] dx = o(1),(2.9) ∫
RN

ξ(x) [|un|p − |un − u0|p − |u0|p] dx = o(1),(2.10) ∫
RN

(f(x, un)− f(x, un − u0)− f(x, u0))φdx = o(1) for all φ ∈ Eλ(2.11)

and

(2.12)∫
RN

ξ(x)
(
|un|p−2 un − |un − u0|p−2 (un − u0)− |u0|p−2 u0

)
φdx = o(1) for all φ ∈ Eλ.

Here, we only prove (2.9) and (2.10), the verifications of (2.11) and (2.12) are similar.

Take ωn := un − u0, we have ωn ⇀ 0 in Eλ and ωn(x) → 0 a.e. x ∈ RN . It follows from

(F1) and (F2) that

(2.13) |f(x, u)| ≤ ε |u|+ Cε |u|q−1 , ∀ (x, u) ∈ RN × R

and

(2.14) |F (x, u)| ≤
∫ 1

0
|f(x, tu)| |u| dt ≤ ε |u|2 + Cε |u|q , ∀ (x, u) ∈ RN × R,

then

|F (x, ωn + u0)− F (x, ωn)| ≤
∫ 1

0
|f(x, ωn + ζu0)| |u0| dζ

≤
∫ 1

0

(
ε |ωn + ζu0| |u0|+ Cε |ωn + ζu0|q−1 |u0|

)
dζ

≤ c1

(
ε |ωn| |u0|+ ε |u0|2 + Cε |ωn|q−1 |u0|+ Cε |u0|q

)
.

By Young’s inequality, we have

|F (x, ωn + u0)− F (x, ωn)| ≤ c2

(
ε |ωn|2 + ε |u0|2 + ε |ωn|q + Cε |u0|q

)
,

so that, using (2.14), we get

|F (x, ωn + u0)− F (x, ωn)− F (x, u0)|

≤ c3

(
ε |ωn|2 + ε |u0|2 + ε |ωn|q + Cε |u0|q

)
, n ∈ N.

Let

Hn(x) := max
{
|F (x, ωn + u0)− F (x, ωn)− F (x, u0)| − c3ε

(
|ωn|2 + |ωn|q

)
, 0
}
.
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It follows that

0 ≤ Hn(x) ≤ c3

(
ε |u0|2 + Cε |u0|q

)
∈ L1(RN ).

Thus, using Lebesgue dominated convergence theorem,

(2.15)

∫
RN

Hn(x) dx→ 0 as n→∞.

From the definition of Hn(x), we have

|F (x, ωn + u0)− F (x, ωn)− F (x, u0)| ≤ c3ε
(
|ωn|2 + |ωn|q

)
+Hn(x), ∀n ∈ N,

which, together with (2.15) and (2.1), we get∫
RN
|F (x, ωn + u0)− F (x, ωn)− F (x, u0)| dx ≤ c3ε

(
‖ωn‖22 + ‖ωn‖qq

)
+ ε ≤ c4ε,

for n sufficiently large, hence∫
RN

[F (x, un)− F (x, un − u0)− F (x, u0)] dx = o(1)

that is, (2.9) holds.

Observe that ξ ∈ L2/(2−p)(RN ,R+), thus, for any ε > 0 we can choose Rε > 0 such

that

(2.16)

(∫
RN\BRε

|ξ(x)|2/(2−p) dx

)(2−p)/2

< ε.

By Sobolev’s embedding theorem, un ⇀ u0 in Eλ implies

un → u0 in L2
loc(RN ),

and hence,

(2.17) lim
n→∞

∫
BRε

|un − u0|2 dx = 0.

By (2.17), there exists N0 ∈ N such that

(2.18)

∫
BRε

|un − u0|2 dx < ε2 for n ≥ N0.

Hence, by (2.1), (2.18) and the Hölder inequality, for any n ≥ N0, we have

µ

p

∫
BRε

ξ(x) |un − u0|p dx

≤ µ

p

(∫
BRε

|ξ(x)|2/(2−p) dx

)(2−p)/2(∫
BRε

|un − u0|2 dx

)p/2
≤ µ

p
εp ‖ξ(x)‖2/(2−p) .

