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RICCI SOLITONS ON THREE-DIMENSIONAL η-EINSTEIN ALMOST
KENMOTSU MANIFOLDS

Yaning Wang and Ximin Liu

Abstract. Let the metric g of a three-dimensional η-Einstein almost Kenmotsu
manifold M be a Ricci soliton, we prove that M is a Kenmotsu manifold of
constant sectional curvature −1 and the soliton is expanding.

1. INTRODUCTION

In 1982, R. S. Hamilton [11] introduced the notion of Ricci flow to find a canonical
metric on a smooth manifold. The Ricci flow is an evolution equation for metrics on
a Riemannian manifold defined as follows:

(1.1)
∂

∂t
gij(t) = −2Rij.

On a Riemannian manifold (M, g), a Ricci soliton (see Hamilton [12]) is a generaliza-
tion of the Einstein metric (that is, the Ricci tensor Ric is a constant multiple of the
Riemannian metric g) and is defined by

(1.2)
1
2
LV g + Ric + λg = 0

for a constant λ and a vector field V onM , where L denotes the Lie-derivative operator.
Obviously, a Ricci soliton with V zero or a Killing vector field reduces to an Einstein
equation. The Ricci soliton is said to be shrinking, steady and expanding according
as λ is negative, zero and positive respectively. Compact Ricci solitons are the fixed
points of the Hamilton’s Ricci flow projected from the space of metrics onto its quotient
modulo diffeomorphisms and scalings, and often arise as blow-up limits for the Ricci
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flow. If the vector field V is the gradient of a potential function −f , then g is called
a gradient Ricci soliton and equation (1.2) becomes

(1.3) Hessf = Ric + λg,

where Hessf denotes the Hession of a smooth function f on M which is defined by
Hess(f) = ∇2f . Following G. Perelman [18], we know that a Ricci soliton on a
compact Riemannian manifold is always a gradient Ricci soliton.
Recently, Ricci solitons and gradient Ricci solitons on some kinds of almost contact

metric manifolds of dimension three were studied by many authors. For instances, De
et al. [6] and Turan et al. [20] investigated Ricci solitons and gradient Ricci solitons on
three-dimensional normal almost contact metric manifolds and three-dimensional trans-
Sasakian manifolds respectively. Moreover, A. Ghosh [9] and J. H. Cho [3] classified
Ricci solitons on three-dimensional Kenmotsu manifolds respectively. In addition,
Ricci solitons on f -Kenmotsu manifolds and N (k)-quasi-Einstein manifolds were also
studied by C. Calin and M. Crasmareanu [2] and M. Crasmareanu [4] respectively. With
regard to the studies of Ricci solitons on Kenmotsu manifolds of dimension greater than
3, we refer the reader to A. Ghosh [10]. Generalizing some corresponding results of
Ricci solitons on three-dimensional Kenmotsu manifolds mentioned above, the present
paper is devoted to investigating Ricci solitons on a type of almost Kenmotsu manifolds
of dimension three, namely, η-Einstein almost Kenmotsu manifolds, or equivalently,
almost Kenmotsu manifolds with the Reeb vector field belonging to the generalized
k-nullity distribution. For more results on almost Kenmotsu manifolds with the Reeb
vector field belonging to some other nullity distributions, we refer the reader to G.
Dileo and A. M. Pastore [8], A. M. Pastore and V. Saltarelli [16], V. Saltarelli [19], Y.
Wang and X. Liu [21, 22]. Our main result can be presented as follows:
If the metric g of a three-dimensional η-Einstein almost Kenmotsu manifold (M, g)

is a Ricci soliton, then M is a Kenmotsu manifold of constant sectional curvature −1
and the soliton is expanding with λ = 2.
This paper is organized as follows. In a preliminaries section, we recall some well

known basic formulas and properties of almost Kenmotsu manifolds. In section 3,
we completely classify Ricci solitons on an almost Kenmotsu manifold of dimension
three such that the Reeb vector field belongs to the generalized k-nullity distribution.
Moreover, some corollaries of our main theorem can also be seen in the last section.

