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SIMPLE SUPERCUSPIDAL REPRESENTATIONS OF GL(n)

Andrew Knightly and Charles Li

Abstract. Following a construction of Gross and Reeder, we define simple
supercuspidal representations of GL(n) over a p-adic field. We show that they
have conductor pn+1. We then give a general formula for the matrix coefficient
attached to a new vector, and make it completely explicit when n = 2.

1. INTRODUCTION

Let F be a nonarchimedean local field with ring of integers o, maximal ideal
p = �o, and finite residue field Ik = o/p of cardinality q. Typically, the first textbook
example of a supercuspidal representation is one induced from the lift of a cuspidal
representation of GLn(Ik). These are the supercuspidals of minimal conductor expo-
nent, namely n. But even when n = 2 it is not entirely trivial to explicitly define the
cuspidal series. There is an easier construction of supercuspidals singled out recently
by Gross and Reeder, who defined simple supercuspidal representations for a large
class of groups over F ([GR], §9). These are induced from affine generic characters χ
of a pro-unipotent radical of a maximal compact subgroup. The construction of [GR]
applies in particular to SLn(F ), and our goal here is to treat the case of GLn(F ).
In this case, the representation induced from χ is reducible, decomposing into n ir-
reducible summands (see Theorem 4.4). These summands may naturally be termed
simple supercuspidal representations of GLn(F ). We describe them explicitly and give
some of their properties. In particular, there are exactly n(q− 1) of them with a given
central character, up to isomorphism. These representations are of interest in large part
because of their ease of access, being induced from characters (cf. (4.9)).

The construction of all supercuspidal representations of GLn(F ) has been known
since the work of Bushnell and Kutzko in the late 1980’s, [BK]. The earliest systematic
treatment seems to be that of Carayol in the late 1970’s, [C1, C2]. In particular, the
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representations constructed here are of the general type described in the third section
of [C1]. So in this sense, much of what we discuss in this paper is “well-known”.
Nevertheless, it seems worthwhile to give a self-contained account, particularly since
simple supercuspidal representations are appearing more frequently in the literature as
an accessible class of examples. For instance, Adrian and Liu have given a simple
proof of the local Langlands correspondence for these representations, [AL].

In our first main result, Corollary 5.2, we show that the conductor of any simple
supercuspidal representation of GLn(F ) is pn+1, and we exhibit the new vector explic-
itly. In §6, we then give a general formula for the associated matrix coefficient, which
we make completely explicit for the case n = 2 in Theorem 7.1. We also show in
Proposition 7.2 that any irreducible admissible representation of GL2(F ) of conductor
p3 whose central character has at most tame ramification is a simple supercuspidal
representation. In §8, we prove Corollary 5.2, and in addition we give an explicit
description of the oldforms.

Our motivation for §6 comes from the possibility of using such a matrix coefficient
in the (global) trace formula. This gives rise to an operator having purely cuspidal
image and isolating those cusp forms with simple supercuspidal p-type. Gross used
this method (but for very general G) to compute multiplicities of cuspidal automorphic
representations with certain prescribed local behavior [G]. The local test vector used
by Gross is not a new vector: it depends only on χ, and it simultaneously detects the n
associated simple supercuspidal representations. However, if one wishes to go further
and access the Fourier coefficients or other spectral data, it is necessary to use a new
vector. In [KL2], we apply our results to study the L-functions of various newforms
of cubic level.

The new vector matrix coefficient of Theorem 7.1 is essentially a Kloosterman
sum determined by the matrix entries of the argument. There is a deeper connection
between simple supercuspidal representations and Kloosterman sums in the function
field setting, described by Heinloth, Ngô and Yun, [HNY]. Their work was motivated
by the paper [GF] of Gross and Frenkel.

After this paper was written, the preprint [BH2] of Bushnell and Henniart appeared,
in which the Langlands parameters of supercuspidal representations of conductor pn+1

are described explicitly. We note that these are precisely the representations considered
here (cf. Corollary 5.3).

2. AFFINE GENERIC CHARACTERS

LetG = GLn(F ), let Z be the center of G, identified with F ∗, and letK = GLn(o)
be the standard maximal compact subgroup. Let M denote the diagonal subgroup of
G.
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Let In ∈ G be the identity matrix, and let

K ′ = In +

⎛⎝ p o o ··· o
p p o ··· o

... . . . ...
p p ··· p

⎞⎠ .

Relative to the surjective homomorphism K −→ GLn(Ik), K ′ is the preimage of the
upper triangular unipotent subgroup N (Ik), which is a p-Sylow subgroup of GLn(Ik)
for p = char(Ik). We set

H = ZK ′.

We will define a simple class of characters of H . Fix a character ω of Z, trivial
on 1 + p. Let

ψ : Ik −→ C∗

be a fixed nontrivial additive character. Then every character of Ik is of the form
x �→ ψ(tx) for some t ∈ Ik. We freely identify these characters with their pullbacks to
functions on o. For t1, . . . , tn ∈ Ik∗, define a function χ : H −→ C∗ by

(2.1) χ(zk) = ω(z)ψ(t1r1 + · · ·+ tnrn),

for z ∈ Z and

(2.2) k =

⎛⎝ x1 r1 ∗ ···∗ x2 r2 ···
... . . . . . .
∗ rn−1

�rn ··· xn

⎞⎠ ∈ K ′.

It is easy to check that χ is a continuous homomorphism. It is well-defined since ω is
trivial on

Z ∩K ′ ∼= 1 + p.

These are the affine generic characters of H ([C1],[GR]). For example, if n = 2,
F = Qp, and ω = 1, then they are of the form

χ(zk) = e
2πi
p

(t1b+t2c) (k =
(

a b
pc d

) ∈ K ′, z ∈ Z).

Generally, there are (q−1)n affine generic characters with a given central character ω.
For any i �= j (taken modulo n), let Ui,j ⊂ K ′ denote the subgroup of unipotent

matrices with zeroes off the diagonal except in the (i, j)-th slot. Affine generic char-
acters are required by definition to be nontrivial on the n subgroups Ui,i+1, and trivial
on all other Ui,j .

In the language of [BK], the character χ of K ′ corresponds to the simple stratum

(2.3) [A, 1, 0, β],
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where A =

( o o o ··· o
p o o ··· o

... . . . ...
p p ··· o

)
is the standard minimal order of Mn(F ), and in the notation

of Lemma 3.2 below, β = tng
−1
χ =

⎛⎜⎝
0 tn

�
t1

t2
. . .

tn−1 0

⎞⎟⎠. Indeed, this corresponds to

the character of the group U1(A) = K ′ given by

ψβ(x) = ψ(tr(β(x− 1))) = χ(x).

3. THE INDUCED REPRESENTATION

For an affine generic character χ, define the compactly induced representation:

πχ = c-IndG
H(χ).

This is the action of G by right translation on the space A of functions f : G −→ C
satisfying:

(a) f(hg) = χ(h)f(g) for all h ∈ H and g ∈ G

(b) The support of f is compact modulo H , or equivalently, modulo Z
(c) f is smooth, i.e. there exists a compact open subgroup Jf of G such that f is

constant on all cosets gJf .

Proposition 3.1. Any irreducible subrepresentation of πχ is supercuspidal.

Proof. Let (π,W ) be an irreducible subrepresentation of πχ, and let φ ∈ W be
a nonzero vector. There exists an open compact subgroup J ⊂ G such that φ is J-
invariant. Fixing a Haar measure dx on G = G/Z, it follows that the linear functional
φ̌ : W → C defined by

φ̌ : η �→ 〈η, φ〉 :=
∫

G
|ω(detx)|−2/nη(x)φ(x)dx

is J-invariant for the action π∗(g)φ̌ = (π(g)φ)ˇ. Hence it belongs to the smooth dual
W̌ =

⋃
J (W ∗)J . The matrix coefficient

g �→ φ̌(π(g)η) = 〈π(g)η, φ〉 =
∫

G
|ω(detx)|−2/nη(xg)φ(x)dx

is supported in Supp(φ)−1 Supp(η), which is compact modulo Z. Since π is smooth,
this shows that it is supercuspidal.
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The diagonal group M ∩ K normalizes H . Therefore it acts on the set of affine
generic characters by the rule

χm(x) = χ(mxm−1).

Explicitly, if χ↔ 〈t1, . . . , tn〉 as in (2.1), and m = diag(y1, . . . , yn), then identifying
the yi with their images in Ik∗, we have

(3.1) χm ↔
〈
t1

y1

y2
, t2

y2

y3
, . . . , tn

yn

y1

〉
.

By taking y1 = 1, y2 = t1y1, y3 = t2y2, etc., we see that the orbit of χ has a unique
element of the form 〈1, . . . , 1, t〉. In fact, t = t1t2 · · · tn. Thus there are exactly (q−1)
orbits of affine generic characters with a given central character.

We will show that given two affine generic characters χ and η, the representations
they induce are isomorphic if and only if χ and η belong to the same orbit. See
Corollary 4.3 below.

Lemma 3.2. For t1, . . . , tn ∈ o∗, let χ ↔ 〈t1, . . . , tn〉 be the associated affine
generic character of H . Let m = diag(tn/t1, . . . , tn/tn−1, 1) ∈ G, and define

gχ = m

(
0 In−1

� 0

)
=

⎛⎜⎜⎜⎝
0 tn

t1
tn
t2

. . .
tn

tn−1

� 0

⎞⎟⎟⎟⎠ ∈ G.

