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Multiplicity and Concentration of Solutions for Fractional Schrédinger

Equations

Zu Gao*, Xianhua Tang and Wen Zhang

Abstract. In this paper, we study the following fractional Schrédinger equations
(=A)u + AV (2)u = f(z,u) + pé(x)|uP2u, xRV,

where A > 0 is a parameter, V € C(RY) and V~1(0) has nonempty interior. Under
some mild assumptions, we establish the existence of two different nontrivial solutions.
Moreover, the concentration of these solutions is also explored on the set V~1(0)
as A — oo. As an application, we also give the similar results and concentration

phenomenons for the above problem with concave and convex nonlinearities.

1. Introduction

This paper is concerned with the following fractional Schrodinger equation

(=A)*u + AV (z)u = f(x,u) + p&(x) |u\p_2 u, xRN,

- u e Ho(RN).

where 0 < a < 1, (—=A)® is the fractional Laplacian of order a, V € C(R¥,R), f €
C(RN x R), ¢ € L¥CP)(RN R*) and &(z) #0, A >0, x> 0 and 1 < p < 2. We need to

make the following assumptions for potential V:
(V1) V€ C(RN,R) and V(z) > 0 on RY;
(V3) there is b > 0 such that the set V, := {z € RY | V(z) < b} has finite measure;

(V3) Q =int V—1(0) is nonempty and has smooth boundary 9.
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In [16], the authors have proved that (—A)® reduces to the standard Laplacian —A
as & — 1. When a = 1 and without parameter A\, formally, Problem (|1.1]) reduces to the

classical Schrédinger equation.

Recently, fractional Laplacian equations have concrete applications in many fields,
such as thin obstacle problem, optimization, finance, phase transitions, anomalous diffu-
sion and so on. For previous related results see [2}8,[10,/13-15,|18-21},[24}32,|40] and the
references therein. Up to now, there have been a few results appeared in the literature for
Problem . Precisely, Felmer et al. studied a similar class equations, in which V =1,
under suitable hypotheses on nonlinearity, using variational methods, classical positive
solutions are found in [19]. Dipierro et al. studied the existence of positive and spheri-
cally symmetric solutions in [18]. The existence of bounded solutions for Problem is
proved in [15], where the potential V' is unbounded. The author proved some existence
results of solutions for fractional Schrodinger equations in [24}25], under the assumption
that the nonlinearity satisfies the Ambrosetti-Rabinowitz condition or is indeed of pertur-
bative type. The author investigated the existence of radial solutions for Problem ([1.1
without Ambrosetti-Rabinowitz condition in [26]. The existence of positive solutions of
concave-convex Dirichlet fractional Laplacian problems in bounded domains is presented
in [5].

It is known, a great attention has been devoted to the fractional and non-local integro-
differential operators like , for the thought-provoking theoretical structure and their
impressive applications in many fields. In fact, the fractional Laplacian (—A)® is a nonlocal
operator in the fractional Schréodinger equation, which is obvious a difficulty. And then,
Caffarelli and Silvestrein made greatest achievement in overcoming this difficulty by the
extension theorem in [9]. The authors used some extension to transform the nonlocal
problem into a local problem, and established some existence and nonexistence of Dirichlet
problem involving the fractional Laplacian on bounded domain. Furthermore, a great
deal of progress has been made to the fractional Laplacian equations after the work [9].
We refer to [11,|12}|33]34,38,/40-42] for the existence results and multiplicity results of
solutions, and to [6,/7] for the regularity results, maximum principle, uniqueness result and
other properties. Actually, for other related topics including the superquadratic singular
perturbation problem and concentration phenomenon of semi-classical state, see also [29-

31] and the references therein.

There are many papers taking into account potential V' see for instance [35-37,|41]
and the references therein. In fact, the hypotheses on potential V' were first introduced by
Bartsch and Wang [4] (see also [3]) in the study of a nonlinear Schrédinger equation and the
potential AV with V satisfying (V1)—(V3) is referred as the steep well potential. It is worth

mentioning that the above papers always assumed the potential V' is positive (V' > 0).
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Compared with the case V' > 0, our assumptions on V' are rather weak, and perhaps more
important. Generally speaking, there may exist some behaviours and phenomenons for the
solutions of Problem under condition (V3), such as the concentration phenomenon
of solutions. Besides, we are also interested in the case that the nonlinearity is a more
general mixed nonlinearity involving a combination of superlinear and sublinear terms.
To the best of our knowledge, few works concern on this case up to now. Motivated
by the above papers, we will consider Problem with steep well potential, and study
the existence of nontrivial solutions and investigate the concentration phenomenon of
solutions on the set V=1(0) as A — co. In order to state our results, we need the following

assumptions for superlinear term f(x,u):

(F1) f € CRN xR) and |f(z,u)| < c<1 + ]u\q_1> for some g € (2,2%), where 2¥ =
2N/(N — 2a);

(Fo) f(x,u) = o(|u|) as |u| — 0 uniformly for = € RY;

(F3) there exists § > 2 such that 0 < 0F(x,u) < uf(z,u) for every x € RY and u # 0,
where F(z,u) = [\ f(z,t)dt.