2. PRELIMINARIES

Following D. E. Blair [1], an almost contact structure on a (2n + 1)-dimensional
smooth manifold M2n+1 is a triplet (φ, ξ, η), where φ is a (1, 1)-type tensor field, ξ a
global vector field and η a 1-form, such that

(2.1) φ2 = −id + η ⊗ ξ, η(ξ) = 1,
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where id denotes the identity mapping, which imply that φ(ξ) = 0, η ◦ φ = 0 and
rank(φ) = 2n. Generally, ξ is called the Reeb vector field or the characteristic vector
field. A Riemannian metric g on M2n+1 is said to be compatible with the almost
contact structure (φ, ξ, η) if

(2.2) g(φX, φY ) = g(X, Y ) − η(X)η(Y )

for any vector fields X, Y ∈ Γ(TM), where Γ(TM) denotes the Lie algebra of all
differentiable vector fields on M2n+1. An almost contact structure endowed with a
compatible Riemannian metric is said to be an almost contact metric structure. The
fundamental 2-form Φ of an almost contact metric manifold M2n+1 is defined by
Φ(X, Y ) = g(X, φY ) for any vector fields X, Y on M2n+1. We may define on the
product manifold M2n+1 × R an almost complex structure J by

J

(
X, δ

∂

∂t

)
=

(
φX − δξ, η(X)

d

dt

)
,

where X denotes the vector field tangent toM2n+1, t is the coordinate of R and δ is a
C∞-function on productM2n+1×R. It is well known [1] that the normality of an almost
contact structure is expressed by the vanishing of the tensor Nφ = [φ, φ] + 2dη ⊗ ξ,
where [φ, φ] is the Nijenhuis tensor of φ. According to D. Janssens and L. Vanhecke
[13], an almost Kenmotsu manifold is defined as an almost contact metric manifold
such that dη = 0 and dΦ = 2η ∧Φ. Consequently, the normality of the almost contact
metric structure of an almost Kenmotsu manifold (M2n+1, φ, ξ, η, g) is expressed by

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX

for any vector fields X, Y . A normal almost Kenmotsu manifold is said to be a
Kenmotsu manifold (see [13]). It is known [14] that a Kenmotsu manifold M2n+1 is
locally isometric to a warped product I ×θ M2n, where M2n is a Kählerian manifold,
I is an open interval with coordinate t and the warping function θ = cet for some
positive constant c.
We consider two tensor fields l = R(· , ξ)ξ and h = 1

2Lξφ on an almost Kenmotsu
manifold (M2n+1, φ, ξ, η, g), where R is the Riemannian curvature tensor of g and L
is the Lie differentiation. Following Kim and Pak [15], the two (1, 1)-type tensor fields
l and h are symmetric and satisfy

(2.3) hξ = 0, lξ = 0, trh = 0, tr(hφ) = 0, hφ + φh = 0.

We also have the following formulas (see Dileo and Pastore [7, 8]):

(2.4) ∇Xξ = X − η(X)ξ + h′X,
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(2.5) φlφ − l = 2(h2 − φ2),

(2.6) tr(l) = S(ξ, ξ) = g(Qξ, ξ) = −2n − trh2,

(2.7) R(X, Y )ξ = η(X)(Y − φhY ) − η(Y )(X − φhX) + (∇Y φh)X − (∇Xφh)Y,

for any X, Y ∈ Γ(TM), where h′ = h ◦ φ, S, Q and ∇ denote the Ricci curvature
tensor, the Ricci operator and the Levi-Civita connection of g, respectively. On an
almost contact metric manifold M , if the Ricci operator satisfies

(2.8) Q = αid + βη ⊗ ξ,

where both α and β are smooth functions on M , then M is said to be an η-Einstein
manifold. Obviously, an η-Einstein manifold with vanishing β and α a constant is an
Einstein manifold. An η-Einstein manifold is said to be proper η-Einstein if β �= 0.

3. MAIN RESULTS

In what follows, let (M, g) be a three-dimensional almost Kenmotsu manifold. If
the Reeb vector field ξ of M belongs to the generalized k-nullity distribution defined
by

(3.1) R(X, Y )ξ = k[η(Y )X − η(X)Y ]

for arbitrary vector fields X, Y on M and a smooth function k on M , then by Propo-
sition 3.1 of [19] we see that relation (3.1) is equivalent to relation (2.8), i.e., M is
η-Einstein. Moreover, the function k in (3.1) can be expressed by k = α+β

2 .
Let (M, g) be a three-dimensional almost Kenmotsu manifold with ξ belonging

to the generalized k-nullity distribution. Making use of relations (2.4)–(2.7), A. M.
Pastore and V. Saltarelli in [16] obtained the following two equations:

(3.2) h2 = h′2 = (k + 1)φ2, Qξ = 2kξ.

Then it follows that k ≤ −1 everywhere on M . Moreover, k = −1 identically if and
only if h = 0, this is also equivalent to h′ = 0. If k < −1, we denote the two nonzero
eigenvalues of h by ν and −ν respectively, where we assume ν =

√−1 − k > 0.
Furthermore, by Proposition 3.1 of [16] we also have

(3.3) ∇ξh
′ = −2h′.