Then gχ normalizes K ′ (thus also H) and χ = χgχ , i.e.

χ(g−1
χ hgχ) = χ(h)

for all h ∈ H .

Remarks.
(a) gn

χ is the scalar matrix tn−1
n �

t1t2···tn−1
In.

(b) We showed above that every orbit of characters contains one of the form χ ↔
〈1, . . . , 1, t〉. In this case gχ is simply

(3.2) gχ =
(
tIn−1

1

)(
0 In−1

� 0

)
=
(

0 tIn−1

� 0

)
.

(c) The matrix gχ is not uniquely determined by χ because it involves choosing
representatives for t1, . . . , tn ∈ o∗/(1 + p). This choice is immaterial and we
regard it as fixed once and for all.
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Proof. It suffices to consider h ∈ K ′. Writing w� =
(

In−1
�

)
, we have

w−1
�

⎛⎜⎜⎜⎝
t1
tn

t2
tn

. . .
tn−1

tn
1

⎞⎟⎟⎟⎠
⎛⎝ x1 r1 ∗ ···∗ x2 r2 ···

... . . . . . .
∗ rn−1

�rn ··· xn

⎞⎠
⎛⎜⎜⎜⎝

tn
t1

tn
t2

. . .
tn

tn−1

1

⎞⎟⎟⎟⎠w� =

( 1
�

In−1

)
⎛⎜⎜⎜⎜⎜⎝

x1
t1r1
t2

∗ ···
∗ x2

t2r2
t3

···
... . . . . . .
∗ tn−1rn−1

tn

� tnrn
t1

··· xn

⎞⎟⎟⎟⎟⎟⎠
(

In−1
�

)
=

⎛⎜⎜⎜⎜⎝
xn

tnrn
t1

∗ ···
∗ x1

t1r1
t2

···
... . . . . . .
∗

�
tn−1rn−1

tn
··· xn−1

⎞⎟⎟⎟⎟⎠,
where all entries in the latter matrix are integral and those below the diagonal belong
to p. Thus

χ(g−1
χ hgχ) = ψ(tnrn + t1r1 + · · ·+ tn−1rn−1) = χ(h).

In order to understand (πχ, A), it is useful to determine the subspaces

Aη = {v ∈ A| πχ(h)v = η(h)v for all h ∈ H},

for various affine generic characters η. There is an obvious nonzero element of Aχ,
namely the function

(3.3) f0(h) =

{
χ(h) if h ∈ H

0 otherwise.

We will show below that this function and its left translates by g−1
χ span Aχ.

Proposition 3.3. Let χ and gχ be as above, and let η be any affine generic
character of H . Suppose φ ∈ Aη. If φ(x) �= 0, then

(3.4) η(h) = χ(xhx−1) for all h ∈ H ∩ x−1Hx.

This condition is independent of the choice of representative x for the double coset
HxH . Conversely, if x ∈ G is any element satisfying (3.4), then there exists a unique
element φx ∈ Aη supported on HxH and satisfying φx(x) = 1.

An element x satisfies (3.4) if and only if gχx satisfies (3.4). For such x, the set

(3.5) {φx, φgχx, . . . , φgn−1
χ x} ⊂ Aη

is linearly independent.
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Proof. Suppose φ(x) �= 0 and h ∈ H ∩ x−1Hx. Then

η(h)φ(x) = φ(xh) = φ(xhx−1x) = χ(xhx−1)φ(x),

so (3.4) is satisfied. Conversely, suppose x satisfies (3.4). Define

φx(g) =

{
χ(h1)η(h2) if g = h1xh2 for some h1, h2 ∈ H
0 otherwise.

Clearly this belongs to Aη provided it is well-defined, i.e. that

(3.6) χ(h1)η(h2) = χ(h′1)η(h
′
2)

whenever h1xh2 = h′1xh
′
2 for hi, h

′
i ∈ H . In this case,

x−1h′1
−1
h1x = h′2h

−1
2 ∈ H ∩ x−1Hx,

so by (3.4), χ(h′1
−1h1) = η(h′2h

−1
2 ), which immediately gives (3.6).

Next, note that because g−1
χ Hgχ = H , H ∩ x−1Hx = H ∩ (gχx)−1Hgχx. Fur-

thermore, for all h in this set, we have

χ(xhx−1) = χ(gχxhx
−1g−1

χ )

by Lemma 3.2. It follows that x satisfies (3.4) if and only if gχx does.
Lastly, the determinants of x, gχx, . . . , g

n−1
χ x have valuations which are distinct

mod n, by which we see that the functions in (3.5) have pairwise disjoint supports.
Thus they are linearly independent.

Theorem 3.4. Suppose χ ↔ 〈t1, . . . , tn〉 and η ↔ 〈
1, . . . , 
n〉 as in (2.1). Then
the following are equivalent.

(1) Aη �= 0.
(2) t1t2 · · · tn = 
1
2 · · · 
n in Ik∗.
(3) χ and η are in the same orbit, i.e. χm = η for some m ∈M ∩K.

If these conditions hold, then dimAη = n. In fact, let x = diag(y1, y2, y3, . . . , yn),
where y1 = 1 and yi+1 = yiti

�i
. Then χx = η and the set (3.5) is a basis for Aη.

Remark. The implication (1) =⇒ (3) is a special case of Theorem (2.6.1) of [BK].
Indeed, the condition Aη �= 0 means that the strata attached to χ and η intertwine, and
so by loc. cit., η and χ are conjugate under A∗ = (M ∩K)K ′. For convenience, we
include an elementary proof below.

Proof. First we prove that (1) implies (3). Suppose φ ∈ Aη is nonzero. We can
assume that the support of φ is a double coset HxH , where x satisfies (3.4). We can
also take φ(x) = 1. Let T be the normalizer in G of the diagonal subgroup M . Then
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T =
⋃

w∈W
Mw =

⋃
w∈W

wM,

where W is the Weyl group of G consisting of those matrices with exactly one 1 in
each row and column, and 0’s everywhere else. Recall the affine Bruhat decomposition

G = K ′TK ′

([Ho], p. 77). In particular, by Proposition 3.3 we can assume that

x = wm

for some w ∈ W and m ∈M .
By Proposition 3.3, we are also free to replace x by ga

χx for any a ≥ 0. Let
{e1, . . . , en} be the standard basis for Fn. The i-th row of w is eσ(i) for a permutation
σ ∈ Sn. The Weyl element

(
In−1

1

)
used in the definition of gχ corresponds in this

way to the n-cycle (1 2 3 . . .n) ∈ Sn. Hence we can choose a in such a way that
the resulting element x = wm has the property that the permutation σ associated to w
fixes the number n.

With this choice of x, we claim that w = 1. Write m = diag(y1, . . . , yn). Let
bj = ordp(yj). Suppose w �= 1, so σ �= 1. We will derive a contradiction. Let
1 < 
 ≤ n be the smallest integer with the property that σ fixes 
, 
+ 1, . . . , n. Thus
σ(
−1) < 
−1. Adjusting x by an element of the center if necessary, we can assume
that y� = 1, so b� = 0. We prove the claim in the following steps:

(i) Show that bσ(�−1) > 0.
(ii) Show that bσ(j+1) ≤ bσ(j) for all j, with indices taken modulo n.

Finally, step (ii) implies that

bσ(1) ≥ bσ(2) ≥ · · · ≥ bσ(n) ≥ bσ(1),

so that all bj are equal. In particular b� = bσ(�−1) > 0, contradicting b� = 0. Let Eij

be the n× n matrix whose only non-zero entry is a 1 in the i-th row and j-th column.
We regard i, j as indices modulo n. Note that

x−1Eijx = m−1w−1Eijwm = m−1Eσ(i)σ(j)m =
yσ(j)

yσ(i)
Eσ(i)σ(j).

To prove (i), let
k = In + E�−1,� ∈ K ′.

If bσ(�−1) ≤ 0, then

h = x−1kx = In + 1
yσ(�−1)

Eσ(�−1),� ∈ K ′.



Simple Supercuspidal Representations of GL(n) 1003

The nonzero entry of Eσ(�−1),� is at least two positions above the main diagonal, so
η(h) = 1. By (3.4), we have 1 = η(h) = χ(k) = ψ(t�−1), a contradiction. This
proves (i). To prove (ii), fix any j �= n and define

k = In + Ej,j+1 ∈ K ′.

If bσ(j+1) > bσ(j), then yσ(j+1)/yσ(j) ∈ p, so

h = x−1kx = In +
yσ(j+1)

yσ(j)
Eσ(j)σ(j+1) ∈ K ′.

Therefore by (3.4), η(h) = χ(k). Since j �= n, we have η(h) = 1, giving the
contradiction 1 = ψ(tj). Now suppose j = n, and define k = In +�En,1 ∈ K ′. If
bσ(1) > bσ(n)(= bn), then yσ(1)/yn ∈ p,

h = x−1kx = In +�
yσ(1)

yn
En,σ(1) ∈ K ′,

and 1 = η(h) = χ(k) = ψ(tn), a contradiction. This proves (ii), and therefore we can
assume that x = m is diagonal.

Write x = diag(y1, y2, . . . , yn). Adjusting x by the center, we can assume that
y1 = 1. We will show inductively that each yj is a unit. Suppose y1, . . . , yk are units,
with k < n. Consider h = In + rEk,k+1 for r ∈ o. Then

xhx−1 = In + yk
yk+1

rEk,k+1.

