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Multiple Solutions to a Dirichlet Problem on the Sierpinski Gasket

Marek Galewski

Abstract. We investigate the existence of at least two nontrivial solutions to a Dirichlet

problem on the Sierpinski gasket. We develop some general abstract multiplicity

theorem which we apply to problem under consideration. Our approach relies on

the fact that the action functional is a difference of two continuously differentiable

convex functionals and therefore we can apply the ideas related to the Fenchel-Young

conjugacy together to get one critical point together with the mountain pass geometry

to get the other one.

1. Introduction

Let V stand for the Sierpiński gasket, V0 be its intrinsic boundary, let ∆ denote the weak

Laplacian on V and let measure µ denote the restriction to V of normalized logN/ log 2-

dimensional Hausdorff measure, so that µ(V ) = 1. The aim of this paper is to consider

the existence of at least two nontrivial solutions to the following boundary value problem

on V

(1.1)

∆x(y) + a(y)x(y) = λg(y)f(x(y)) for a.e. y ∈ V \ V0,

x|V0 = 0,

where λ > 0 is a numerical parameter and where f : R → R is a continuous function.

Solutions to (1.1) are understood in the weak sense which we will describe in a more

detail later.

Define F : R → R by F (ξ) =
∫ ξ

0 f(x) dx for every y ∈ R. Concerning the nonlinear

term, we will employ the following conditions.

A1. a ∈ L1(V, µ) and a ≤ 0 almost everywhere in V ;

A2. g ∈ C(V ) with g ≤ 0 and such that the restriction of g to every open subset of V is

not identically zero;
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A3. there exist constants θ > 2, M > 0 such that for v ∈ R with |v| ≥M ,

0 < θF (v) ≤ vf(v);

A4. there are positive constants M1, and β such that

max
y∈V,|v|≤M1

|g(y)f(v)| ≤ M1

2(β + 1)(2N + 3)2
;

A5. function v → F (v) is convex on R.

We note that Assumptions A1–A4 lead to the existence of a solution to (1.1) for any

value of parameter λ > 0 by the Mountain Pass Theorem as suggested in [12].

On the other hand some convexity relations pertaining to the usage of a Fenchel-

Young transform allow for the restriction of a numerical parameter λ to some interval

with Assumptions A1, A2, A5 we get the existence of at least one solution located in

some closed ball in the space H1
0 (V ). Coining the two approaches together we obtain

the existence of at least two nontrivial solutions. To the best of author’s knowledge such

problem was not studied in the setting of the Sierpiński gasket before.

Remark 1.1. Note that Assumption A4 implies that limv→0
|f(v)|
|v| = 0, while not the other

way round. This provides some difference as concerning the application our ideas to the

classical Laplacian for which the behaviour around zero must be assumed.

Our approach towards multiplicity is as follows. The first critical point (which lies

in the ball, perhaps on the boundary of the ball) is obtained through the Weierstrass

Theorem, direct method of the calculus of variations and convexity relations with the use

of a Fenchel-Young conjugacy. The second critical point, under assumption that the PS-

condition is satisfied, is obtained with the aid of a general type of a Mountain Pass Lemma.

The first critical point corresponds to the argument of a minimum of a functional over a

closed ball which need not belong to the interior of the ball. Therefore we cannot use the

classical variational tool such as Ekelenad’s variational principle in order to demonstrate

that the minimizer is a critical point. Ekelenad’s variational principle is used in [2] for a

functional satisfying the PS-condition and also considered on a closed ball. This approach

towards obtaining a critical point over some not necessarily open set is sketched in [24]

and further developed in several papers, see for example [15] and references therein.

The Sierpiński gasket has the origin in a paper by Sierpiński [29]. This fractal do-

main can be described as a subset of the plane obtained from an equilateral triangle by

removing the open middle inscribed equilateral triangle of 1/4 of the area, removing the

corresponding open triangle from each of the three constituent triangles and continuing

in this way.
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The study of the Laplacian on fractals started in physical sciences in [1, 26, 27]. The

Laplacian on the Sierpiński gasket was first constructed in [16, 19]. Among the contribu-

tions to the theory of nonlinear elliptic equations on fractals we mention [6,10,12,18,30].