On the existence of solutions we have the following results.

Theorem 1.1. Assume that (V1)—~(V3) and (F1)~(F3) hold, and ¢ € L*2-P)(RN RY)
(1 <p<2), then there exist two positive constants Ag and po such that for every X > Ag
and 0 < p < po, Problem (1.1)) has at least two nontrivial solutions uy; (i =1,2).

On the concentration of solutions we have the following result.

Theorem 1.2. Let uy; (i = 1,2) be the solutions of Problem obtained in Theo-
rem then uy; — ug; in HO‘(RN) as A — oo, where ug; are solutions of the equation

(—8)%u = f(z,u) + pé(z) [ul’u, z€Q,

(1.2)
u =0, r e RNV \ Q.
Furthermore,
1 a/2 2 2
- ’(—A) uo,l‘ de — | F(z,up1)de — — &(x) lupa|P dx >0
2 Jo Q P Jry
and

1 a/2 2 I p
3 )(—A) uo’g‘ de — | F(z,up2)dr — = £(z) |up 2" dx < 0.
Q Q D JrN

A model nonlinearity is

(1.3) gz, u) = | u+ pé(e) [ul" " u
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with 1 < p <2 < g < 25 and £ € L¥CP)(RN R*). Clearly, g(z,u) satisfies (F;)—(F3).
Following [1], the nonlinear term g(x,u) is called concave and convex nonlinear term.
Therefore, our results can be applied to the concave and convex nonlinear term case. As

a consequence, we have

Corollary 1.3. Assume that (V1)-(V3) are satisfied and let the nonlinearity be of the
form (1.3]), then there exist two positive constants Ao and py such that for every A > Ay
and 0 < p < po, Problem (1.1)) has at least two nontrivial solutions uy; (1 =1,2).

Corollary 1.4. Let uy; (i = 1,2) be the solutions of Problem (1.1|) obtained in Corol-
lary then uy; — ug; in H*(RN) as A — oo, where up,; are solutions of the equation

(—A)u = [u " u+ p&(x) [ul’ 2w, inQ,
u=0, in RV \ Q.

The rest of the present paper is organized as follows. In Section we establish
the variational framework associated with Problem ([1.1), and we also give the proof of
Theorem In Section [3] we study the concentration of solutions and prove Theorem

2. Variational setting and proof of Theorem

Below we denote by ||-||, the usual L®-norm for 2 < s < 2% and by u the usual Fourier
transform of u, ¢;,C,C; stand for different positive constants. Now, we establish the
variational setting of Problem in fractional Sobolev spaces.

A complete introduction to fractional Sobolev spaces can be found in [16], we offer
below a short review. We recall that the Sobolev spaces W%P(RY) is defined for any
p € [l,+00) and a € (0,1) as

a,p Ny _ p N ‘U )‘p
WeP(R )—{UEL (R /RN/]RN ap+N drdy < +oo o .

.TL‘

This space is endowed with the Gagliardo norm

1/p
_ p [u(z) —u(y)]”
ullyyapr = </ lul d:v+/RN/RN iz ap+N dxdy .

When p = 2, these spaces are also denoted by HY(RY).
If p = 2, an equivalent definition of fractional Sobolev spaces is possible, based on

Fourier analysis. Indeed, it turns out that

o Ny _ u 2 N : 2a a2 00
@) = fue Y [ (1416 AR de < oo
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and the norm can be equivalently written by

1/2
lull oy = (Nallz + | l&P*fal*de )
RY)
RN

Furthermore, we know that ||| o gy is equivalent to the norm

2 1/2
||u|Ha(RN)=(/ (\(maﬂu\ +u2>dz> |
RN

In this article, in view of the potential V (x), we consider its subspace

2
E = {u € HY(RY) : / <‘(—A)“/2u‘ + V(az)u2> dzx < +oo} .
RN
Then, by [24], E' is a Hilbert space with the inner product

wole = [ (65950 + 700 ds+ [ Vieulayo(@)de, Vuoe P,

]RN

and the norm

1/2
[ull g = (/ (|§’20 u + ﬂz) d§ +/ V(z)u? dx) , u€ek.
RN RN

Furthermore, we know that ||-|| 5 is equivalent to the norm

ul| = </RN <((A)a/2u)2 + V(x)u2> daz)l/2, ueE.