Because x satisfies (3.4), we have

ψ(tkr yk
yk+1

) = ψ(
kr)

whenever r ∈ o ∩ yk+1o. If yk+1 ∈ p, then taking r = yk+1 gives ψ(tkyk) =
ψ(
kyk+1) = 1. This contradicts the fact that tk, yk ∈ o∗. If yk+1 /∈ o, then taking
r = 1 gives ψ(
k) = ψ(tkyky

−1
k+1) = 1, another contradiction. The only possibility

remaining is that yk+1 ∈ o∗ and

(3.7) yk+1 ≡ yktk
�k

mod p.

In particular, by induction x ∈ M ∩ K. Therefore H ∩ x−1Hx = H , so (3.4) says
exactly that (3) holds with m = x.

The implication (3) =⇒ (1) is immediate from Proposition 3.3.
The equivalence of (2) and (3) is immediate from the discussion following (3.1).
Note that in the proof of (1) =⇒ (3), the entries of the diagonal matrix x are

uniquely determined modulo (1+p) by (3.7). In view of the last assertion of Proposition
3.3, it follows that (3.5) is a basis for Aη .
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4. DECOMPOSITION OF πχ

As before, let χ be an affine generic character of H . In Theorem 4.4 below, we will
prove that the induced representation πχ is the direct sum of n distinct supercuspidal
representations. These are parametrized naturally by the pairs (t, ζ), where t is a
nonzero element of the residue field (determining the orbit of χ), and ζ is a complex
nth root of ω(tn−1�) (identifying one of the irreducible summands of πχ).

4.1. Preliminaries

Let
E = E(F ) = {g ∈ G| ordp(det g) ∈ nZ}.

This is a normal subgroup of G of index n, containing both H and SLn(F ). Note that
G is the disjoint union

(4.1) G = E ∪Egχ ∪ · · · ∪Egn−1
χ .

Accordingly, there is a decomposition

A = A0 ⊕A1 ⊕ · · · ⊕An−1,

where Ak consists of functions supported on Egk
χ. Indeed, A is spanned by functions

of the form

φ(g) =

{
χ(h) if g = hxk ∈ HxJ

0 if g /∈ HxJ

for x ∈ G and J an open compact subgroup. By the fact that det J ⊂ o∗, such a
function belongs to Ak if and only if x ∈ Egk

χ. Note that A0, . . . , An−1 are closed
E-submodules of A. The representation of E on A0 is precisely the compactly induced
representation

σχ
def= c-IndE

H(χ).

Proposition 4.1. The representation (σχ, A0) of E is irreducible. Two such rep-
resentations σχ and ση are equivalent if and only if η = χm for some m ∈M ∩K .

Proof. Let W be any nonzero E-invariant subspace of A0. By Frobenius
reciprocity ([BH1], p. 20),

0 �= HomE(W, c-IndE
H(χ)) ∼= HomH(W,χ).

ThereforeWχ is a nonzero subspace of Aχ
0 . The basis for Aχ given by Theorem 3.4 has

exactly one element supported on E , namely the function f0 of (3.3), so dimA
χ
0 = 1

and hence f0 ∈ W . But it follows immediately from the definition of c-IndE
H(χ) that

f0 generates A0 as a C[E]-module, i.e. A0 = C[E] · f0 ⊂W . Hence W = A0, so σχ

is irreducible.
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If σχ
∼= ση, then there exists a nonzero function φ ∈ Aη

0. By Theorem 3.4, η = χm

for some m ∈M ∩K. Conversely, if η = χm, then by Theorem 3.4

HomH(η, σχ) ∼= Aη
0 �= 0,

so by Frobenius reciprocity, HomE(ση, σχ) �= 0. Since ση and σχ are both irreducible,
this implies ση

∼= σχ.

Proposition 4.2. The representations A0, . . . , An−1 of E are each irreducible and
isomorphic to the representation σχ = c-IndE

H(χ).

Proof. Define an operator on A by

(4.2) [Lφ](x) = φ(g−1
χ x).

The fact that Lφ ∈ A is a consequence of Lemma 3.2:

Lφ(hx) = φ(g−1
χ hgχg

−1
χ x) = χ(g−1

χ hgχ)φ(g−1
χ x) = χ(h)Lφ(x).

Furthermore, it is clear that for k = 0, . . . , n− 1 the map

L : Ak −→ Ak+1

is a vector space isomorphism (with subscripts taken modulo n). In fact, because E
acts on both spaces by right translation, this isomorphism is E-equivariant.

Corollary 4.3. Given two affine generic characters χ and η of H , the induced
representations πχ and πη of G are equivalent if and only if χ and η belong to the
same M ∩K-orbit.

Proof. By Proposition 4.1, χ and η belong to the same orbit if and only if
σχ

∼= ση. If this holds, then clearly πχ
∼= πη, since by the transitivity of compact

induction,
πχ = c-IndG

H(χ) ∼= c-IndG
E(σχ).

Conversely, if πχ
∼= πη, then they are also isomorphic as representations of E . By

Proposition 4.2, this only possible if σχ
∼= ση.

The corollary shows that we are free to assume that χ ↔ 〈1, . . . , 1, t〉 as in (3.1).
This is convenient for calculations since gχ then has the simple form given in (3.2).

4.2. Decomposition of πχ

We now show that (πχ, A) is the direct sum of n supercuspidal representations.
Here we assume without loss of generality that χ ↔ 〈1, . . . , 1, t〉 for t ∈ Ik∗. Let
ζ ∈ C satisfy ζn = ω(tn−1�). Define the subspace

(4.3) Σζ =

⎧⎨⎩
n−1∑
j=0

(ζL)jφ

∣∣∣∣ φ ∈ A0

⎫⎬⎭ ⊂ A,



1006 Andrew Knightly and Charles Li

for the operator L given in (4.2). The map φ �→ ∑
(ζL)jφ from A0 → Σζ is an

isomorphism of E-modules. Its inverse is given by restriction to E . Thus Σζ is an
irreducible representation of E isomorphic to σχ. Let φ ∈ A0, and set ψ = πχ(gχ)φ ∈
An−1. Then Lψ ∈ A0 and

(4.4) πχ(gχ)[φ+ ζLφ + · · ·+ (ζL)n−1φ] = ψ + ζLψ + · · ·+ (ζL)n−1ψ.

Notice that because gn
χ = tn−1�In is a scalar matrix, for any ξ ∈ A we have Lnξ =

ω(tn−1�)−1ξ, i.e.

(4.5) ξ = ω(tn−1�)Lnξ = (ζL)nξ.

Hence, taking ξ = ψ, (4.4) becomes

(4.6) πχ(gχ)
n−1∑
j=0

(ζL)jφ = (ζLψ) + ζL(ζLψ) + · · ·+ (ζL)n−1(ζLψ) ∈ Σζ .

Thus Σζ is a G-submodule of A, which is necessarily irreducible since it is irreducible
as an E-module. By Proposition 3.1 it is supercuspidal. We denote the action of
G on Σζ by σζ

χ. Following Gross and Reeder, we call σζ
χ a simple supercuspidal

representation of GLn(F ).
It is easy to check that the sum of the subspaces Σζ (for ζ ranging over the complex

nth roots of ω(tn−1�)) is direct. This proves the first part of the following.

Theorem 4.4. We have
πχ

∼=
⊕

ζn=ω(tn−1�)

σζ
χ

as representations of G. The representation πχ is multiplicity-free, i.e. the represen-
tations σζ

χ are mutually inequivalent.

Proof. We just need to prove the final assertion. If two or more of the repre-
sentations σζ

χ were isomorphic, then the dimension of HomG(πχ, πχ) would exceed n.
However, by Frobenius reciprocity,

Aχ ∼= HomH(χ, πχ) ∼= HomG(πχ, πχ),

and by Theorem 3.4, dimAχ = n.

By the isomorphism of A0 with Σζ , the representation σζ
χ has a model on the space

A0. It is given by

(4.7) σζ
χ(g)φ(x) = ζkφ(g−k

χ xg) (φ ∈ A0),
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where k ∈ {0, . . . , n− 1} is determined by g ∈ Egk
χ. The notation is simpler in this

model, so we will use it especially in Section 6 when we describe the matrix coefficients
of σζ

χ.

4.3. Related considerations

As proven by Bushnell and Kutzko, every supercuspidal representation of G is
compactly induced from a finite dimensional representation of a subgroup that is open
and compact modulo the center, [BK].

The inducing data for a simple supercuspidal representation is given as follows.
The relevant group is H ′ = 〈gχ〉H . We have

(4.8) c-IndH ′
H (χ) =

⊕
ζn=ω(tn−1�)

χζ ,

where χζ is the character of H ′ given by χζ (g
j
χh) = ζjχ(h). Explicitly, the character

χζ is generated by the element
∑n−1

j=0 (ζL)jφ, where φ ∈ c-IndH ′
H (χ) is the unique

element supported on H with φ(In) = 1. Then by transitivity of compact induction,

(4.9) σζ
χ = c-IndG

H ′(χζ).

Secondly, we have seen that the representation (σχ, A0) of E admits n distinct
extensions to G, namely the σζ

χ. It is natural to ask whether there are any other
extensions. The fact that there do not is a consequence of the following.