(2.19)
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On the other hand, by (2.1) and (2.16), we have

µ

p

∫
RN\BRε

ξ(x) |un − u0|p dx

≤ µ

p

(∫
RN\BRε

|ξ(x)|2/(2−p) dx

)(2−p)/2(∫
RN\BRε

|un − u0|2 dx

)p/2
≤ µ

p
εc5.

(2.20)

Since ε is arbitrary, combining (2.19) with (2.20), we have

(2.21)
µ

p

∫
RN

ξ(x) |un − u0|p dx = o(1)

and
µ

p

∫
RN

ξ(x) (|un|p − |u0|p) dx ≤
µ

p

∫
RN

ξ(x) |un − u0|p dx,

thus,
µ

p

∫
RN

ξ(x) (|un|p − |un − u0|p − |u0|p) = o(1),

that is, (2.10) holds.

Now, we consider the case {un} is a (PS) sequence such that Φλ(un)→ d and Φ′λ(un)→
0. It follows from (2.6) and (2.7) that

(2.22) Φλ(un − u0) = d− Φλ(u0) + o(1) and Φ′λ(un − u0) = −Φ′λ(u0) + o(1),

we show that Φ′λ(u0) = 0. For every ψ ∈ C∞0 (RN ), it follows from (2.13) and the fact that

un → u0 in Lsloc(RN ) that∫
RN

(f(x, un)− f(x, u0))ψ dx =

∫
suppψ

(f(x, un)− f(x, u0))ψ dx = o(1)

and

µ

∫
RN

ξ(x)
(
|un|p−2 un − |u0|p−2 u0

)
ψ dx = µ

∫
suppψ

ξ(x)
(
|un|p−2 un − |u0|p−2 u0

)
ψ dx

= o(1)

which implies that 〈
Φ′λ(u0), ψ

〉
= lim

n→∞

〈
Φ′λ(un), ψ

〉
= 0.

Hence, Φ′λ(u0) = 0, which together with the second equation of (2.22) shows that Φ′λ(un−
u0)→ 0 as n→∞. Consequently, (2.8) holds and the proof is complete.

Lemma 2.5. Let (V1)–(V3) and (F1)–(F3) be satisfied, there exists Λ0 > 0, any (PS) se-

quence of Φλ has a convergent subsequence for all λ ≥ Λ0.
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Proof. We adapt an argument in [17]. Let {un} be a sequence such that

Φλ(un)→ d and Φ′λ(un)→ 0 for some d ∈ R,

thus

1 + d+ ‖un‖λ ≥ Φλ(un)− 1

θ

〈
Φ′λ(un), un

〉
=

(
1

2
− 1

θ

)
‖un‖2λ +

∫
RN

[
1

θ
unf(x, un)− F (x, un)

]
dx

+

∫
RN

(
1

θ
− 1

p

)
µξ(x) |un|p dx,

hence

1 + d+ ‖un‖λ +

(
1

p
− 1

θ

)
µ

∫
RN

ξ(x) |un|p dx

≥
(

1

2
− 1

θ

)
‖un‖2λ +

∫
RN

[
1

θ
unf(x, un)− F (x, un)

]
dx.

Since (
1

p
− 1

θ

)
µ

∫
RN

ξ(x) |un|p dx

≤
(

1

p
− 1

θ

)
µ

(∫
RN
|ξ(x)|2/(2−p) dx

)(2−p)/2(∫
RN
|un|2 dx

)p/2
=

(
1

p
− 1

θ

)
µ ‖ξ‖2/(2−p) ‖un‖

p
2

≤
(

1

p
− 1

θ

)
µγp2γ

p
0 ‖ξ‖2/(2−p) ‖un‖

p
λ .

Hence,

1 + d+ ‖un‖λ +

(
1

p
− 1

θ

)
µγp2γ

p
0 ‖ξ‖2/(2−p) ‖un‖

p
λ

≥
(

1

2
− 1

θ

)
‖un‖2λ +

∫
RN

[
1

θ
unf(x, un)− F (x, un)

]
dx

≥
(

1

2
− 1

θ

)
‖un‖2λ .