The following result directly follows from Lemma 3.3 of [19].
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Lemma 3.1. Let (M, g) be a three-dimensional almost Kenmotsu manifold such
that the Reeb vector field belongs to the generalized k-nullity distribution, then we
have

(3.4) Dk = −4(k + 1)ξ,

where D denotes the gradient operator with respect to g.

Applying the above lemma we have dk = −4(k + 1)η, this implies dk ∧ η = 0.
Then, making use of Lemma 4.1 of [19], we immediately obtain the following result.

Lemma 3.2. Let (M, g) be a three-dimensional almost Kenmotsu manifold such
that the Reeb vector field belongs to the generalized k-nullity distribution, then either
k = −1 identically or k < −1 everywhere on M .

Taking into account the above two lemmas, now we may present our main theorem
with its proof as follows.

Theorem 3.1. Let the metric g of a three-dimensional η-Einstein almost Kenmotsu
manifold (M, g) be a Ricci soliton, then M is a Kenmotsu manifold of constant sec-
tional curvature −1 and the soliton is expanding with λ = 2.

Proof. Applying Lemma 3.2 and Proposition 3.1 of [19] we may divide our dis-
cussions into two cases: case 1: k = −1 identically and case 2: k < −1 everywhere
on M . Being k = −1 we get from the first term of (3.2) that h = 0 and hence M is
a Kenmotsu manifold (see Proposition 3 of [7]). In this case, the proof follows from
Theorem 1 of Ghosh [9].
Next we consider the case k < −1 everywhere on M , which is also equivalent to

h �= 0. Putting relation (2.8) into (1.2) we obtain

(3.5) (LV g)(Y, Z) = −2(α + λ)g(Y, Z)− 2βη(Y )η(Z)

for any vector fields Y, Z. Taking the covariant differentiation of (3.5) along an arbitrary
vector field X we obtain

(∇XLV g)(Y, Z)
= − 2X(α)g(Y, Z)− 2X(β)η(Y )η(Z)− 2βg(X + h′X, Y )η(Z)

− 2βg(X + h′X, Z)η(Y ) + 4βη(X)η(Y )η(Z)

(3.6)

for any vector fields X, Y, Z. Following Yano [23], the following formula

(LV ∇Xg−∇XLV g−∇[V,X ]g)(Y, Z) = −g((LV ∇)(X, Y ), Z)−g((LV ∇)(X, Z), Y )
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is well known for any vector fields X, Y, Z on M . As g is parallel with respect to the
Levi-Civita connection ∇, then the above relation becomes

(3.7) (∇XLV g)(Y, Z) = g((LV∇)(X, Y ), Z) + g((LV ∇)(X, Z), Y )

for any vector fields X, Y, Z. Since LV ∇ is a symmetric tensor of type (1.2), i.e.,
(LV ∇)(X, Y ) = (LV ∇)(Y, X), then it follows from (3.7) that

(3.8)
g((LV ∇)(X, Y ), Z)

=
1
2
(∇XLV g)(Y, Z) +

1
2
(∇Y LV g)(Z, X)− 1

2
(∇ZLV g)(X, Y )

for any vector fields X, Y, Z. Making use of (3.6) in (3.8) we have

(LV ∇)(X, Y )

= − X(α)Y − Y (α)X + g(X, Y )Dα + η(X)η(Y )Dβ

− [X(β)η(Y ) + 2βg(X + h′X, Y ) − 2βη(X)η(Y ) + Y (β)η(X)]ξ

(3.9)

for any vector fields X, Y, Z. Now we consider a local field of orthonormal frame
{ei : 1 ≤ i ≤ 3} on M , replacing X = Y by ei in relation (3.9) and summing over
i = 1, 2, 3, we obtain

(3.10)
3∑

i=1

(LV ∇)(ei, ei) = Dα + Dβ − 2[ξ(β) + 2β]ξ.

On the other hand, taking the covariant differentiation of the Ricci soliton equation
(1.2) along an arbitrary vector field X we obtain ∇XLV g = −2∇XS, putting this
relation into (3.8) we have

(3.11) g((LV∇)(X, Y ), Z) = (∇ZS)(X, Y ) − (∇XS)(Y, Z)− (∇Y S)(X, Z)

for any vector fields X, Y, Z. Hence, settingX = Y = ei in (3.11) and summing over
i = 1, 2, 3 we obtain

∑3
i=1(LV ∇)(ei, ei) = 0, comparing this relation with (3.10) we

have

(3.12) Dα + Dβ − 2[ξ(β) + 2β]ξ = 0.