The corresponding inner product is
(u,v) = / <(—A)a/2u(x)(—A)a/2v(x) + V(x)u(a:)v(a:)) dx, Yu,v€E.
RN
For A > 0, we also need the following inner product

(u,v)) = /RN ((fA)a/Qu(fA)a/% + )\V(x)uv) dr, Vu,vekE,

and the corresponding norm [ul|} = (u,u)y. It is clear that |[ul| < |ul, for A > 1.
Set E\ = (E,||||,), then E) is a Hilbert space. By (V1)-(V2) and the Sobolev inequal-
ity, we can demonstrate that there exist positive constants Ao, yo (independent of A) such

that
[ull gro@ay < Y0 llully  for all u € Ex, A > Ao.
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In fact, by using (V1)-(V2) and the Sobolev inequality, we have

/RN (‘(—A)Q/Qu‘Q + u2> dz

=

2
:/ (=A)/2y dx—i—/ u2dm+/ u? da
Vi RN\V,,
(N—2a)/N
§/ (—A)* %y dx—i—(meas(Vb))Qo‘/N </ u?a dx) —I—/ u? dx
RN RN RN\V;,
(N—2a)/N
§/ (=) 2y d:z:—i—(meas(Vb))Qa/N (/ u?e dx) —i—i AV (z)u? dz
(N—2a)/N
S/ (—A)*/2y dx+(meas(Vb))2a/N </ w2 dm) +i )\V(x)u2 dx
RN RN )\b
) (N-20)/N 4
</ (=) 2y dac—i—(meas(Vb))Qo‘/N </ u?e dac) + )\V( Ju® dx
RN RN /\b
2
< / (—A)*/2u]” da + (meas(V3))2/N C52 / ‘(—A)O‘/Qu‘ dor+ — / AV (2)u? dz
N “ JRN Ab

IN

[1 (meas(V}) QO‘/NCg* } /
RN

(](—A)a/%(z + )\V(:E)u2> dz,

2 -1
= fyo/ (’(—A)O‘/zu‘ + )\V(x)u2> dr, X> A= % [1 + (meas(V})))Qo‘/NCQ_*ﬂ
RN “

This shows that Ey < HY(RY) for A > X\g. By [16], H¥(RY) < L*(R") is continuous for
€ [2,2;] and H*(RY) — Lf (RY) is compact for s € [2,2%), therefore the embedding
EA < L*(RY) is continuous for s € [2,2%] and Ey\ — L{ (RY) is compact for s € [2,2%),

i.e., there are constants s,y > 0 such that

loc

(2.1) lally < s llull oy < 770 llull, for all u € By, 2 < s < 2,
Let
1 2
(2.2) Dy\(u) = 2/ <‘(—A)°‘/2u’ + )\V(m)u2> dx — VU (u),
RN
where

m(u):/w F(a,u) da:+Z/RN £(z) [ulf da.

By a standard argument and the Holder inequality, it is easy to verify that ®, € C(E,,R)
and

(2.3) (® (1), v) = ( A/ 2q(— A)a/%ﬂvm)uv) dz — (V' (u),v)
for all u,v € Fy, where

(V' (u),v) = fxu)vdx—i—u/ () [uP~? wv d.

RN
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We say that I € C'(X,R) satisfies (PS) condition if any sequence {u,} such that
I(un) — d, I'(un) — 0 has a convergent subsequence. To prove our result, we need the

following Mountain Pass Theorem.

Theorem 2.1. 23, Theorem 2.2] Let X be a real Banach space and I € C*(X,R) satis-
fying (PS) condition. Suppose I(0) =0 and

(I1) there are constants p,n > 0 such that Iyp ) > n,
(I2) there is an element e € X \ B,(0) such that I(e) <0,

then I possesses a critical value 5 > 1.

Lemma 2.2. Assume that (F1), (F2) are satisfied, and ¢ € L*/=P)(RN R*). Then
there exist three positive constants po, p and n such that @A(u)‘”u” —p >n >0 for all
=

1 € (0, o).

Proof. For any € > 0, it follows from the conditions (F) and (F2) that there exists Cz > 0
such that

Ce
(2.4) |F(z,t)] < % >+ == [t for all ¢ € R.
q
Thus, from (2.1)), (2.4) and the Sobolev inequality, we have for all u € F),