This proves that {un} is bounded in Eλ. Then, passing to a subsequence, we may assume

that un ⇀ u0 in Eλ, then un → u0 in Lqloc(R
N ) for 2 ≤ q < 2∗α. Taking ωn := un − u0, we

have

‖ωn‖22 ≤
1

λb

∫
{x∈RN :V (x)>b}

λV (x)ω2
n dx+

∫
Vb

ω2
n dx

≤ 1

λb
‖ωn‖2λ + o(1),

(2.23)
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since ωn ⇀ 0 in Eλ and V (x) < b on a set of finite measure. Combining this with (2.1)

and the Hölder inequality, we obtain for 2 < q < σ < 2∗α. Given ν ∈ (σ, 2∗α), we have

‖ωn‖σσ ≤ ‖ωn‖
2(ν−σ)/(ν−2)
2 ‖ωn‖ν(σ−2)/(ν−2)

ν

≤
(

1

λb

)(ν−σ)/(ν−2)

‖ωn‖2(ν−σ)/(ν−2)
λ (γνγ0 ‖ωn‖λ)ν(σ−2)/(ν−2) + o(1)

≤ (γνγ0)ν(σ−2)/(ν−2)

(
1

λb

)(ν−σ)/(ν−2)

‖ωn‖σλ + o(1).

(2.24)

For convenience, let F(x, u) = 1
2f(x, u)u−F (x, u). It follows from Lemma 2.4 and (2.21)

that ∫
RN
F(x, ωn) dx = Φλ(ωn)− 1

2

〈
Φ′λ(ωn), ωn

〉
−
(

1

2
− 1

p

)
µ

∫
RN

ξ(x) |ωn|p dx

→ d− Φλ(u0).

(2.25)

Therefore, there exists M > 0 such that

(2.26)

∣∣∣∣∫
RN
F(x, ωn) dx

∣∣∣∣ ≤M.

Now we note that q
q−2 > max

{
1, N2α

}
because q ∈ (2, 2∗α). Fix τ ∈

(
max

{
1, N2α

}
, q
q−2

)
,

from (2.13), we know if |u| ≥ 1, then |f(x, u)| ≤ c6 |u|q−1. Choose R1 so large that
1
θ ≤

1
2 −

cτ−1
6

|u|q−(q−2)τ , whenever |u| ≥ R1. Then, for |u| large enough, we have

0 ≤ F (x, u) ≤ 1

θ
uf(x, u) ≤

[
1

2
− cτ−1

6

|u|q−(q−2)τ

]
uf(x, u) ≤

[
1

2
− |f(x, u)|τ−1

|u|τ+1

]
uf(x, u),

which implies that

(2.27)
|f(x, u)|τ

|u|τ
≤ 1

2
uf(x, u)− F (x, u) = F(x, u).

Combining this with (2.24), (2.26) with σ = 2τ
τ−1 ∈ (2, 2∗α) and the Hölder inequality, we

obtain for large n

∫
|ωn|≥R1

f(x, ωn)ωn dx ≤

(∫
|ωn|≥R1

∣∣∣∣f(x, ωn)

ωn

∣∣∣∣τ dx
)1/τ (∫

|ωn|≥R1

|ωn|σ dx

)2/σ

≤

(∫
|ωn|≥R1

F(x, ωn) dx

)1/τ

‖ωn‖2σ

≤M1/τ (γνγ0)2ν(σ−2)/[(ν−2)σ]

(
1

λb

)2(ν−σ)/[(ν−2)σ]

‖ωn‖2λ + o(1)

= c7

(
1

λb

)θ1
‖ωn‖2λ + o(1).