Concerning some recent results by variational methods and critical point theory pertain-

ing to the existence and the multiplicity of solutions by the recently developed variational

tools we must mention the following sources [4, 5, 7, 23].

Let us mention [2,25] for some recent results concerning a general type of critical point

theorem on a bounded set (with the PS-condition which we do not need as concerns one

critical point). Note that in [25] the bounded critical point theorem due to Schechter

is investigated, so the setting is in a Hilbert space, while in [2] it is a Banach space.

The application of another type of critical point on closed sets has just been developed

by Marano, see [21], and to [22] for applications to differential inclusions, and also some

earlier result [20].

2. Remarks on the abstract fractal setting

Concerning the Sierpiński gasket we follow remarks collected in [5]. Let N ≥ 2 be a

natural number and let p1, . . . , pN ∈ RN−1 be so that |pi − pj | = 1 for i 6= j. Define, for

every i ∈ {1, . . . , N}, the map Si : RN−1 → RN−1 by

Si(x) =
1

2
x+

1

2
pi.

Let S := {S1, . . . , SN} and denote by G : P(RN−1) → P(RN−1) the map assigning to a

subset A of RN−1 the set

G(A) =
N⋃
i=1

Si(A).

It is known that there is a unique non-empty compact subset V of RN−1, called the

attractor of the family S, such that G(V ) = V (see, [11, Theorem 9.1]).

The set V is called the Sierpiński gasket in RN−1. It can be constructed inductively

as follows:

Put V0 := {p1, . . . , pN} which is called the intrinsic boundary of V and define Vm :=

G(Vm−1), for m ≥ 1, and put V∗ :=
⋃
m≥0 Vm. Since pi = Si(pi) for i ∈ {1, . . . , N}, we

have V0 ⊆ V1, hence G(V∗) = V∗. Taking into account that the maps Si, i ∈ {1, . . . , N},
are homeomorphisms, we conclude that V∗ is a fixed point of G. On the other hand,

denoting by C the convex hull of the set {p1, . . . , pN}, we observe that Si(C) ⊆ C for

i = 1, . . . , N . Thus Vm ⊆ C for every m ∈ N, so V∗ ⊆ C. It follows that V∗ is non-empty

and compact, hence V = V∗.

V is considered to be endowed with the relative topology induced from the Euclidean

topology on RN−1.
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Denote by C(V ) the space of real-valued continuous functions on V and by

C0(V ) := {u ∈ C(V ) | u|V0 = 0} .

The spaces L2(V, µ), C(V ) and C0(V ) are endowed with the usual norms, i.e., the norm

induced by the product

〈v, h〉 =

∫
V
v(y)h(y) dµ

and supremum norm ‖·‖∞, respectively.

For a function u : V → R and for m ∈ N, let

(2.1) Wm(u) =

(
N + 2

N

)m ∑
x,y∈Vm
|x−y|=2−m

(u(x)− u(y))2.

Since Wm(u) ≤Wm+1(u) for every natural m, we can put

W (u) = lim
m→∞

Wm(u).

Define now

H1
0 (V ) := {u ∈ C0(V ) |W (u) <∞} .

H1
0 (V ) is a dense linear subset of L2(V, µ) equipped with the ‖·‖2 norm. We now endow

H1
0 (V ) with the norm

‖u‖ =
√
W (u).

There is an inner product defining this norm: for u, v ∈ H1
0 (V ) and m ∈ N let

Wm(u, v) =

(
N + 2

N

)m ∑
x,y∈Vm
|x−y|=2−m

(u(x)− u(y))(v(x)− v(y)).

Put

W(u, v) = lim
m→∞

Wm(u, v).

W(u, v) ∈ R and the space H1
0 (V ), equipped with the inner productW, which induces

the norm ‖·‖, become real Hilbert spaces. Moreover,

(2.2) ‖u‖∞ ≤ (2N + 3) ‖u‖ , for every u ∈ H1
0 (V ),

and the embedding

(H1
0 (V ), ‖·‖) ↪→ (C0(V ), ‖·‖∞)

is compact, see also, [14] for further details.