/ F(z,u)dr < 6/ udeC—i-% |u|? dx
RN 2

RN q JrN

2.2 q.49

Y2%E 12, Cera
< 220 lully + =" [lull§,

which implies

1
Bw) = 3 il - [ Fwde-2 [ oo ao

V3v3e Ceving a0l

2

—~
Do
at
S~—
\%

o2 2
3 Jully — Jully — Jullf — 1€ 2—p) 1l

1 _
:HW§[O—7%$HMKP— T,

2
Take ¢ = 1/(273~3) and define

1 Cevdne
ﬂw219W—_iﬁbﬂW for ¢ > 0.
q

It is easy to prove that there exists p > 0 such that
2-p)/(9-2)
q—2 2-pg ]
max g(t) = g(p) = [ :
20 (v) 4(q —p) [4Cv375(a — )
Then it follows from (2.5) that there exist two positive constants pg and 7 such that
(I)/\(u)}l\u\h:ﬂ > n for all p € (0, po). O
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Lemma 2.3. Assume that (F1), (F2) and (F3) are satisfied, and & € L¥2=P)(RN RY).
Let p be as in Lemma 2.2, Then there exists e € Ex with |le]|y > p such that ®x(e) < 0
for all p > 0.

Proof. By ([2.4) and (F3), there exists ¢ > 0 such that
Fz,u) > ¢ (|u\9 - |u|2) . V(z,u) e RN x R.

Thus, for t > 0, u € E), we have

t2
@ (tu) = o ull - /RN Fa.tu)do— % /RN £() [tul? dx

t2
< ”uui—cﬁ/ |u\0dﬂc+ct2/ \u|2dx—“tp/ £(z) |ul? d,
2 RN RN P Jrw

which implies that ®)(tu) — —oco as t — oco. Therefore, there exist tg > 0 and e := tou
with ||e[[, > p such that ®,(e) < 0. This completes the proof. O

To find critical points of @), we shall show that ®) satisfies the (PS) condition, i.e., any
(PS) sequence {uy} has a convergent subsequence in E). Since there is no compactness
of the Sobolev embedding, the situation is more difficult. To overcome this difficulty, we

need the following convergence results.

Lemma 2.4. Suppose that u, — ug in Ex. Then, passing to a subsequence

(2.6) P\ (un) = Px(un — ug) + Px(ug) + o(1)
and
(2.7) '\ (up,) = )\ (un — uo) + P4 (up) + o(1).

In particular, if {u,} is a (PS) sequence such that ®y(u,) — d for some d € R, then
(2.8) Dy (uy, —ug) = d—Py(ug) and D\ (uy, —ug) =0
after passing to a subsequence.
Proof. Since u,, — ug in F), we have
(un; uo)x = (uo, uo)a,
which yields

HunHi = (Un — Uo, Un — up)x + (U0, Un)x + (Un — Uo, Uo)x

2 2
= [lun — uollx + lluolly + o(1).
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It is clear that
(Un, @) = (un — uo, ®)x + (uo, ¢)x for all ¢ € Ej.
Hence, to obtain (2.6 and (2.7)), it suffices to check that

(2.9) /R P, )~ Faun — uo) — Fla o) d = o(1),
(2.10) /RN §(@) [lunl” — |un — uo|” — luol"] dz = o(1),

(2.11) / (f(x,upn) — f(z,un —uo) — f(z,up)) pder = o(1) for all ¢ € Ey
RN
and
(2.12)
/ &(z) <\un]p_2 U — |t — uoP ™% (up — ug) — |ug|P 2 u0> ¢dr =o(1) for all ¢ € F).
RN

Here, we only prove (2.9) and (2.10)), the verifications of (2.11) and (2.12) are similar.

Take wy, := u, — ug, we have w, — 0 in E) and w,(z) — 0 a.e. x € RN, 1t follows from
(F1) and (F2) that

(2.13) |f(z,u)| <elul +Celulf™, V(z,u) e RY xR

and

(2.14) |F(z,u)| < /01 |fla,tu)| |u| dt < elul* +Ce|ul?, V(z,u) e RY xR,
then

1
IF (2, wn + o) — F(@,wn)| < /0 (@0 + Cuo)| Juol dC

< [ (bem + Guol ol + O + Cuol™ ) ¢

< 1 (= leonl Juol + £ ol + el Juo| + C Juol?)
By Young’s inequality, we have

|F (2, wn + o) — Fz,wn)| < c2 (8 jwnl® + € |uol® + € |wa|* + Ce |U0|q) :
so that, using , we get
|F(z,wpn, +up) — Fx,wn) — F(x,up)]
<c3 (8 lwn)? + € |uol? + € |wn|? + Ce ]ug\q) , neN.

Let

Hy(w) = max {|P(2,wn + o) = F(w,wn) = F(@,u0)| = a2 (Jwnl> + fwal?) , 0}
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It follows that
0< Hp(z) <cs (5 ol + C- \u0]q> e LY(RM).