Making use of relation (3.9) and taking the covariant differentiation of (LV ∇)(Y, Z)
along an arbitrary vector field X , we may obtain
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(∇XLV ∇)(Y, Z)

= − g(Y,∇XDα)Z − g(Z,∇XDα)Y + η(Y )η(Z)∇XDβ

+ g(Y, Z)∇XDα + [g(X + h′X, Z)η(Y ) + g(X + h′X, Y )η(Z)

− 2η(X)η(Y )η(Z)]Dβ − [Y (β)η(Z) + 2βg(Y + h′Y, Z)
− 2βη(Y )η(Z) + η(Y )Z(β)](X + h′X)− g(Y,∇XDβ)η(Z)ξ

− g(Z,∇XDβ)η(Y )ξ − 2βg((∇Xh′)Y, Z)ξ + 2β[g(X + h′X, Y )η(Z)

+ g(X + h′X, Z)η(Y ) + g(Y + h′Y, Z)η(X)]ξ− Y (β)[g(X + h′X, Z)

− 2η(X)η(Z)]ξ− Z(β)[g(X + h′X, Y ) − 2η(X)η(Y )]ξ

− 2X(β)[g(Y + h′Y, Z)− η(Y )η(Z)]ξ − 6βη(X)η(Y )η(Z)ξ

(3.13)

for any vector fields X, Y, Z. It is well known [23] that the following relation

(3.14) (LV R)(X, Y )Z = (∇XLV ∇)(Y, Z)− (∇Y LV ∇)(X, Z)

holds for any vector fields X, Y, Z. Furthermore, applying the well known Poincare
lemma: d2 = 0, i.e., g(∇XDζ, Y ) = g(∇Y Dζ, X) for any smooth function ζ on M
(see Ghosh [9]) and making use of relations (3.13), (2.3) in (3.14), we may obtain

(LV R)(X, Y )Z

=g(Z,∇Y Dα)X − g(Z,∇XDα)Y + [g(X + h′X, Z)η(Y )

− g(Y + h′Y, Z)η(X)]Dβ + η(Z)[η(Y )∇XDβ − η(X)∇Y Dβ]

+ g(Y, Z)∇XDα − g(X, Z)∇Y Dα + [X(β)η(Z)+ 2βg(X + h′X, Z)

− 2βη(X)η(Z)+η(X)Z(β)](Y +h′Y )−[Y (β)η(Z)+2βg(Y +h′Y, Z)

− 2βη(Y )η(Z) + η(Y )Z(β)](X + h′X)− X(β)g(Y + h′Y, Z)ξ

+ Y (β)g(X + h′X, Z)ξ − 2βg((∇Xh′)Y, Z)ξ − [g(Z,∇XDβ)η(Y )

− g(Z,∇Y Dβ)η(X)]ξ + 2β(g(∇Y h′)X, Z)ξ

(3.15)

for any vector fields X, Y, Z. Consider again the local orthonormal frame {ei : 1 ≤
i ≤ 3}, hence the Laplacian operator Δ can be defined by Δρ = −tr(Hessρ) =
−∑3

i=1 g(∇eiDρ, ei) for any smooth function ρ on M . Thus, contracting (3.15) over
X and making use of the Poincare lemma, (2.3) and (3.3), we obtain

(LV S)(Y, Z)

= − g(Y, Z)Δα− η(Y )η(Z)Δβ + 2g(Z,∇Y Dα)− 2ξ(β)g(Y + h′Y, Z)

+ η(Y )g(Z + h′Z, Dβ) + η(Z)g(Y + h′Y, Dβ)− η(Y )η(∇ZDβ)

− η(Z)η(∇Y Dβ)− 4βg(Y, Z)− 2βg(h′Y, Z) + 4βη(Y )η(Z)

− 2Z(β)η(Y ) − 2Y (β)η(Z)

(3.16)
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for any vector fields Y, Z. Moreover, notice thatM is an η-Einstein manifold, by (2.8)
and a straightforward calculation we obtain that

(LV S)(Y, Z)

= [V (α) − 2(λ + α)]g(Y, Z) + [V (β) − 2αβ − 2βη(V )]η(Y )η(Z)

+ β[g(Z + h′Z, V ) + η(∇ZV )]η(Y ) + β[g(Y + h′Y, V ) + η(∇Y V )]η(Z)