Note that (H1
0 (V ), ‖·‖) is a Hilbert space which is dense in L2(V, µ), that W is a

Dirichlet form on L2(V, µ). Let Z be a linear subset of H1
0 (V ) which is dense in L2(V, µ).
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Then, in [12] it is defined a linear self-adjoint operator ∆: Z → L2(V, µ), the (weak)

Laplacian on V , such that

−W(u, v) =

∫
V

∆u · v dµ, for every (u, v) ∈ Z ×H1
0 (V ).

Let H−1(V ) be the closure of L2(V, µ) with respect to the pre-norm

‖u‖−1 = sup
h∈H1

0 (V )
‖h‖=1

|〈u, h〉| ,

v ∈ L2(V, µ) and h ∈ H1
0 (V ). Then H−1(V ) is a Hilbert space. Then the relation

−W(u, v) = 〈∆u, v〉 ∀ v ∈ H1
0 (V ),

uniquely defines a function ∆u ∈ H−1(V ) for every u ∈ H1
0 (V ).

While we mainly work with the weak Laplacian, there is also a directly defined version.

We say that ∆s is the standard Laplacian of u if ∆su : V → R is continuous and

lim
m→∞

sup
x∈V \V0

|(N + 2)m(Hmu)(x)−∆su(x)| = 0,

where

(Hmu)(x) :=
∑
y∈Vm

|x−y|=2−m

(u(y)− u(x)),

for x ∈ Vm. We say that u ∈ C0(V ) is a strong solution of (1.1) if ∆su exists and is

continuous for all x ∈ V \ V0, and

∆u(x) + a(x)u(x) = λg(x)f(u(x)), ∀x ∈ V \ V0.

The existence of the standard Laplacian of a function u ∈ H1
0 (V ) implies the existence of

the weak Laplacian ∆ (see, [12]).

3. Abstract critical point theorems

In this section we are concerned with the abstract multiplicity tools. Let us introduce

the space setting and the structure condition required on the action functional under

consideration. We assume that

H1. Φ: E → R is a convex, continuously Fréchet differentiable functional with derivative

ϕ : E → E∗;

H2. H : E → R is a continuously Fréchet differentiable functional with derivative h : E →
E∗;
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H3. operator h : E → E∗ is compact;

H4. there exist constants α, α1 > 1, γ > 0 such that

γ ‖v‖αE ≤ 〈ϕ(v), v〉 for all v ∈ E

and

lim sup
‖x‖→∞

Φ(x)

‖x‖a1
= +∞;

H5. H is a convex functional.

〈·, ·〉 denotes the action of a derivative on a suitable element or else a duality pairing.

We will determine such a value λ∗ > 0 that for each λ ∈ (0, λ∗] the corresponding Euler

action functional J : E → R
J(u) = Φ(u)− λH(u)

has a critical point on Bρ, where Bρ is a arbitrarily chosen closed ball centered at 0 with

radius ρ. This implies the solvability of

(3.1) ϕ(u) = λh(u), u ∈ E

in sense of equality in E∗, i.e.,

(3.2) 〈ϕ(u)− λh(u), x〉 = 0 for any x ∈ E.

This equation may be viewed as the Euler-Lagrange equation for J . In the sequel when

we write equation of type (3.1) we mean it is satisfied in a sense provided in relation (3.2).

We see that Conditions H1–H4 can be regarded as a kind of generic assumptions that

are typically satisfied in problems considered by the critical point theory method. They

easily hold for our model problem as we shall show later. The only demanding one is H5.

Note that convexity of H is related to monotonicity of h.

We begin with some general result following only by convexity. This result involves

only basic convexity calculations and it is close to its counterpart from [15] but since

we provide a shorter and more clear proof, we decided to place it here. Also the abstract

setting in [15] is somehow different. Now, we provide necessary mathematical prerequisites

which are needed for the proof. The Fenchel-Young dual for a convex continuously Fréchet

differentiable function H : E → R, see [9], reads

H∗(v) = sup
u∈E

{
〈v, u〉E∗,E −H(u)

}
, H∗ : E∗ → R.

We have the following relations

H(u) +H∗(v) = 〈v, u〉 ⇐⇒ v = h(u),
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where h stands for the Fréchet derivative, and Fenchel-Young inequality

〈p, u〉E∗,E ≤ H(u) +H∗(p)

is valid for any p ∈ E∗, u ∈ E.