(2.28)
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where c7 = M1/τ (γνγ0)2ν(σ−2)/[(ν−2)σ] > 0, θ1 = 2(ν−σ)
σ(ν−2) > 0. In addition, using (2.13) and

(2.24), we have ∫
|ωn|≤R1

f(x, ωn)ωn dx ≤
∫
|ωn|≤R1

(
ε+ CεR

q−2
1

)
ω2
n dx

≤ CεR
q−2
1

λb
‖ωn‖2λ + o(1)

=
c8

λb
‖ωn‖2λ + o(1),

(2.29)

where c8 = CεR
q−2
1 . Consequently, combining (2.21), (2.28) with (2.29), we get

o(1) =
〈
Φ′λ(ωn), ωn

〉
= ‖ωn‖2λ −

∫
RN

f(x, ωn)ωn dx− µ
∫
RN

ξ(x) |ωn|p dx

≥

[
1− c8

λb
− c7

(
1

λb

)θ1]
‖ωn‖2λ + o(1).

Choosing Λ0 > 0 large enough such that the term in the brackets above is positive when

λ ≥ Λ0, we get ωn → 0 in Eλ, thus un → u0 in Eλ. This completes the proof.

Define

dλ = inf
γ∈Γλ

max
0≤t≤1

Φλ(γ(t))

where

Γλ = {γ ∈ C([0, 1], Eλ) : γ(0) = 0, γ(1) = e} .

Proof of Theorem 1.1. By Theorem 2.1, Lemmas 2.2 and 2.3, we obtain that, for each

λ ≥ Λ0, 0 < µ < µ0, there exists (PS) sequence {un} ⊂ Eλ for Φλ on Eλ. Then, by

Lemma 2.5, we can conclude that there exist a subsequence {un} ⊂ Eλ and uλ,1 ∈ Eλ

such that un → uλ,1 in Eλ. Moreover, Φλ(uλ,1) = dλ ≥ η > 0.

The second solution of Problem (1.1) will be constructed through the local minimiza-

tion.

By virtue of (2.5), let ρ > 0 define as in Lemma 2.2, then it is easy to see that

inf
u∈Bρ

Φλ(u) > −∞ and inf
u∈∂Bρ

Φλ(u) ≥ η > 0,

where Bρ is the open ball in Eλ with radius ρ and ∂Bρ denotes its boundary. Since

ξ ∈ L2/(2−p)(RN ,R+) and ξ(x) 6= 0, we can choose a function φ ∈ Eλ such that∫
RN

ξ(x) |φ|p dx > 0.
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Thus, by (F3) we have

Φλ(lφ) =
l2

2
‖φ‖2λ −

∫
RN

F (x, lφ) dx− µlp

p

∫
RN

ξ(x) |φ|p dx

≤ l2

2
‖φ‖2λ −

µlp

p

∫
RN

ξ(x) |φ|p dx

< 0

(2.30)

for l > 0 small enough. Hence,

−∞ < inf
u∈Bρ

Φλ(u) < 0.

For n ∈ N sufficiently large, set 1
n ∈

(
0, infu∈∂Bρ Φλ(u)− infu∈Bρ Φλ(u)

)
, there is wn ∈ Bρ

such that

(2.31) Φλ(wn) ≤ inf
u∈Bρ

Φλ(u) +
1

n
.

By the Ekeland’s variational principle, there exists vn ∈ Bρ such that

Φλ(vn) ≤ Φλ(wn) and ‖wn − vn‖ ≤ 1,

and

(2.32) Φλ(vn) ≤ Φλ(u) +
1

n
‖u− vn‖ for all u ∈ Bρ,

while

Φλ(vn) ≤ inf
u∈Bρ

Φλ(u) +
1

n
< inf

u∈∂Bρ
Φλ(u).

So vn ∈ Bρ. Define Ψn : Eλ 7→ R by

Ψn(u) = Φλ(u) +
1

n
‖u− vn‖ .

By (2.32), we have vn ∈ Bρ minimizes Ψn on Bρ. Therefore, for all φ ∈ Eλ with ‖φ‖ = 1,

take t > 0 such that vn + tφ ∈ Bρ, then

(2.33)
Ψn(vn + tφ)−Ψn(vn)

t
≥ 0.

(2.33) implies
Φλ(vn + tφ)− Φλ(vn)

t
+

1

n
≥ 0,

which implies 〈
Φ′λ(vn), φ

〉
≥ − 1

n
.
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Hence,

(2.34)
∥∥Φ′λ(vn)

∥∥ ≤ 1

n
.