Thus, using Lebesgue dominated convergence theorem,

(2.15) o Hy(z)dx — 0 asn— oo.
From the definition of H,,(z), we have

|F(z,wn + uo) — Fx,w,) — Fx,u)| < cze (\wnIQ + \wnlq> + Hy(z), VneN,
which, together with and , we get

/RN |F (2, wn + up) — F(z,wn) — F(z,up)| dx < c3e (||wn|]§ + Hwn||g> + ¢ < cye,
for n sufficiently large, hence

/RN (2, ) — Fz,un — 1) — Pz, u0)] dz = o(1)

that is, (2.9) holds.

Observe that & € L2/(2-p) (RN, RT), thus, for any € > 0 we can choose R, > 0 such
that

(2-p)/2
(2.16) ( / €()| /) dm) <e
RN\Bg,

By Sobolev’s embedding theorem, u,, — ug in E) implies
U, = ug  in L3 (RY),
and hence,

(2.17) lim |t — ug|* dz = 0.

n—o0 BR
€

By (2.17)), there exists Ny € N such that

(2.18) / lun —ug|* dz < €2 for n > Ny.
Br,

Hence, by (2.1)), (2.18]) and the Holder inequality, for any n > Ny, we have

BT e@) jun — ol da

P JBg,

(2-p)/2 p/2
(2.19) _“( / |s<x>|2/<2—p>dw> ( / |un—uO|2d:c>
p Bgr, Br,

1
561’ 1€(@)2)2—p) -

A

IN
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On the other hand, by (2.1]) and (2.16|), we have

‘ﬂ/ £(2) |tn — uol? dz
P JRN\Bp,

(2—-p)/2 p/2
“(/ M@W“*mmﬁ (/ mn—mFMJ
p RN\ Bp, RN\Bpg,

< ﬁ605.

(2.20)

IN

Since € is arbitrary, combining (2.19)) with (2.20]), we have
w

(2.21) = &(x) Jun — upl? dz = o(1)
P JrRN
and
1 [
/5@Mwwwwﬁms/fmmwwwm,
P JrN P JrN
thus,

“/ £(2) (Junl? — Jum — uol” — up|?) = o(1),
D JrRN
that is, (2.10) holds.

Now, we consider the case {u,} is a (PS) sequence such that ®(u,) — d and ¥ (u,) —

0. It follows from ([2.6)) and ({2.7)) that
(2.22) Oy (uy, —ug) =d— Py(ug) +o(1) and &) (u, — ug) = =P (uo) + o(1),

we show that @) (up) = 0. For every ¢ € C§°(RY), it follows from (2.13)) and the fact that
Up — ug in LS _(RY) that

loc

/ (f (@, un) = f(2,u0)) P dx = / (f (@, un) = f(2,u0)) P dx = o(1)
RN

supp ¢

M/RN (2) <\un\p_2 un — |ug[P~? Uo) Ydr = M/Suppwé“(:c) <\un\p_2 Uy, — |uglP ™2 uo) Y de
=o(1)
which implies that
() (u0). ) = lim (@) (un), ) = 0.

Hence, ®) (up) = 0, which together with the second equation of ([2.22)) shows that @ (u, —
ug) — 0 as n — oo. Consequently, (2.8]) holds and the proof is complete. O

Lemma 2.5. Let (V1)—(V3) and (F1)—(F3) be satisfied, there exists Ao > 0, any (PS) se-

quence of @y has a convergent subsequence for all A > Ag.
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Proof. We adapt an argument in [17]. Let {u,} be a sequence such that

®y(uy) —d and ®)\(u,) — 0 for some d € R,

thus
1
L4+ d+ |lunlly > ®r(un) — 7 <<I>/>\(un),un>
11 ) 1
=(--2 - ~F
(5 5) lonl s [ | [, — Pl ) e
1
s (53 ) we@ b a,
RN
hence
1 1 »
L+d+ |lunlly + | = — 9 1Y §(z) |un|” dx
p RN
11 ) 1
253 n ~Up f(2,un) — F(2,up .
_<2 9>Hu HA—i-/RN{euf(wu) (acu)}dm
Since
1 1
Sz P
(2—p)/2 p/2
D)™ ()
b 0 RN RN
11 )
= (5= 3) #1€lyomp Tl
1 1
< (5= §) BB ey lunl
Hence,

1 1
Lt et unls + (3= 5 ) 108 1€lomp
1 1 1
> (5 5) Il [ | gund (o) = Plavun)]| do
2 0 RN |6

11 )
> (2 - 9) |wn ]|y -

This proves that {u,} is bounded in E). Then, passing to a subsequence, we may assume
that u, — ug in E), then u, — ug in LfOC(RN) for 2 < ¢ < 2. Taking wy, := u, — ug, we
have

1
lwall3 < / AV (x)w? dm+/ w? dx
(2.23) Ab J {erN v (z)>b) v,

< < lonll3 +0(1),
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since wy, — 0 in Ey and V(x) < b on a set of finite measure. Combining this with ([2.1])
and the Holder inequality, we obtain for 2 < ¢ < o < 2. Given v € (0,2}), we have

HwnHZ < Hwan(u—a)/(V—Q) HwnHZ(a—z)/(y_g)

L\ ey w-2) (o—2)/(v—2)
(2.24) < \b leon] [} (v0 [lwn ) +o(1)

L\
) lenllg + o(1).