A functional J ∈ C1(E,R) satisfies the Palais-Smale condition (PS-condition for short)

if every sequence (un) such that {J(un)} is bounded and J ′(un) → 0, has a convergent

subsequence.

Lemma 3.1 (Mountain Pass Lemma, MPL Lemma). [17] Let E be a Banach space and

assume that J ∈ C1(E,R) satisfies the PS-condition. Let S be a closed subset of E which

disconnects E. Let x0 and x1 be points of E which are in distinct connected components

of E \ S. Suppose that J is bounded below in S, and in fact the following condition is

verified for some b

(3.3) inf
x∈S

J(x) ≥ b and max {J(x0), J(x1)} < b.

If we denote by Γ the family of continuous paths γ : [0, 1]→ E joining x0 and x1, then

c := inf
γ∈Γ

max
s∈[0,1]

J(γ(s)) ≥ max {J(x0), J(x1)} > −∞

is a critical value and J has a non-zero critical point x at level c.

Now our abstract critical point theorem reads.

Theorem 3.2. Assume that H1, H2, H5 are satisfied. Fix some λ∗ > 0 and let u, v ∈ E
be such that

(3.4) J(u) ≤ J(v) and ϕ(v) = λ∗h(u).

Then u is a critical point to J , and thus it solves (3.1).

Proof. We assume for clarity of notation that λ∗ = 1. If this is not the case, we put

H1 = λ∗H and replace H with H1 in our reasoning.

We define p = ϕ(v) = h(u). Since d
duΦ = ϕ and d

duH = h, we have by the definition of

p and by the properties of the Fenchel-Young transform

(3.5) Φ(v) = 〈p, v〉 − Φ∗(p) and H(u) = 〈u, p〉 −H∗(p).

By the Fenchel-Young inequality −H(v) ≤ H∗(p)−〈p, v〉 and by the first relation in (3.5)

we have

Φ(u)−H(u) = J(u) ≤ J(v) = Φ(v)−H(v)

= 〈p, v〉 − Φ∗(p)−H(v) ≤ H∗(p)− Φ∗(p).
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So by the Fenchel-Young inequality

〈u, p〉 ≤ Φ(u) + Φ∗(p) ≤ H(u) +H∗(p) = 〈u, p〉 .

Thus 〈u, p〉 = Φ(u) + Φ∗(p), and so, recalling the definition of p we see that

p =
d

du
Φ(u) = ϕ(u) = h(u).

Remark 3.3. Theorem 3.2 generalizes the main result from [15] in that we do not require

J to be minimized over some set. Instead we impose relations (3.4) to be satisfied. Note

that merely Gateaux differentiability of both Φ and H would suffice for the proof. No

growth conditions are required as well.

In order to apply Theorem 3.2 we make precise assumptions which lead to have rela-

tions (3.4) satisfied. Thus a special case of Theorem 3.2 can now be stated as follows.

Theorem 3.4. Let E be an infinite dimensional reflexive Banach space and let Bρ be

fixed. Assume that H1–H5 are satisfied. Then there exists λ∗ > 0 such that for each

λ ∈ (0, λ∗] there exists u ∈ Bρ with

(3.6) J(u) = inf
x∈Bρ

J(x)

and such that u is a critical point to J , and thus it solves (3.1).

Proof. By Assumption H3 we can chose β1 > 0 such that ‖y‖E∗ ≤ β1 for all y ∈ h(Bρ).

Put λ∗ = γρα−1

β1
and fix some 0 < λ ≤ λ∗. Consider J on Bρ. Observe that J is sequentially

weakly l.s.c. on Bρ. Indeed, Φ has this property as a convex, continuous functional, while

H is weakly continuous since it has a compact derivative. Since Bρ is weakly compact

some u exists for which (3.6) holds.

Now consider on E functional J1 : E → R given by the formula

J1(w) = Φ(w)− λ 〈h(u), w〉 .

Since Φ is weakly l.s.c. and is coercive, so is J1 and therefore we get the existence of an

argument of a minimum to J1 over E, which we denote by v. Obviously v is a critical

point to J1 and so, having calculated a derivative, we obtain

(3.7) 〈ϕ(v), x〉 − λ 〈h(u), x〉 = 0 for any x ∈ E.