Passing to the limit in (2.32) and (2.34), we conclude that Φλ(vn) → infu∈Bρ Φλ(u) and

Φ′λ(vn) → 0 as n → ∞. Hence, Lemma 2.5 implies that there exists a nontrivial solution

uλ,2 of Problem (1.1) satisfying

Φλ(uλ,2) < 0 and ‖uλ,2‖λ ≤ ρ.

Therefore, we can conclude that

Φλ(uλ,2) < 0 < η ≤ dλ = Φλ(uλ,1)

for all λ ≥ Λ0 and 0 < µ < µ0. This completes the proof of Theorem 1.1.

3. Concentration of solutions

In the following, we investigate the concentration of solutions and give the proof of The-

orem 1.2. First, we introduce some fractional spaces, for more details see [27] and [28].

Let α ∈ (0, 1) fixed, n > 2α, Ω ⊂ RN be an open bounded set with smooth boundary.

In the sequel we denote Q = R2N \ O, where

O = (Ωc × Ωc) ⊂ R2N and Ωc = RN \ Ω.

The fractional space X is defined by

X =

{
u ∈ L2(Ω) :

|u(x)− u(y)|
|x− y|(2α+N)/2

∈ L2(Q)

}
,

endowed with the norm defined as

(3.1) ‖u‖X =

(∫
Ω
|u|2 dx+

∫
Q

|u(x)− u(y)|2

|x− y|2α+N
dxdy

)1/2

.

Let

X0 =
{
u ∈ X : u = 0 a.e. in RN \ Ω

}
.

Then, by [27], there exists a constant R = R(N,α,Ω) > 1, such that for any u ∈ X0∫
Q

|u(x)− u(y)|2

|x− y|2α+N
dxdy ≤ ‖u‖2X ≤ R

∫
Q

|u(x)− u(y)|2

|x− y|2α+N
dxdy,

thus,

‖u‖X0
=

(∫
Q

|u(x)− u(y)|2

|x− y|2α+N
dxdy

)1/2
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is a norm on X0 equivalent to the usual one defined in (3.1). Furthermore, X0 is a Hilbert

space.

Let Ψ be the restriction of Φλ on X0, then,

Ψ(u) = Φλ

∣∣
X0

(u) =
1

2

∫
Q

|u(x)− u(y)|2

|x− y|2α+N
dxdy −

∫
Ω
F (x, u) dx− µ

p

∫
Ω
ξ(x) |u|p dx.

Define

dλ = inf
γ∈Γλ

max
0≤t≤1

Φλ(γ(t)) and d0 = inf
γ∈Γ̃

max
0≤t≤1

Ψ(γ(t)),

where

Γλ = {γ ∈ C([0, 1], Eλ) : γ(0) = 0,Φλ(γ(1)) < 0}

and

Γ̃ = {γ ∈ C([0, 1], X0) : γ(0) = 0,Ψ(γ(1)) < 0} .

It is obvious that d0 is independent of λ. From the above arguments, we can conclude

that Ψ has a mountain pass type solution ũ such that Ψ(ũ) = d0. Since X0 ⊂ Eλ for all

λ > 0, it is easy to see that 0 < η ≤ dλ < d0 for all λ ≥ Λ0 and 0 < µ < µ0.

Now, we claim that Ψ(u) is bounded from above. For all u ∈ X0, it follows from (F3)

and Fatou’s lemma that

lim
t→∞

Ψ(tu)

t2
=

1

2

∫
Q

|u(x)− u(y)|2

|x− y|2α+N
dxdy − lim

t→∞

1

t2

∫
Ω

F (x, tu) dx− lim
t→∞

µtp−2

p

∫
Ω

ξ(x) |u|p dx

≤ 1

2

∫
Q

|u(x)− u(y)|2

|x− y|2α+N
dxdy − lim inf

t→∞

1

t2

∫
Ω

F (x, tu) dx− lim
t→∞

µtp−2

p

∫
Ω

ξ(x) |u|p dx

≤ 1

2

∫
Q

|u(x)− u(y)|2

|x− y|2α+N
dxdy −

∫
Ω

lim inf
t→∞

F (x, tu)

t2
dx− lim

t→∞

µtp−2

p

∫
Ω

ξ(x) |u|p dx

= −∞,

therefore, Ψ(u) is bounded from above. Take C0 > d0, thus

0 < η ≤ dλ ≤ d0 < C0

for all λ ≥ Λ0 and 0 < µ < µ0.