Proposition 4.5. Let (π,W ) be an irreducible smooth representation of G, and
for an affine generic character χ, let

Wχ = {v ∈W | π(h)v = χ(h)v for all h ∈ H}.
Then Wχ �= 0 if and only if π ∼= σζ

χ for some ζ.

Proof. By Frobenius reciprocity and Theorem 4.4,

Wχ ∼= HomH(χ, π) ∼= HomG(πχ, π) ∼=
⊕

ζ
HomG(σζ

χ, π).

The proposition now follows by Schur’s Lemma.
Now if (π,W ) is any smooth representation of G with π|E ∼= σχ, then π is

irreducible and Wχ is nonzero. By the proposition, π ∼= σζ
χ for some ζ.

5. THE CONDUCTOR OF σζ
χ

Let K1(pm) denote the subgroup of K consisting of those matrices with bottom
row congruent to (0, . . . , 0, 1) mod pm. By a well-known result of Jacquet, Piatetski-
Shapiro and Shalika, for any irreducible admissible generic representationπ of GLn(F ),



1008 Andrew Knightly and Charles Li

there exists a unique integral ideal pm (the conductor of π) such that dimπK1(p
m) = 1

and πK1(pm−1) = {0} ([JPSS],[J]). A nonzero K1(pm)-fixed vector in the space of π
is called a new vector. We note that a supercuspidal representation is generic ([GK],
Theorem B).

Theorem 5.1. Let χ be an affine generic character of H , and let A = c-IndG
H(χ).

Among all nonzero K1(pn+1)-invariant functions in A, there is exactly one (up to
multiples) with support of the form HdK1(pn+1) for d diagonal. It is supported on

(5.1) H

⎛⎜⎝�n−1

�n−2

. . .
�

1

⎞⎟⎠K1(pn+1),

and we denote it by ξ when normalized so that ξ(diag(�n−1, . . . , �, 1)) = 1. The
subspace of K1(pn+1)-fixed vectors in A is spanned by {ξ, Lξ, L2ξ, . . . , Ln−1ξ}. Fur-
thermore, A does not contain a nonzero K1(pn)-invariant function.

We prove Theorem 5.1 in §8 below, where we compute AK1(p
m) for all m.

Corollary 5.2. The conductor of σζ
χ is equal to pn+1. For χ ↔ 〈1, . . . , 1, t〉, in

the model (4.7) for σζ
χ on A0, the new vector is

φp =

{
ξ if n is odd
L

n
2 ξ if n is even,

where ξ is the function defined in the above theorem and L is defined in (4.2).

Remark. The conductor was computed differently by Carayol ([C2], 4.2 Théorème).

Proof. Note thatH,K1(pn+1) ⊂ E . The diagonal matrix in (5.1) has determinant
�

n(n−1)
2 , so the assertion follows from the fact that n(n−1)

2 ∈ nZ if n is odd, while
n(n−1)

2 + n
2 ∈ nZ if n is even.

For example, when n = 3, a basis for AK1(p
4) is given by the functions supported

respectively on

H
(

�2

�
1

)
K1(p4), Hgχ

(
�2

�
1

)
K1(p4), Hg2

χ

(
�2

�
1

)
K1(p4),

the first one φp being the new vector of σζ
χ in its model on A0.

Corollary 5.3. Every supercuspidal representation of GLn(F ) of conductor pn+1

is isomorphic to a simple supercuspidal representation.
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Proof. Bushnell and Henniart have shown that there are exactly n(q − 1) su-
percuspidal representations of conductor pn+1 with a given central character, up to
isomorphism (see Remark 2.2 of [BH2]). This is also the number of simple supercus-
pidal representations: (q−1) choices for χ, and n choices for ζ. (The correspondence
can be made precise by matching the associated simple strata as in (2.3).)

6. MATRIX COEFFICIENTS

For the next two sections, we suppose that χ↔ 〈1, . . . , 1, t〉 and that ω (and hence
πχ) is unitary. Using the fact that

G = E ∪Egχ ∪ · · · ∪Egn−1
χ ,

for φ, λ ∈ A, we have the G-invariant inner product

(6.1) 〈πχ(g)φ, λ〉 =
∫

G
πχ(g)φ(x)λ(x)dx = meas(H)

n−1∑
k=0

∑
x∈H\E

φ(xgk
χg)λ(xgk

χ),

where G = G/Z and H = H/Z. This restricts to give a G-invariant inner product
on the subrepresentation (σζ

χ,Σζ). We can then transfer it to the model (σζ
χ, A0). We

will denote by 〈φ, λ〉0, ‖φ‖0, etc., the G-invariant inner product on (σζ
χ, A0) obtained

in this way. This inner product on A0 does not coincide with the one A0 inherits from
(6.1) as a subspace of A. For φ, λ ∈ A0, we have

meas(H)−1
〈
σζ

χ(g)φ, λ
〉
0

= meas(H)−1

〈
πχ(g)

n−1∑
�=0

(ζL)�φ,

n−1∑
j=0

(ζL)jλ

〉

=
n−1∑
k=0

n−1∑
j=0

n−1∑
�=0

∑
x∈H\E

(ζL)�φ(xgk
χg)(ζL)jλ(xgk

χ).

Define r ∈ {0, . . . , n − 1} by g ∈ Egr
χ. Since φ and λ are supported in E , the

summand vanishes unless −
 + k + r ≡ 0 mod n and −j + k ≡ 0 mod n. By (4.5),
(ζL)�φ = (ζL)k+rφ when 
 ≡ k + r mod n. Therefore

meas(H)−1
〈
σζ

χ(g)φ, λ
〉
0

=
n−1∑
k=0

∑
x∈H\E

(ζL)k+rφ(xgk
χg)(ζL)kλ(xgk

χ)

=
n−1∑
k=0

∑
x∈H\E

|ζ|2kζrφ(g−r
χ g−k

χ xgk
χg)λ(g−k

χ xgk
χ).
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Since we assumed ω to be unitary, |ζ| = 1. Using the fact that gk
χ(H\E)g−k

χ = H\E ,
we can replace x by gk

χxg
−k
χ in the inner sum. We obtain:

(6.2) meas(H)−1
〈
σζ

χ(g)φ, λ
〉
0

= nζr
∑

x∈H\E

φ(g−r
χ xg)λ(x) (g ∈ Egr

χ).

For example, let f0 ∈ Aχ
0 be the nonzero vector defined in (3.3). Since f0 is

supported on H , taking g = 1 and φ = λ = f0 in (6.2) we find

(6.3) ‖f0‖2
0 = nmeas(H).

Note that this is independent of ζ.

Proposition 6.1. The formal degree of σζ
χ is independent of ζ, so we denote it by

dχ. It is given by

(6.4) dχ =
1

nmeas(H)
.

Remark. Under the normalization meas(K) = 1, we compute meas(H) in the
proof of Corollary 6.5 below. See also §5 of [C2].

Proof. Let f0 be as above, and define the matrix coefficient

φ(g) =
〈
σζ

χ(g)f0, f0
〉
0
.

If g ∈ gr
χE then by (6.2),

φ(g) = nmeas(H)ζr
∑

x∈H\E

f0(g−r
χ xg)f0(x) = nmeas(H)ζrf0(g−r

χ g),

since as before, only x = 1 contributes to the sum. Thus for any g,

(6.5) φ(g) =

⎧⎪⎪⎨⎪⎪⎩
nmeas(H)ζrχ(h) if g = gr

χh ∈ gr
χH

0 if g /∈
n−1⋃
r=0

gr
χH.

By the orthogonality relations that define dχ,∫
G

|φ(g)|2dg =
‖f0‖4

0

dχ
=
n2 meas(H)2

dχ
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by (6.3). By (6.5), φ is supported on
⋃n−1

r=0 g
r
χH . Thus∫

G
|φ(g)|2dg =

n−1∑
r=0

∫
H
|φ(gr

χh)|2dh =
n−1∑
r=0

n2 meas(H)3 = n3 meas(H)3.

The proposition now follows.

We are particularly interested in the case where φ = λ = φp is the new vector
defined in Corollary 5.2.

Proposition 6.2. Suppose g ∈ Egr
χ where 0 ≤ r ≤ n − 1. Then

(6.6) dχ

〈
σζ

χ(g)φp, φp

〉
0

= ζr
∑

x∈H\Supp(φp)

φp(g−r
χ xg)φp(x),

Proof. This is immediate from (6.2) and (6.4).

In order to compute (6.6), we need an explicit set of representatives forH\ Supp(φp).
In particular this will allow us to compute ‖φp‖2

0 in Corollary 6.5 below.

Proposition 6.3. The support (5.1) of ξ is the disjoint union

H

(
�n−1

. . .
�

1

)
K1(pn+1) =

⋃
α

⋃
y1,...,yn−1

H

⎛⎝�n−1yn−1

. . .
�y1

1

⎞⎠(α
1

)
,

where α ∈ GLn−1(o) runs through a set of representatives for Xn−1\GLn−1(o) with

(6.7) Xn =

⎛⎜⎜⎝
o∗ o ··· o
p2 o∗ ··· o
p3 p2 ··· o
... . . . . . . ...

pn pn−1 ··· p2 o∗

⎞⎟⎟⎠ ,

and y1, . . . , yn−1 ∈ o∗ run through a set of representatives for o∗/(1 + p) ∼= Ik∗.