< ()22 (

For convenience, let F(z,u) = 5 f(z,u)u — F(z,u). It follows from Lemma [2.4{ and (2.21))
that

. ) 1_1 xT) |W. i
gy o T = ) = (@) = (5 ) [ €@ enla

Therefore, there exists M > 0 such that

(2.26) F(x,wy) dx

RN

<M.

Now we note that (;%2 > max {1, %} because g € (2,2%). Fix 7 € (max{l, % ,q_%),

from (2.13), we know if |u| > 1, then |f(z,u)| < cg|u/?"'. Choose R; so large that
1
1

6 —

-
6

1 __ %
2 |u‘q*(q*2>f’

whenever |u| > R;. Then, for |u| large enough, we have

T—1 T—1
0< Flo.) < Suf(e,u) < [1 - 6] uf () < [1 - W] uf(au),

2 |u‘q7(q72)7 2 |y

which implies that
|f (@, u)|”

Jul”

(2.27) < —uf(z,u) — F(z,u) = F(z,u).

N —

Combining this with (2.24)), (2.26) with o = % € (2,2}) and the Holder inequality, we

p-
obtain for large n
- 1/7 2/c
dx / lwn|” dz
‘WMZRl

/ [z, wp)wy, de < /
|wn|>R1 |wn|>R1

1/7
< (/ F(w,wn) dx) loom 2
(2.28) ol >Ry

1\ 2=/ [(=2)¢]
< Ml/T(,}/V,YO)QD(U—Q)/[(V—Q)O'] ()

Ab
1\,
—cr(55) el 4o

[z, wn)

Wn

2
laonl[X + o(1)
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where c; = Ml/T(fy,/yo)z”("*m/[(”*z)”] >0, 0, = (27((1;:3 > 0. In addition, using (2.13)) and
(2.24]), we have

[ twendes [ (e CRU)olda
lwn |[<R4 lwn|<R1

(2.29) _ CR{™
=T
cg
= % s + 00,

2
laonllX + o(1)

where cg = C’ER({%. Consequently, combining (2.21)), (2.28) with (2.29), we get
o(1) = (@ (wn),wn)

— 2 _ _ p
— Nl = [ Fwwntondo = [ €la)lonl? da

S fim2 e (2N etz o

Choosing Ag > 0 large enough such that the term in the brackets above is positive when

A > Ap, we get w, — 0in E), thus u, — ug in E). This completes the proof. ]

Define

D= H MO

where

Iy ={y € C([0,1], Ex) : 7(0) = 0,7(1) = e}.

Proof of Theorem [1.1] By Theorem Lemmas and we obtain that, for each
A > Ao, 0 < p < pp, there exists (PS) sequence {u,} C E) for &5 on E). Then, by
Lemma we can conclude that there exist a subsequence {u,} C Ey and uy; € E)
such that u, — uy 1 in Ey\. Moreover, ®y(uy1) =dy >n > 0.

The second solution of Problem will be constructed through the local minimiza-
tion.

By virtue of , let p > 0 define as in Lemma then it is easy to see that

inf ®)(u) >—00 and inf Py(u)>n>0,
u€B, u€dB,

where B, is the open ball in E\ with radius p and 0B, denotes its boundary. Since
¢ € L¥C-P)(RN RT) and &(x) # 0, we can choose a function ¢ € Ey such that

/ £(x) |ofP do > 0.
RN
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Thus, by (F3) we have

2
016) = 5 1013~ [ Fladoyde =7 [ e(w)lop da

l2
(230) <Gl =E5 [ o ds

<0

for I > 0 small enough. Hence,

—o00 < inf ®,(u) < 0.
u€B,

For n € N sufficiently large, set % € (0, infycom, Pa(u) — infuegp ‘I>>\(u)>, there is wy, € B,
such that

1
(2.31) By (wp) < inf By(u)+ ~.
u€B, n

By the Ekeland’s variational principle, there exists v, € Ep such that
Dy\(vy) < Py(wy,) and  ||wy, — v, <1,
and
1 —
(2.32) D\ (vy,) < <I>,\(u)+ﬁHu—vnH for all u € B,,
while

1
P < inf @ bl f @
A(vn) _ulengp Alu) + - < ugapr A(u).

So v, € B,. Define ¥,,: E\ — R by
1
Wa(u) = Ba(w) + = v

By (2-32)), we have v,, € B, minimizes ¥,, on B,. Therefore, for all ¢ € E) with |¢| = 1,
take t > 0 such that v, + t¢ € B,, then

\Iln(vn + t¢) - \I]n(vn) > 0.