Proof of Theorem 1.2. We follow the argument in [3]. For any sequence λn → ∞, let

un,i := uλn,i be the critical points of Φλn obtained in Theorem 1.1 for i = 1, 2. Since

(3.2) Φλn(un,2) < 0 < η ≤ dλn = Φλn(un,1)
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and

C0 +
C0

θ
‖un,i‖λn ≥ Φλn(un,i)−

1

θ

〈
Φ′λn(un,i), un,i

〉
=

(
1

2
− 1

θ

)
‖un,i‖2λn +

∫
RN

(
1

θ
f(x, un,i)un,i − F (x, un,i)

)
dx

−
(
µ

p
− µ

θ

)∫
RN

ξ(x) |un,i|p dx

≥
(

1

2
− 1

θ

)
‖un,i‖2λn −

(
µ

p
− µ

θ

)∫
RN

ξ(x) |un,i|p dx,

which implies

(3.3) ‖un,i‖λ0 ≤ ‖un,i‖λn ≤ c0 for large n,

where the constant c0 is independent of λn. Therefore, for large n we may assume that

un,i ⇀ u0,i in Eλ0 and un,i → u0,i in Lqloc(R
N ) for 2 ≤ q < 2∗α. From Fatou’s lemma, we

have ∫
RN

V (x) |u0,i|2 dx ≤ lim inf
n→∞

∫
RN

V (x) |un,i|2 dx ≤ lim inf
n→∞

‖un,i‖2λn
λn

= 0,

which implies that u0,i = 0 a.e. in RN \ V −1(0). Now for any ϕ ∈ C∞0 (Ω), since〈
Φ′λn(un,i), ϕ

〉
= 0, it is easy to verify that∫

Ω

(
(−∆)α/2u0,i(−∆)α/2ϕ

)
dx−

∫
Ω
f(x, u0,i)ϕdx− µ

∫
Ω
ξ(x) |u0,i|p−2 u0,iϕdx = 0,

which implies that u0,i is a weak solution of Problem (1.2) by the density of C∞0 (Ω) in X0.

Next, we show that un,i → u0,i in Lq(RN ) for 2 ≤ q < 2∗α. Otherwise, by Lions

vanishing lemma [22,39], there exist δ > 0, R0 > 0 and xn ∈ RN such that∫
BR0

(xn)
|un,i − u0,i|2 dx ≥ δ.

Since un,i → u0,i in L2
loc(RN ), |xn| → ∞. Hence meas (BR0(xn) ∩ Vb)→ 0. By the Hölder

inequality, we have∫
BR0

(xn)∩Vb
|un,i − u0,i|2 dx

≤ (meas(BR0(xn) ∩ Vb))(2∗α−2)/2∗α

(∫
RN
|un,i − u0,i|2

∗
α

)2/2∗α

→ 0.

Consequently,

‖un,i‖2λn ≥ λnb
∫
BR0

(xn)∩{x∈RN :V (x)≥b}
|un,i|2 dx

= λnb

∫
BR0

(xn)∩{x∈RN :V (x)≥b}
|un,i − u0,i|2 dx
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= λnb

(∫
BR0

(xn)
|un,i − u0,i|2 dx−

∫
BR0

(xn)∩Vb
|un,i − u0,i|2 dx+ o(1)

)
→∞,

which contradicts (3.3). Next, we show that un,i → u0,i inHα(RN ). Recall that ‖u‖Hα(RN )

≤ γ0 ‖u‖λ for all u ∈ Eλ, λ ≥ λ0, therefore it suffices to show that un,i → u0,i in Eλ0 .