Proof. It is easy to check that for k ∈ K1(pn+1),(
�n−1

. . .
�

1

)
k

(
�n−1

. . .
�

1

)−1

∈ H

( o∗
. . .

o∗
1

)

if and only if k =
(
Y ∗
∗ ∗

)
for Y ∈ Xn−1. Let h ∈ H and k ∈ K1(pn+1). We

can write k =
(
Y ∗
∗ ∗

)(
α

1

)
for Y ∈ Xn−1 and α ∈ Xn−1\GLn−1(o). Then
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conjugating
(

Y ∗∗ ∗
)

as above, we obtain

h

(
�n−1

. . .
�

1

)
k = h′

⎛⎝�n−1yn−1

. . .
�y1

1

⎞⎠(α
1

)
,

where h′ ∈ H and y1, . . . , yn−1 ∈ o∗. To prove uniqueness, suppose

(6.8) h1

⎛⎝�n−1yn−1

. . .
�y1

1

⎞⎠(α1

1

)
= h2

⎛⎝�n−1zn−1

. . .
�z1

1

⎞⎠(α2

1

)
.

This yields an equality of the form
(

X ∗∗ ∗
)( α1

1

)
=
( α2

1

)
, where X ∈ Xn−1. Hence

α1 = α2. Cancelling the α-matrices in (6.8) we see that h1 and h2 have the same last
column. Multiplying each side by the same central element, we can assume that the
entry in the lower right corner is 1, and hence that h1, h2 ∈ K ′. Now multiplying both
sides on the right by diag(�n−1zn−1, . . . , �z1, 1)−1 and equating the main diagonal
entries on each side, we see that yj ≡ zj mod p, as needed.

We can make the above explicit as follows.

Proposition 6.4. Let Xn be the subgroup of K defined in (6.7). Then

(6.9) [K : Xn] = q
n(n−1)(n+1)

6
(qn − 1)(qn−1 − 1) · · ·(q − 1)

(q − 1)n
.

Explicitly, if B(Ik) ⊂ GLn(Ik) is the subgroup of upper triangular matrices, and
Γ ⊂ GLn(Ik) is a set of coset representatives for B(Ik)\GLn(Ik), obtained, e.g.,
from the Bruhat decomposition, and lifting bijectively to a set Γ ⊂ K, then a set of
representatives for Xn\K is given by

(6.10)

{⎛⎜⎝
1 0 ··· 0

δ2,1 1 ··· 0
δ3,1 δ3,2 1 0

... . . . . . . 0
δn,1 δn,2 ··· δn,n−1 1

⎞⎟⎠ γ

∣∣∣∣∣ δij ∈ p/pi−j+1, γ ∈ Γ

}
.

Proof. Consider the containments

(6.11) Xn ⊂

⎛⎜⎝
o∗ o ··· o
p o∗ ··· o
p p ··· o

... . . . . . . ...
p p ··· p o∗

⎞⎟⎠ ⊂ K.



Simple Supercuspidal Representations of GL(n) 1013

Reducing modulo p we see that the index of the right-hand containment is

[GLn(Ik) :B(Ik)]=
(qn−1)(qn−q) · · · (qn−qn−1)

(q− 1)n q
n(n−1)

2

=
(qn−1)(qn−1−1) · · ·(q−1)

(q−1)n
.

Furthermore, one sees by induction that the δij-matrices in (6.10) comprise a set of
representatives for the quotient of the first containment in (6.11), or equivalently, for
(Xn ∩K ′)\K ′. Counting along each subdiagonal, the number of such δij-matrices is
seen to be

(q)n−1(q2)n−2 · · · (qn−1)1 = q
∑n−1

i=1 (n−i)i = q
n(n−1)(n+1)

6 .

Multiplying these together, we obtain the index (6.9).

Corollary 6.5. If Haar measure is normalized so that meas(K) = 1, then

(6.12) ‖φp‖2
0 =

nq
n(n−1)(n−2)

6 (q − 1)
qn − 1

.

Proof. Using Proposition 6.3, upon multiplying (6.9) (with n − 1 in place of n)
by (q − 1)n−1 we find that

|H\ Supp(φp)| = q
n(n−1)(n−2)

6 (qn−1 − 1)(qn−2 − 1) · · ·(q − 1).

As a result, by (6.6) we have

(6.13) ‖φp‖2
0 = nmeas(H)q

n(n−1)(n−2)
6 (qn−1 − 1)(qn−2 − 1) · · ·(q − 1).

To prove (6.12), under the normalization meas(K) = 1, we have

meas(H) = meas(K ′) = [K : K ′]−1.

Consider K(p) ⊂ K ′ ⊂ K, where K(p) = 1 + Mn×n(p). Taking the quotient by
K(p), we get 1 ⊂ N (Ik) ⊂ PGLn(Ik). Thus

[K : K ′] =
|PGLn(Ik)|
|N (Ik)| =

(qn − 1)(qn − q) · · ·(qn − qn−1)
(q − 1)qn(n−1)/2

=
(qn − 1)(qn−1 − 1) · · ·(q − 1)

q − 1

= (qn − 1)(qn−1 − 1) · · ·(q2 − 1).

Equation (6.12) now follows.
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7. LOW RANK EXAMPLES

When n = 2, the support of ξ is equal to

H

(
�

1

)
K1(p3) =

⋃
y∈Ik∗

H

(
�y

1

)
,

so the new vector φp is supported on the disjoint union

(7.1) gχH

(
�

1

)
K1(p3) =

⋃
y∈Ik∗

Hgχ

(
�y

1

)
.

When n = 3, we apply (6.10) (with n = 2) to see by Proposition 6.3 that φp = ξ is
supported on the disjoint union

(7.2)
⋃

y1,y2∈Ik∗

( ⋃
δ∈p/p2

H
(

�2y2
�y1

1

)(
1 0
δ 1

1

)
∪
⋃

τ∈o/p2

H
(

�2y2
�y1

1

)(
0 1
1 τ

1

))
.

In the n = 2 case, we can compute the matrix coefficient as a function of the matrix
entries of g.

Theorem 7.1. Let n = 2, and let χ↔ 〈1, t〉 be the affine generic character of K ′

determined by t ∈ Ik∗ and the unitary central character ω : F ∗ → C∗ trivial on 1+p.
Fix ζ ∈ C satisfying ζ2 = ω(t�), and let σζ

χ be the associated simple supercuspidal
representation. Define the matrix coefficient

fp(g) = dχ

〈
σζ

χ(g)v, v
〉
,

where v is a new vector for σζ
χ of norm 1, and dχ is the formal degree relative to the

Haar measure on G in which meas(K) = 1. Then for z ∈ Z,

(7.3)

fp(zg) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(q+1)
2ω(z)

∑
y∈Ik∗

ψ(by+ tc
a y

−1) if g =
(

a b�−1

c�2 d

) ∈ ( o∗ p−1

p2 1+p

)
(q+1)ζ

2ω(−zd)

∑
y∈Ik∗

ω(y)ψ( c
ay + tb

d y
−1) if g =

(
c d�−2

a� b

) ∈ ( o �−2o∗
�o∗ o

)
.

This expression determines fp since it vanishes outside the disjoint union

(7.4) Z ·
(

o∗ p−1

p2 1 + p

) ⋃
Z ·
(

o �−2o∗

�o∗ o

)
.
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Remarks.
(1) The first case is a Kloosterman sum, and the second case is a twisted Kloosterman

sum.
(2) The reason for the complex conjugate in the definition of fp is that then for any

irreducible unitary representation π of GL2(F ), the operator π(fp) is either the
orthogonal projection onto v (if π = σ

ζ
χ) or 0 (if π � σ

ζ
χ). See Corollary 10.29

of [KL1].

Proof. Using the model of σζ
χ on A0, we will compute I(g) = dχ

〈
σζ

χ(g)φp, φp

〉
0
,

where φp is the new vector given in Corollary 5.2. Clearly I(g) and fp(g) have the
same support. First suppose that g ∈ E . Then (6.6), together with (7.1), gives

I(g) =
∑
y∈Ik∗

φp(gχ

(
�y

1

)
g) =

∑
y∈Ik∗

ξ(
(
�y

1

)
g)

(note that the term φp(x) in (6.6) is equal to 1 when x ∈ gχ

(
�

1

)
K1(p3) as is the

case here). If g belongs to the support, then for some y,

g ∈
⋃

z∈o∗/(1+p)

(
�−1y−1

1

)
H

(
�z

1

)
=

⋃
z∈o∗/(1+p)

(
�−1

1

)
H

(
�z

1

)
.

It is easy to show that this set coincides with the left-hand set in (7.4). Let g =(
a b�−1

c�2 d

) ∈ ( o∗ p−1

p2 1+p

)
. Noting that

ξ(
(
�y

1

)(
a b�−1

c�2 d

)
)=ξ(

(
1 by

�c(ay)−1 d

)(
�ay

1

)
)=ψ(by+tc(ay)−1),

and then replacing y by −y, we find

I(g) =
∑
y∈Ik∗

ψ(by + tc(ay)−1) =
∑
y∈Ik∗

ψ(−by− tc(ay)−1)

Similarly, if g ∈ Egχ, then (6.6) and (7.1) with r = 1 give

I(g) = ζ
∑
y∈Ik∗

φp(g−1
χ gχ

(
�y

1

)
g) = ζ

∑
y∈Ik∗

ξ(g−1
χ

(
�y

1

)
g).