(2.33) ; >

(2.33]) implies

(I’/\(Un + t¢) — (I))\(Un) n 1
t n

which implies

<(I)I>\(Un)a ¢> > _%~
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Hence,
1
(2.34) | @ (vn)]| < -

Passing to the limit in (2.32)) and (2.34)), we conclude that ®)(v,) — inf, .5 @) (u) and
P’ (vy) — 0 as n — oo. Hence, Lemma implies that there exists a nontrivial solution

uy,2 of Problem satisfying

Pr(urz) <0 and [lurell, < p.
Therefore, we can conclude that

Pr(urz2) <0 <n<dy=Px(unn)

for all A > Ag and 0 < p < pp. This completes the proof of Theorem O

3. Concentration of solutions

In the following, we investigate the concentration of solutions and give the proof of The-
orem First, we introduce some fractional spaces, for more details see [27] and [28].

Let o € (0,1) fixed, n > 2a, Q C RY be an open bounded set with smooth boundary.
In the sequel we denote Q = R*V \ O, where

O=(QxQ)cR?® and Q°=RY\Q.

The fractional space X is defined by

X_{ueL2<Q>w>w<y>leL2<Q>},

’$ N y,(?oc-‘rN)/Q

endowed with the norm defined as

1/2
u
(3.1) lully = </ uf? dat+/ ut) 2a+N S dy> .

Let
Xo={ueX :u=0ae inRV\Q}.

Then, by [27], there exists a constant R = R(N, o, ) > 1, such that for any u € X

|u \U

u( 1/2
u\xr
e, = ( / ) MN o dy>

thus,
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is a norm on Xy equivalent to the usual one defined in (3.1). Furthermore, X is a Hilbert

space.

Let W be the restriction of @ on Xj, then,

\Il(u):(I))\‘XO( / |u(z b 20+N| dr dy—/QF(a:,u)dx—Z/Qf(x)m’pdw.

Define
D=l 2 POW) anddo =l g WO)
where
Iy ={y € C((0, 1], E3) : 7(0) = 0,25 (7(1)) < 0}
and

T = {y € C([0,1], Xo) : 7(0) = 0, ¥(¥(1)) < 0}.

It is obvious that dg is independent of A. From the above arguments, we can conclude
that U has a mountain pass type solution @ such that U(u) = dy. Since Xy C E) for all
A >0, it is easy to see that 0 < n < dy < dg for all A > Ag and 0 < p < pg.

Now, we claim that ¥(u) is bounded from above. For all u € Xy, it follows from (Fs)
and Fatou’s lemma that

v 1 —u(y))? P2
lim (tu) = Mdmdy— hm /F x, tu) dox — hm tp /5(37) |ul” dx
Q

t—oo 12 2 o |:L'—y|2a+N
1 _ 2 1 tP—2

<1 %dwdy—liminf—z/ F(z,tu) de — lim /f(x) |ul” dz

o |$_y| t—oo 12 Jq t—oo P Q
2 —2
_ F(x,t P
%dmg—/hmmf (x; W gz — 1im * /ﬁ(m) |ul” dz

o |x—y| « q t—oo t t—=oo P Q

= —00,

therefore, W(u) is bounded from above. Take Cy > dy, thus
0<n<dy<dy<Cy

forall A > Ag and 0 < p < pp.

Proof of Theorem [1.2 We follow the argument in [3]. For any sequence A\, — oo, let
Up; = uy, ; be the critical points of ®, obtained in Theorem for i = 1,2. Since

(3.2) Dy, (un2) <0< n<dy, =, (un1)
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and

C 1
Co + ?0 Hun,zHAn > q))\n (un,z) - 5 <CI)/ n(un,i)aun,i>

B 1 1 12 1 ) o .
= <2 - 0> Hun,zH)\n +/]RN (ef(xaun,l)un,l F(J:?unﬂ)) dx
_ <g _ Z) /RN £(@) [unl” do

11 2 B /
> (- - = . (=2 _ = .|P
= (2 0) ”Un,Z”)\n <p 0) RN g(x) |Un,2| dx,
which implies

(3.3) [[n i

r S ||um||/\n < ¢y for large n,

where the constant ¢y is independent of A,. Therefore, for large n we may assume that
Up; — Ug,; in Ey, and up; — up; in Lf’OC(RN) for 2 < ¢ < 2}. From Fatou’s lemma, we
have

2
Hun,iH)\n _ 07

n—oo n—oo

/ V(z) [ugi|* dz < lim inf/ V(2) [un,i|* dz < lim inf
RN RN

n
which implies that up; = 0 a.e. in RV \ V=1(0). Now for any ¢ € C§°(Q), since
<<I>’An (un,i), ) =0, it is easy to verify that