By virtue of
〈
Φ′λn(un,i), un,i

〉
=
〈
Φ′λn(un,i), u0,i

〉
= 0, we have

‖un,i‖2λ0 ≤
∫
RN

(∣∣∣(−∆)α/2un,i

∣∣∣2 + λnV (x)u2
n,i

)
dx

=

∫
RN

f(x, un,i)un,i dx+ µ

∫
RN

ξ(x) |un,i|p dx.
(3.4)

Similarly, we obtain

‖u0,i‖2λ0 = lim
n→∞

∫
RN

(
(−∆)α/2un,i(−∆)α/2u0,i + λ0V (x)un,iu0,i

)
dx

= lim
n→∞

∫
RN

(
(−∆)α/2un,i(−∆)α/2u0,i + λnV (x)un,iu0,i

)
dx

= lim
n→∞

∫
RN

f(x, un,i)u0,i dx+ µ

∫
RN

ξ(x) |un,i|p−2 un,iu0,i dx.

(3.5)

Next we prove

(3.6)

∫
RN

f(x, un,i)(un,i − u0,i) dx = o(1)

and

(3.7) µ

∫
RN

ξ(x)
(
|un,i|p − |un,i|p−2 un,iu0,i

)
dx = o(1).

From (F1) and (F2), for any ε > 0, there exists Cε such that

|f(x, t)| ≤ ε |t|+ Cε |t|q−1 for all t ∈ R.

Since the embedding Eλ ↪→ Ls(RN ) is continuous for s ∈ [2, 2∗α] and un,i → u0,i in Lr(RN )

for 2 ≤ r < 2∗α, then by the Hölder inequality, we have∣∣∣∣∫
RN

f(x, un,i)(un,i − u0,i) dx

∣∣∣∣
≤ ε

∫
RN
|un,i| |un,i − u0,i| dx+ Cε

∫
RN
|un,i|q−1 |un,i − u0,i| dx

≤ ε ‖un,i‖2 ‖un,i − u0,i‖2 + Cε ‖un,i‖q−1
q ‖un,i − u0,i‖q .
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Taking the limit in the above inequality and using the arbitrariness of ε, conclusion (3.6)

follows. Analogously, we deduce∣∣∣∣µ∫
RN

ξ(x)
(
|un,i|p − |un,i|p−2 un,iu0,i

)
dx

∣∣∣∣
=

∣∣∣∣µ∫
RN

ξ(x) |un,i|p−2 un,i(un,i − u0,i) dx

∣∣∣∣
≤ µ

∫
RN
|ξ(x)| |un,i|p−1 |un,i − u0,i| dx

≤ µ ‖ξ‖2/(2−p)
(∫

RN
|un,i|2(p−1)/p |un,i − u0,i|2/p dx

)p/2
≤ µ ‖ξ‖2/(2−p) ‖un,i‖

p−1
2 ‖un,i − u0,i‖2 .

This shows that (3.7) holds. Therefore, it follows from (3.4), (3.5), (3.6) and (3.7) that

lim sup
n→∞

‖un,i‖2λ0 ≤ ‖u0,i‖2λ0 .

On the other hand, the weakly lower semi-continuity of norm yields

‖u0,i‖2λ0 ≤ lim inf
n→∞

‖un,i‖2λ0 ≤ lim sup
n→∞

‖un,i‖2λ0 .

Thus, un,i → u0,i in Eλ0 , and so

(3.8) un,i → u0,i in Hα(RN ).

Using (3.2), (3.8) and the fact that constant η is independent of λn, we have

1

2

∫
Ω

∣∣∣(−∆)α/2u0,1

∣∣∣2 dx− ∫
Ω
F (x, u0,1) dx− µ

p

∫
RN

ξ(x) |u0,1|p dx ≥ η > 0

and
1

2

∫
Ω

∣∣∣(−∆)α/2u0,2

∣∣∣2 dx− ∫
Ω
F (x, u0,2) dx− µ

p

∫
RN

ξ(x) |u0,2|p dx ≤ 0,

which implies that u0,1 6= u0,2. This completes the proof.
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