If g belongs to the support, then for some y

(7.5) g ∈
⋃

z∈o∗/(1+p)

(
�−1y−1

1

)
gχH

(
�z

1

)
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For any
(

m s
�x u

) ∈ K ′, we have

(7.6)
(
�−1y−1

1

)(
t

�

)(
m s
�x u

)(
�z

1

)
=
(
�txy−1z tu�−1y−1

�2mz s�

)
.

From this computation, we see that the union (over y) of the sets (7.5) coincides with
the right-hand set in (7.4). Therefore if g =

(
c d�−2

a� b

) ∈ ( o o∗�−2

o∗� o

)
,

I(g) = ζ
∑
y∈Ik∗

ξ(
(

�−1

t−1

)(
�y

1

)(
c d�−2

a� b

)
)

= ζ
∑
y∈Ik∗

ξ(
(

a b�−1

cyt−1� dyt−1�−1

)
)

=
ζ

ω(�)

∑
y∈Ik∗

ξ(
(

a b
cyt−1� dyt−1

)(
�

1

)
)

=
ω(t)
ζ

∑
y∈Ik∗

ξ(dyt−1

(
ad−1y−1t bd−1y−1t

cd−1� 1

)(
�

1

)
)

=
ω(d)
ζ

∑
y∈Ik∗

ω(y)ξ(
(

1 bd−1y−1t
ca−1t−1y� 1

)( at
dy�

1

)
)

=
ω(d)
ζ

∑
y∈Ik∗

ω(y)ψ( tb
d y

−1 + c
ay) =

ω(−d)
ζ

∑
y∈Ik∗

ω(y)ψ(− tb
d y

−1 − c
ay).

The proposition now follows upon taking complex conjugates, and multiplying by
‖φp‖−2 = (q+1)

2 (cf. (6.12)).

Proposition 7.2. Let π be an irreducible admissible representation of GL2(F ) of
conductor p3 and central character ω trivial on 1+p. Then π is a simple supercuspidal
representation.

Proof. We first prove that π is supercuspidal. Generally, if c(π) is the conductor
of π, then

c(π) =

⎧⎪⎨⎪⎩
c(χ1)c(χ2) if π = π(χ1, χ2) (principal series)
p if π = St⊗χ (unramified twist of Steinberg)
c(χ)2 if π = St⊗χ (ramified twist of Steinberg)

(e.g. see the end of §1 of [S]). Clearly π cannot be a twist of the Steinberg represen-
tation when c(π) = p3. If π is principal series, then p3 = c(π) = c(χ)c(χ−1ω) for
some character χ which is necessarily ramified. If c(χ) = p, then c(χ−1ω) = p or 1,
so c(π)|p2, a contradiction. If p2|c(χ), then c(χ−1ω) = c(χ), so p4|c(π), another con-
tradiction. Hence π is supercuspidal, and therefore simple supercuspidal by Corollary
5.3.
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8. PROOF OF THEOREM 5.1

In this section we prove Theorem 5.1. In fact, we will compute πK1(pm)
χ for any

m ≥ 1. This space is spanned by functions supported on double cosets HgK1(pm).
Our method is a direct calculation:
(A) Produce an explicit set of matrices containing a full set of representatives for

H\G/K1(pm).
(B) Determine which of these double cosets can support well-defined functions in

π
K1(p

m)
χ .

The final result is stated in Theorem 8.10 below.

8.1. Notation for the proof

In this section, χ is the affine generic character corresponding to 〈t1, t2, . . . , tn〉 ∈
(Ik∗)n. For S ⊂ F , let Mn×n(S) denote the set of n × n matrices with entries in S.
Let Bn(o) denote the set of upper triangular matrices in GLn(o).

As before, Eij denotes the n × n matrix whose only non-zero entry is a 1 in the
i-th row and j-th column. Lastly, let

K ′
n−1 ⊂ GLn−1(o)

be the analog of K ′, of dimension (n− 1) × (n− 1).

8.2. K1(pm)-invariant elements of πχ

For g ∈ G, let
[g] = HgK1(pm).

Suppose f is a K1(pm)-invariant function in the space of πχ. The value f(g) deter-
mines the values of f on HgK1(pm) via f(hgk) = χ(h)f(g). Therefore the function
f is determined by its values on any set of representatives for the double quotient
H\G/K1(pm). We say that g and the double coset [g] are relevant for K1(pm)
(or simply relevant, if m is clear from the context) if there exists such f for which
f(g) �= 0.

Proposition 8.1. Given m ≥ 1, an element g ∈ G is relevant if and only if

(8.1) χ is trivial on gK1(pm)g−1 ∩K ′.

This condition is independent of the choice of representative g for the double coset [g].
In particular, if g satisfies condition (8.1), there exists a K1(pm)-invariant function in
πχ, unique up to multiples, whose support is [g]. We let fg denote the unique such
function satisfying fg(g) = 1.

If [g1], [g2], [g3], . . . is a list of all relevant double cosets (noting thatH\G/K1(pm)
is countable since G is separable), then {fg1, fg2, . . .} is a basis for πK1(p

m)
χ .
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Proof. Suppose f(g) �= 0 for some K1(pm)-invariant function f in πχ. Given
any h ∈ gK1(pm)g−1 ∩K ′ ⊂ H , we have hg = gk for some k ∈ K1(pm), so f(g) =
f(gk) = f(hg) = χ(h)f(g). Because f(g) �= 0, χ(h) = 1. Thus g satisfies (8.1).
Obviously this condition is independent of the choice of representative for HgK1(pm).

Conversely, suppose g satisfies condition (8.1). Define

f(x) =

{
χ(h) if x = hgk for some h ∈ H , k ∈ K1(pm),
0 otherwise.

We need to show that the function is well-defined, i.e. χ(h1) = χ(h2) whenever
h1gk1 = h2gk2 with h1, h2 ∈ H and k1, k2 ∈ K1(pm). Write hi = sik

′
i with si ∈ F ∗

and k′i ∈ K ′ for i = 1, 2. Then

h−1
2 h1 = k′2

−1
s−1
2 s1k

′
1 = gk2k

−1
1 g−1.

Taking determinants, we see that s−1
2 s1 ∈ o∗. The characteristic polynomial of the

middle matrix modulo p is (X−s−1
2 s1)n. Because k2k

−1
1 ∈ K1(pm), the characteristic

polynomial of gk2k
−1
1 g−1 modulo p has a factor of (X−1). Thus s−1

2 s1 ≡ 1 (mod p).
Therefore h−1

2 h1 ∈ gK1(pm)g−1 ∩K ′, so by (8.1), χ(h−1
2 h1) = 1 and hence χ(h1) =

χ(h2), as required.
Now let {[g1], [g2], . . .} be the set of all relevant double cosets. Because fg1, fg2, . . .

have pairwise disjoint supports, they form a linearly independent set. If f is any
K1(pm)-invariant function, then the support of f is a finite disjoint union of relevant
double cosets

⋃�
i=1 HgjiK1(pm), so f =

∑�
i=1 f(gji)fgji

. This proves the final
assertion.

8.3. Representatives for H\G/K1(pm)

We say that an element g ∈ G is primitive if g ∈Mn×n(o) and some entry of g is
a unit. Let Pn×n(o) be the set of primitive matrices. It is easy to see that every class
[g] contains a primitive element.

Lemma 8.2. Let g ∈ G be primitive. Then

[g] ∩Mn×n(o) = (o ∩ F ∗) ·K ′gK1(pm),

[g]∩ Pn×n(o) = o∗ ·K ′gK1(pm).

Proof. Suppose h ∈ [g] ∩Mn×n(o). Then h = zk′gk for some z ∈ F ∗, k′ ∈ K ′

and k ∈ K1(pm). Because k′ and k are in GLn(o), k′gk is also primitive. It follows
that z ∈ o ∩ F ∗. The second claim can be proven similarly.

We say that a matrix g ∈ Mn×n(o) is divisible by gχ if g−1
χ g ∈ Mn×n(o), or

equivalently, if all entries of the bottom row of g belong to p.
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Proposition 8.3. Let g ∈ G be primitive. Suppose h ∈ [g] ∩ Pn×n(o). Then g is
divisible by gχ if and only if h is divisible by gχ.

Proof. By the above lemma, h = zk′gk for z ∈ o∗, k′ ∈ K ′ and k ∈ K1(pm).
Since k′ ∈ K ′, it is clear that if each entry in the last row of g belongs to p, then the
same is true of h. The converse is also easy to see, using g = z−1k′−1hk−1.

We say that a double coset is divisible by gχ if it contains a primitive element that
is divisible by gχ. By the above proposition, this is equivalent to saying that every
primitive element in the double coset is divisible by gχ.

Proposition 8.4. For any g ∈ G, there exists an integer 0 ≤ r < n and a double
coset [h] not divisible by gχ such that [g] = gr

χ[h] = [gr
χh].

Proof. Since [g] contains a primitive element, we may assume that g is primitive.
Let r ≥ 0 be the largest integer for which g−r

χ g ∈ Mn×n(o). Let h = g−r
χ g. Then

h is not divisible by gχ. If r ≥ n, then because gn
χ = � tn−1

n
t1···tn−1

In, the matrix
g = gr

χh = gn
χg

r−n
χ h is not primitive, which is a contradiction. By Lemma 3.2,

[gr
χh] = gr

χ[h].