This means that v solves

(3.8) ϕ(v) = λh(u)
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in the weak sense. Observe that v belongs to Bρ. Indeed, put x = v in (3.7). Thus from

H3, the definitions of β1 and λ∗ and since λ ≤ λ∗, we see that

γ ‖v‖αE ≤ 〈ϕ(v), v〉 = λ 〈h(u), v〉 ≤ λ ‖h(u)‖E∗ ‖v‖E ≤ λβ1 ‖v‖E .

Therefore ‖h‖α−1
E ≤ λβ1γ ≤ ρ

α−1 and h ∈ Bρ.
The proof that u is a critical point now follows from Theorem 3.2 since J(u) =

infx∈Bρ J(x) ≤ J(v) and since (3.8) holds.

Some comments on the assumptions are also in order.

1. Instead of assuming that h is a compact operator, we could assume that for all λ > 0

functional J is weakly l.s.c. on E since we assume that h is compact only to get the

weak continuity of H.

2. In the setting of a Hilbert space, i.e., when E is a Hilbert space, instead of assuming

that Φ is coercive, we could impose that ϕ is a bounded operator, i.e., bounded on

bounded sets. Then it follows that Φ is coercive, compare with [8, Lemma 6.2.18].

In this section we are concerned with the existence of multiple solutions.

Theorem 3.5. Let E be an infinite dimensional reflexive Banach space. Assume that

H1–H5 are satisfied. Take some ρ > 0. Then there exists λ∗ > 0 such that for each

λ ∈ (0, λ∗] there exists u ∈ Bρ with

J(u) = inf
x∈Bρ

J(x)

and such that u is a critical point to J , and thus it solves (3.1). If for some v ∈ Bρ it

holds that J(v) < 0 and J(0) = 0 or else h(0) 6= 0 and J(0) = 0, then u is non-trivial.

Assume additionally there exists λ∗1 ≤ λ∗ that for all λ ∈ (0, λ∗1[

(a) J satisfies the PS-condition,

(b) J(0) < infx∈∂Bρ1 J(x) for some ρ1 > ‖u‖E,

(c) there exists w ∈ E \Bρ1 with J(w) ≤ 0.

Then for all λ ∈ (0, λ∗1[ functional J has two nontrivial critical points, namely u and

another non-zero critical point z different from u.

Proof. In order to get the second critical point, we use Lemma 3.1 taking x0 = u and

x1 = w. Note that condition (3.3) follows by (b) and (c). The existence of a second

non-zero critical point readily follows by the mountain pass argument. The solutions are

distinct since otherwise we would have that J is constant on level c and so there are

infinitely many solutions in fact.

Symbol (0, λ∗1[ means that the interval is either right open or closed.
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4. Multiple solutions for (1.1)

In this section we apply our abstract results to problem (1.1). Firstly we observe that by

(2.2) for every y ∈ V

(4.1) |x(y)| ≤ ‖x‖∞ ≤ (2N + 3) ‖x‖H1
0 (V ) .

Using the first inequality in (4.1) and the fact that µ(V ) = 1 we get

‖x‖L2(V,µ) ≤ ‖x‖∞ ≤ (2N + 3) ‖x‖H1
0 (V )

for any x ∈ H1
0 (V ).

We say that a function x ∈ H1
0 (V ) is called a weak solution of (1.1) if

W(x, v)−
∫
V
a(y)x(y)v(y) dµ+ λ

∫
V
g(y)f(x(y))v(x) dµ = 0

for every v ∈ H1
0 (V ). Further on whenever we write that we obtain a solution to (1.1) we

mean the weak one. The functional J : H1
0 (V )→ R given by

(4.2) J(x) =
1

2
‖x‖2 − 1

2

∫
V
a(y)x2(y) dµ+ λ

∫
V
g(y)F (x(y)) dµ, ∀x ∈ H1

0 (V ),

is the Euler action functional attached to problem (1.1).

Lemma 4.1. Assume that A1, A2 holds. Then, the functional J : H1
0 (V )→ R defined by

relation (4.2) is a C1(H1
0 (V ),R) functional. Moreover,

J ′(x)(w) =W(u,w)−
∫
V
a(y)x(y)w(x) dµ+ λ

∫
V
g(y)f(x(y)) dµ, ∀w ∈ H1

0 (V )

for each point x ∈ H1
0 (V ). In particular, x ∈ H1

0 (V ) is a weak solution of problem (1.1)

if and only if x is a critical point of J . J is also weakly l.s.c.