/Q <(—A)a/2u0,i(—A)a/2<p) dr — /Q flz,up,)pdr — ,u/gﬁ(x) |u07¢|p72 upipdr =0,

which implies that ug; is a weak solution of Problem ((1.2)) by the density of C§°(Q2) in Xj.
Next, we show that u,; — ug; in LYRN) for 2 < ¢ < 2%. Otherwise, by Lions
vanishing lemma [224|39], there exist 6 > 0, Ry > 0 and x,, € RY such that

/ |um- — 'U/(]’i|2 dx Z (5
BRO (CCTL)

Since up; — ug,; in L2 (RY), |z,| — co. Hence meas (Bg,(z,) NV,) — 0. By the Hélder

inequality, we have

/ ‘Unﬂ' — uO,i‘2 dCL'
BRO (.Tn)ﬁvb
25-2)/2" 2 ?/%
< (meas( B ) V)22 ([ s =)
R
Consequently,
Junil, = Mab [ Jund?

BRry (zn){z€RN:V (2)>b}

|t i — ol da

)\nb/
BRry (zn)N{z€RN:V (2)>b}
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=Mb (/ [tn,; — qu\Q dr — / [Up,; — uoﬂ-|2 dx + o(l))
BRO (xn) BRO (xn)mvb

— 00,

which contradicts (3.3). Next, we show that u, ; — uo; in H*(RY). Recall that ||ul| ;« (RN)
< 7o |Ju||y for all uw € Ex, A > Ao, therefore it suffices to show that w,; = ug,; in E),.
By virtue of <(I>’)\n (un,i),un7i> = <<I>’>\n (unﬂ-),uo,» = 0, we have

unall3, < /RN <((_A)a/zun,z-

= (@, uni)un,; de + ,u/ &(x) luni|? da.
RN RN

2
+ )\nV(:c)ugm) dx
(3.4)

Similarly, we obtain
a/Qunji(—A)aﬂUO,i + )\0V(l’)un7in,i) dx
n,i(—A)a/Quw + )\nV(az)unjiuoyi) dx

. 2 —_— ] [e—
Juoilh, = Jim [ (=)
(3.5) = lim ((—A)o‘/2u
RN

n—oo

= lim (@, un ) uo,; de + ,u/N &(x) ]um-]p_Q Unp,iUo,; dT.
R

n—oo RN

Next we prove

(3.6) f(@, uni) (un,; — vo,i) do = o(1)
RN
and
, nil” = Junl? % uniuo,i ) dz = o(1).
(37) [ @) (funal? =l o) do = of1)

From (F;) and (F2), for any € > 0, there exists C, such that
|f(z,t)| <elt| +Cc|t|* " forall t €R.

Since the embedding Ey < L*(R¥) is continuous for s € [2,2%] and u,,; — ug; in L (RY)
for 2 < r < 2%, then by the Holder inequality, we have

. f(@,un ) (un,i — up ;) de

<e / ’Un,i
RN

< elfunilly [luni — ol

|un7i — uO,i| dr + C, /N |un,i|q_1 ’Un,i — UO,i’ dzx
R

o+ Cellungll 87 i — wosll, -
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Taking the limit in the above inequality and using the arbitrariness of €, conclusion (3.6

follows. Analogously, we deduce

‘:LL/N E(l‘) <‘un,i|p - |un,i|p72 un,i“O,i) dz
R

= 'M/ E() [tn i P2 Ui (Un i — o) da
RN

<n / EC)) [tmal? ™ s — 0] d
]RN

p/2
< p ”f”z/(z_p) </RN |un’i|2(p71)/p [y uO,i’2/p dx)

-1
< 111y Nl B llttns = woily -

This shows that (3.7) holds. Therefore, it follows from (3.4)), (3.5)), (3.6) and (3.7) that

lim sup ||Unz||§\0 < Juo,il io :
n—oo

On the other hand, the weakly lower semi-continuity of norm yields

2 . 9 . 9
a3, <t in fun,il 5, < limsup i3,
ThUS, Uni — U0,i in E>\0’ and so

(3.8) Un i — ug; in H*(RY).

Using (3.2)), (3.8) and the fact that constant 7 is independent of \,,, we have

1 2
2/ ‘(—A)O‘/Qum‘ dx — / F(z,u01) dz — “/ €(x) Juo 1|’ dz >n >0
Q Q P JrN
and
: )( A)o/? ‘2d F dv — £ Pdz <0
5 - up,2| AT — (5177“0,2) T — () |U0,2\ T = U,
Q Q b JrN

which implies that ug 1 # 2. This completes the proof. O
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