(3.17)

for any vector fields Y, Z on M .
Subtracting (3.16) from (3.17) gives an equation, substituting Y and Z with φY

and φZ respectively in the resulting equation we obtain

g(φY, φZ)Δα− 2g(φZ,∇φY Dα) + 2ξ(β)g(φY, Z)

+ [V (α)− 2(λ + α) + 4β]g(φY, φZ)− 2βg(h′Y, Z) + 2ξ(β)g(hY, Z) = 0
(3.18)

for any vector fields Y, Z. Interchanging Y, Z of relation (3.18) yields an equation,
subtracting the resulting equation from (3.18) and applying the Poincare lemma again
we may obtain ξ(β)g(φY, Z) = 0 for any vector fields Y, Z, then it follows that

(3.19) ξ(β) = 0.

Using (3.19) in relation (3.12) we get Dα+Dβ−4βξ = 0, taking the inner product
of this relation with ξ we obtain ξ(α) = 4β. Recall that M is an η-Einstein almost
Kenmotsu manifold of dimension 3 if and only if ξ belongs to the generalized k-nullity
distribution with k = α+β

2 , then by applying Lemma 3.1 we obtain ξ(k) = −4(k + 1),
making use of k = α+β

2 , ξ(β) = 0 and ξ(α) = 4β in this relation we obtain

(3.20) α + 2β + 2 = 0.

It is easy to see from (3.19) and (3.20) that ξ(α) = −2ξ(β) = 0, then we get β = 0
and hence α = −2. However, in fact, in this context we have k = α+β

2 = −1, this
contradicts the assumption k < −1 everywhere on M . Thus we complete the proof.

By Theorem 3.1, the following corollary (see also Theorem 1 of [9]) follows im-
mediately.

Corollary 3.1. If the metric of a three-dimensional Kenmotsu manifold is a Ricci
soliton, then such a Kenmotsu manifold is of constant curvature −1 and the soliton is
expanding.

By Theorem 5.3 of [17] (see also Lemma 1 of [9]), we see that a three-dimensional
Kenmotsu manifold is an η-Einstein manifold, then our Theorem 3.1 extends the cor-
responding result shown in Ghosh [9].
Let ω be a complete unit vector field orthogonal to the Reeb vector field ξ on a

three-dimensional Kenmotsu manifold, we consider the following Ricci soliton:

(3.21)
1
2
Lωg + Ric + λg = 0
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for certain constant λ. Applying Theorem 3.1 we get immediately the following corol-
lary (see also Theorem 3 of Cho [3]).

Corollary 3.2. A Kenmotsu 3-manifold M admitting a Ricci soliton (g, ω) is of
constant curvature −1, where the potential vector field ω is orthogonal to ξ.

Remark 3.1. By considering the warped product of a real line and a 2-dimensional
Kählerian manifold, Ghosh [9] constructed an example of Ricci soliton on a three-
dimensional Kenmotsu manifold. For more details, we refer the reader to section 4 of
[9].
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2. C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-
Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc., 33(2) (2010), 361-368.

3. J. T. Cho, Almost contact 3-manifolds and Ricci solitons, Int. J. Geom. Methods Mod.
Phys., 10(1) (2013), 1220022 (7 pages).

4. M. Crasmareanu, Parallel tensors and Ricci solitons in N(k)-quasi Einstein manifolds,
Indian J. Pure Appl. Math., 43(4) (2012), 359-369.

5. U. C. De and Y. Matsuyama, Ricci solitons and gradient Ricci solitons in a Kenmotsu
manifold, Southeast Asian Bull. Math., 37 (2013), 691-697.

6. U. C. De, M. Turan, A. Yildiz and A. De, Ricci solitons and gradient Ricci solitons
on 3-dimensional normal almost contact metric manifolds, Publ. Math. Debrecen, 80
(2012), 127-142.

7. G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull.
Belg. Math. Soc. Simon Stevin, 14 (2007), 343-354.

8. G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and nullity distributions, J.
Geom., 93 (2009), 46-61.

9. A. Ghosh, Kenmotsu 3-metric as a Ricci soliton, Chaos Solitons Fractals, 44 (2011),
647-650.

10. A. Ghosh, An η-Einstein Kenmotsu metric as a Ricci soliton, Publ. Math. Debrecen,
82(3-4) (2013), 591-598.

11. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom., 17 (1982),
255-306.



100 Yaning Wang and Ximin Liu

12. R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa
Cruz, CA, 1986), Contemp. Math., 71, American Math. Soc., 1988, pp. 237-262.

13. D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai
Math. J., 4 (1981), 1-27.

14. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tôhoku Math. J., 24
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