Proof. From results in [23] we see that J ∈ C1(H1
0 (V ),R). Proposition 4.5 from [6] states

that x→
∫
V g(y)F (x(y)) dµ is weakly continuous on H1

0 (V ). So all assertions follow.

With Assumptions A1–A4 and Theorem 3.5 from [12] we have the following

Proposition 4.2. Suppose that A1–A4 hold. Then for any λ > 0 problem (1.1) has at

least one nontrivial solution.

Concerning the multiple solutions we have the main result of this section where we

need only assume that F is convex in addition to assumptions leading to a mountain pass

solution. Recall that constant β is defined in A4.
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Theorem 4.3. Assume that A1, A2, A5 are satisfied and that f(0) 6= 0. Then there exist

λ∗1 > 0, λ∗ < β, such that for all 0 < λ ≤ λ∗1 problem (1.1) has at least two nontrivial

solutions.

Proof. We need to show that Assumptions H1–H5 of Theorem 3.5 are satisfied. We must

also define constants λ∗ and λ∗1. We put E = H1
0 (V ), Z = L2(V, µ) and Φ, H : H1

0 (V )→ R
given by

Φ(x) =
1

2
‖x‖2 − 1

2

∫
V
a(y)x2(y) dµ, H(x) = −

∫
V
g(y)F (x(y)) dµ.

We see that

〈ϕ(x), v〉 =W(x, v)−
∫
V
a(y)x(y)v(y) dµ and 〈h(x), v〉 =

∫
V
g(y)f(x(y))v(y) dµ.

Now by Assumptions A1, A2, A5 and Lemma 4.1, Assumptions H1, H2, H5 hold. By

Proposition 4.5 from [6] it follows that H has a compact derivative, so that H3 is satisfied.

We see that α, α1 = 2, γ = 1 and c = (2N + 3). Thus we also have H4 satisfied.

Theorem 3.5 from [12] suggest that we should take such a ball Bρ on which the first relation

in mountain geometry conditions (3.3) is verified. Indeed by formula (3.8) from [12] we

see that for any λ < β it follows that

J(x) ≥ (β − λ)M2
1

2(β + 1)(2N + 3)2

for any x from ∂Bρ and where ρ = M1
(2N+3) . Note that |x(y)| ≤ M1 for y ∈ V and any

x ∈ Bρ. By A4 and since µ(V ) = 1, we have for any x ∈ Bρ∫
V
g(y)F (x(y)) dµ ≤ M1

2(β + 1)(2N + 3)2
:= β1

where β1 is defined at the beginning of the proof of Theorem 3.4. Now, we see that

λ∗ =
γρα−1

β1
=

ρ

β1
= 2(β + 1)(2N + 3) > β.

Thus we can fix λ∗1 < β and use Theorem 3.5 to get the assertion.

Note that without Assumptions A3, A4 we do not have mountain geometry, but still

Theorem 3.4 provides us with non-trivial critical point. Indeed, we have the following

Theorem 4.4. Assume that A1, A2 and A5 are satisfied and that f(0) 6= 0. Then there

exists λ∗ > 0 such that for all 0 < λ ≤ λ∗ problem (1.1) has at least one nontrivial

solution.
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Concerning the applicability of our results for Theorem 4.4 any convex function is

sufficient. As for Theorem 4.3 we are also a bit restricted by the AR condition from

Assumption A3 thus not every convex function is eligible. For example we may take

function F (x) = 1
4x

4 + 1
2x

2 +x+sinx in which case we take θ = 3 and M sufficiently large

so that 2x+3 sinx−x cosx+ 1
2x

2− 1
4x

4 ≤ 0 for |x| ≥M . Note that f(x) = x+cosx+x3+1

does not satisfy limv→0
|f(v)|
|v| = 0.

We end this note with some comment concerning regularity of solutions. If we assume

additionally that a ∈ C(V ), then by Lemma 2.16 from [12], it follows that every weak

solution of the problem (1.1) is also a strong solution.
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