Proposition 8.5. An element g ∈ G is relevant if and only if g−1
χ g is relevant.

Likewise, for r ≥ 0, [g] is relevant if and only if [g−r
χ g] is relevant.

Proof. This is immediate from Lemma 3.2.
For g ∈ G, let g̃ denote the (n− 1)× (n− 1) submatrix of g formed by removing

the last row and last column of g.

Lemma 8.6. Given g ∈ G, there exists an element h ∈ K ′g with det h̃ �= 0.

Proof. Let g′ be the matrix obtained by deleting the last column of g. Because
the rank of g is n, g′ has rank n − 1. If the first n − 1 rows of g′ are linearly
independent, then we can take h = g. Otherwise, there exists an index i ≤ n− 1 such
that the rows of g′ other than the i-th row are linearly independent. Then we can take
h = (In +Ein)g.

Given g ∈ G, there exists z ∈ Z such that zg ∈ Mn×n(o). By Lemma 8.6, there
is an element h ∈ K ′zg such that det h̃ �= 0. Therefore the set

{h ∈ HgK1(pm)
⋂
Mn×n(o) | det h̃ �= 0}

is non-empty. We let

(8.2) μg = μ[g] ≥ 0

denote the minimum of ordp(det h̃) as h ranges through the above set.
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Lemma 8.7. Let g ∈ G. Then if det g̃ �= 0, there exists h ∈ K ′gK1(pm) such that
h̃ is diagonal and ordp(det g̃) = ordp(det h̃).

Proof. By the Cartan decomposition, there exist k1, k2 ∈ GLn−1(o) and a diagonal
matrix

δ =

⎛⎝�a1

�a2

. . .
�an−1

⎞⎠
where a1 ≤ a2 ≤ · · · ≤ an−1 are integers, such that g̃ = k1δk2. By the Bruhat
decomposition of GLn−1(o/p), there exist matrices k′ ∈ K ′

n−1, b ∈ Bn−1(o) and a
Weyl element w ∈ Wn−1 such that

k1 ≡ k′wb (mod p).

Let k′′ = k1(wb)−1 ≡ k′ (mod p). Obviously k′′ ∈ K ′
n−1. Then

g̃ = k1δk2 = k′′wbδk2 = k′′(wδw−1)w(δ−1bδ)k2.

A simple calculation shows that δ−1bδ has entries in o. Because det δ−1bδ = det b is a
unit, it is in GLn−1(o). Let k = w(δ−1bδ)k2 ∈ GLn−1(o). Note also that δ′ = wδw−1

is diagonal. It follows that if we let

h =
(
k′′

1

)−1

g

(
k

1

)−1

∈ K ′gK1(pm),

then h̃ = k′′−1g̃k−1 = δ′ is diagonal, and ordp(det h̃) = ordp(det g̃).

Theorem 8.8. Let [g] be a double coset not divisible by gχ. Let R containing 0
be a fixed complete set of representatives in o for o/p. Then there exists an element
in [g] of the following form:

(8.3) h =

⎛⎜⎜⎜⎜⎜⎝
�b1 0 · · · 0 v1
0 �b2 · · · 0 v2
...

... . . . ...
...

0 0 · · · �bn−1 vn−1

�b1u1 �b2u2 · · · �bn−1un−1 w

⎞⎟⎟⎟⎟⎟⎠ .

Here for each i, bi ≥ 0 is an integer, the elements ui, vi, w belong to o, and the
following conditions are satisfied:

(a) h is primitive.
(b) ordp(det h̃) = b1 + b2 + · · ·+ bn−1 = μg as defined in (8.2).
(c) ui ∈ R for i = 1, 2, . . . , n− 1. In particular, if ui is not a unit, then ui = 0.
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(d) Suppose i < j ≤ n− 1, bi ≤ bj and ui �= 0. Then uj = 0.
(e) w ∈ o∗.

Remark. The correspondence between the specified set of double cosets and the
matrices (8.3) is not one-to-one. For example, given 1 ≤ i < n and a ∈ o, we can
replace h by h(In + a�Ein) ∈ hK1(pm). The new matrix is still of the form (8.3),
with vi replaced by vi + a�bi+1 and w replaced by w + a�bi+1 ∈ o∗. Nevertheless,
it is sufficient for our purpose.

Proof. Let h ∈ [g] ∩Mn×n(o) with ordp(det h̃) = μg (cf. (8.2)). Note that h is
primitive, since otherwise we could replace it with �−1h and get a smaller valuation.
Furthermore, applying Lemma 8.7 to h, we can assume that h̃ is diagonal, and therefore

(8.4) h =

⎛⎜⎜⎜⎜⎜⎝
�b1 v1

�b2 v2
. . . ...

�bn−1 vn−1

β1 β2 · · · βn−1 w

⎞⎟⎟⎟⎟⎟⎠ ,

where b1, . . . , bn−1 ≥ 0 and v1, . . . , vn−1, β1, . . . , βn−1, w ∈ o. Lemma 8.7 also allows
us to assume that property (b) holds.

Adding the last row of h to the i-th row, we obtain

h′ = (1 +Ein)h =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�b1 v1
. . . ...

β1 · · · �bi + βi · · · βn−1 vi +w
. . . ...

�bn−1 vn−1

β1 · · · βi · · · βn−1 w

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This is an element of K ′h ⊂ [g] ∩Mn×n(o), with

det h̃′ = (�bi + βi)
∏
j �=i

�j.

By the minimality of ordp(det h̃), we must have ordp(�bi +βi) ≥ bi. This means that
βi = �biui for some ui ∈ o.

To prove (c), let a ∈ o and 0 < i < n. Adding the a�-multiple of the i-th row of
h to the bottom row, we obtain h′ = (In + a�Eni)h ∈ K ′h ⊂ [g] ∩Mn×n(o). Note
that h′ is of the form (8.4) with last row equal to(

β1 β2 · · · βi−1 βi + a�bi+1 βi+1 · · · βn−1 w+ a�vi

)
.
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Because βi +a�bi+1 = �bi(ui +a�) and a is arbitrary, we can therefore assume that
ui ∈ R. This proves (c).

To prove (d), suppose i < j ≤ n− 1, bi ≤ bj and ui �= 0. Because ui ∈ R by (c),
ui is a unit. Let a ∈ o. Adding the a-multiple of the j-th row to the i-th row, then
subtracting the a�bj−bi-multiple of the i-th column from the j-th column, we obtain

h′ = (In + aEij)h(In − a�bj−biEij) ∈ [g] ∩Mn×n(o),

where h̃′ = h̃, and the last row of h′ is(
β1 · · · βj−1 βj − a�bj−biβi βj+1 · · · βn−1 w

)
.

Now
βj − a�bj−biβi = �bj(uj − aui).

Because ui is a unit, we can take a = uj/ui, and therefore replacing h by h′ we can
assume uj = 0. This proves (d).

To prove (e), suppose w ∈ p. Because [g] is not divisible by gχ, βi ∈ o∗ for some
i < n. Adding the i-th column of h to the last column, we obtain

h′ = h(In +Ein) ∈ hK1(pm) ⊂ [g] ∩Mn×n(o).

The submatrix h̃′ is h̃. Its lower right corner entry is w+ βi ∈ o∗. Replacing h by h′,
we can assume that w is a unit.

Corollary 8.9. Every double coset in H\G/K1(pm) contains an element of the
form gr

χh for 0 ≤ r < n and h of the form (8.3).

Proof. This is immediate from the above theorem and Proposition 8.4.

8.4. K1(pm)-invariant functions

In this section, we will describe all relevant double cosets. The end result is the
following theorem, of which Theorem 5.1 is an immediate corollary.

Theorem 8.10. Given m ≥ 1, a double coset [g] is relevant for K1(pm) if and
only if [g] = [ga

χδ] for some 0 ≤ a ≤ n − 1 and

(8.5) δ =

(
�b1

. . .
�bn

)
, m− 1 > b1 > b2 > · · · > bn = 0.

Consequently, in the notation of (4.2) and Proposition 8.1, a basis for πK1(p
m)

χ is given
by

{Lafδ | 0 ≤ a ≤ n − 1, δ as in (8.5)}.
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Corollary 8.11. If πK1(p
m)

χ is nonzero, then m ≥ n+ 1.

Proof. Suppose f ∈ π
K1(p

m)
χ is non-zero and f(g) �= 0. Then by Proposition

8.1, [g] is relevant. By Theorem 8.10, we can assume that g = ga
χδ as above. Because

m− 1 > b1 > b2 > · · · > bn = 0, we have m− 1 > n− 1, i.e. m ≥ n + 1.
Suppose g is relevant and not divisible by gχ. Without loss of generality, we can

assume that g is given by (8.3). Let

d = w −
n−1∑
i=1

uivi.

Then from the second-to-last row cofactor expansion we find inductively that

det g = d�b1+···+bn−1 .

In particular, d �= 0. We will prove Theorem 8.10 by treating the two cases:
(1) ui �= 0 for some i,
(2) u1 = u2 = · · · = un−1 = 0.

8.4.1. Case (1): ui �= 0 for some i.

Let 
 ≥ 1 be the minimal index such that u� �= 0, i.e., u1 = u2 = · · · = u�−1 = 0,
u� �= 0. By Theorem 8.8 (c), u� is a unit. Subtracting the u−1

� -multiple of the last row
of g from the 
-th row, and then adding the uiu

−1
� -multiple of the i-th row to the 
-th

row for i = 
+ 1, . . . , n− 1, we obtain:(
n−1∏

i=�+1

(In + uiu
−1
� E�i)

)
(In − u−1

� E�n)g

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�b1 v1

. . . ...
�b�−1 v�−1

0 − d
u�

�b�+1 v�+1

. . . ...
�bn−1 vn−1

0 ··· 0 �b�u� �b�+1u�+1 ··· �bn−1un−1 w

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ K ′g ⊂ [g].

The (
, n) entry is obtained by the fact that d = w −∑n−1
i=1 uivi = w −∑n−1

i=� uivi.
Therefore, we can replace g by the above matrix. From now on, we assume that g is
the above matrix. We are going to show that g is not relevant, i.e. it does not satisfy
(8.1). Suppose to the contrary that g satisfies (8.1). We will obtain a contradiction by
establishing the following:
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1. v1, v2, . . . , v�−1 can be assumed to be 0.
2. Either �|ui or �|vi, i.e., �|uivi, for i = 
+ 1, . . . , n− 1.
3. �|(w −∑n−1

i=�+1 uivi). Therefore �|w by the previous result. This contradicts
the fact that w is a unit (cf. Theorem 8.8).

It is easy to verify that

g−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�−b1
�−b1 u�v1

d

. . .
...

�−b�−1
�

−b�−1 u�v�−1
d

�−b�(w−∑n−1
i=�+1

uivi)
d

−�−b�u�+1
u�

··· −�−b�un−1
u�

�−b�
u�

�
−b�+1 u�v�+1

d
�−b�+1

... . . .
�

−bn−1 u�vn−1
d

�−bn−1

−u�
d

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Proposition 8.12. 
 �= 1.

Proof. Suppose 
 = 1. Then

gEnng
−1 =

⎛⎜⎜⎜⎝
1 0 ··· ··· 0

−u1v2
d

0 ··· ··· 0

...
...

...
−u1vn−1

d
0 ··· ··· 0

−wu1
d

0 ··· ··· 0

⎞⎟⎟⎟⎠ .

Let k = (1 + d�)−1(In + d�Enn) ∈ K1(pm). Then

k′ = gkg−1 = (1 + d�)−1(In + d�gEnng
−1) ∈ K ′.

Because g is relevant, we have

1 = χ(k′) = ψ(−tnwu1(1 + d�)−1),

a contradiction.

Thus 
 ≥ 2.

Proposition 8.13. We have:
(a) b1 > b2 > · · · > b�−1 if 
 > 2.
(b) Without loss of generality, we can assume that v1 = · · · = v�−1 = 0.
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Proof. We are going to prove the proposition by backward induction. First of
all, it is not hard to show that

gE�−1,�−1g
−1 = E�−1,�−1 + u�v�−1

d E�−1,�.

If d � v�−1, then v�−1 �= 0 and d
v�−1

∈ p. Let

k = In + d
v�−1

E�−1,�−1 ∈ K1(pm).

Then

k′ = gkg−1 = In + d
v�−1

gE�−1,�−1g
−1 = In + d

v�−1
E�−1,�−1 + u�E�−1,� ∈ K ′.

Because g satisfies (8.1), 1 = χ(k′) = ψ(t�−1u�), a contradiction. Therefore d|v�−1.
Now adding the v�−1u�

d -multiple of the 
-th row of g to the (
 − 1)-st row, we can
replace g by (In + v�−1u�

d E�−1,�)g ∈ K ′g, and therefore we can assume that v�−1 = 0.
Suppose now for some 1 < 
′ ≤ 
− 1 that

(8.6) b�′ > b�′+1 > · · ·> b�−1 and v�′ = · · · = v�−1 = 0.

We will show that the above holds as well for 
′ − 1 in place of 
′. Suppose to the
contrary that b�′−1 ≤ b�′ . Then since

gE�′−1,�′g
−1 = �b�′−1−b�′E�′−1,�′ ,

we see that
k = In +�b�′−b�′−1E�′−1,�′ ∈ K1(pm).

Then
k′ = gkg−1 = In +�b�′−b�′−1gE�′−1,�′g

−1 = In + E�′−1,�′ ∈ K ′.

Because g satisfies (8.1), 1 = χ(k′) = ψ(t�′−1), a contradiction. This proves the first
part of (8.6) for 
′ − 1.

Next, we note that

gE�−1,�′−1g
−1 = �b�−1−b�′−1(E�−1,�′−1 + u�v�′−1

d E�−1,�).

If d � v�′−1, then v�′−1 �= 0 and d
v�′−1

∈ p. By the above, b�′−1 > b�′ > · · · > b�−1.
Therefore

k = In +�b�′−1−b�−1 d
v�′−1

E�−1,�′−1 ∈ K1(pm),

and

k′ = gkg−1 = In +�b�′−1−b�−1 d
v�′−1

gE�−1,�′−1g
−1

= In + d
v�′−1

E�−1,�′−1 + u�E�−1,� ∈ K ′.
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Because g satisfies (8.1), 1 = χ(k′) = ψ(t�−1u�), a contradiction. Therefore d|v�′−1.
Adding the v�′−1u�

d -multiple of the 
-th row of g to the (
′ − 1)-st row, we can replace
g by (In + v�′−1u�

d E�′−1,�)g ∈ K ′g, allowing us to assume that v�′−1 = 0. This proves
the second half of (8.6) for i = 
′ − 1 and completes the induction.

From now on, we assume v1 = v2 = · · · = v�−1 = 0.

Proposition 8.14. Suppose 
 ≤ i ≤ n− 1. If ui �= 0, then b1 + 1 < bi.

Proof. If i = 
, then

gEi1g
−1 = �bi−b1uiEn1.

Likewise, for 
 < i ≤ n− 1, we have

gEi1g
−1 = �bi−b1(Ei1 + uiEn1).

In either case, suppose b1 + 1 ≥ bi. Then k = In + �b1−bi+1Ei1 ∈ K1(pm) since
i < n. Furthermore,

k′ = gkg−1 = In +�b1−bi+1gEi1g
−1 = In + δi,��Ei1 +�uiEn1 ∈ K ′

for the Kronecker function δi,�. Because g satisfies (8.1), the above implies 1 =
χ(k′) = ψ(tnui), a contradiction since ui �= 0 is a unit.

Proposition 8.15. Suppose 
+ 1 ≤ i ≤ n − 1. If ui �= 0, then vi ∈ p.

Proof. Note that

gE�−1,ig
−1 = �b�−1−bi(u�vi

d E�−1,� +E�−1,i).

By Proposition 8.13 (a) and the above proposition, bi > b1 > b�−1. Therefore

k = In + d�bi−b�−1E�−1,i ∈ K1(pm)

and

k′ = gkg−1 = In + d�bi−b�−1gE�−1,ig
−1 = In + u�viE�−1,� + dE�−1,i ∈ K ′.

Because g satisfies (8.1), 1 = χ(k′) = ψ(t�−1u�vi). This means vi ∈ p since
t�u� ∈ o∗.

Proposition 8.16. (w−∑n−1
i=�+1 uivi) ∈ p.
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Proof. We have

gE�−1,�g
−1 = �b�−1−b�

(
w −∑n−1

i=�+1 uivi

d
E�−1,� −

n−1∑
i=�+1

ui

u�
E�−1,i +

1
u�
E�−1,n

)
.

By Propositions 8.13 (a) and 8.14, b� > b1 ≥ b�−1. Thus

k = In + d�b�−b�−1E�−1,� ∈ K1(pm)

and
k′ = gkg−1 = In + d�b�−b�−1gE�−1,�g

−1 ∈ K ′.

Since g is relevant, 1 = χ(k′) = ψ(t�−1(w −∑n−1
i=�+1 uivi)). The conclusion follows.

Proposition 8.17. If [g] is not divisible by gχ, then [g] is relevant only if it contains
an element of the form (8.3) with u1 = u2 = · · · = un−1 = 0.

Proof. If not all ui equal 0, let 
 be the smallest index such that u� �= 0.
By Proposition 8.12, 
 ≥ 2. Then by Proposition 8.15, either ui = 0 or �|vi for
i = 
+ 1, . . . , n− 1. Therefore �|uivi for i = 
+ 1, . . . , n− 1. By Proposition 8.16,
it follows that �|w, contradicting the fact that w is a unit.

8.4.2. Case (2): u1 = u2 = · · · = un−1 = 0

Here we assume that g is not divisible by gχ, and that it is given by (8.3) with all
ui equal to 0. Because w is a unit, we can replace g by the diagonal matrix

(8.7)

(
w−1

. . .
w−1

)⎛⎜⎝
1 −v1

w

. . .
...

1
−vn−1

w
1

⎞⎟⎠
⎛⎝�b1 v1

. . . ...
�bn−1 vn−1

w

⎞⎠( w
. . .

w
1

)

=

⎛⎝�b1

. . .
�bn−1

1

⎞⎠ ∈ HgK1(pm) = [g].

Suppose that g is relevant. Then for r1, . . . , rn ∈ o, the condition

g

⎛⎜⎝
1 r1

1 r2

. . . . . .
rn−1

�mrn 1

⎞⎟⎠ g−1 =

⎛⎜⎜⎝
1 r1�b1−b2

1 r2�b2−b3

. . . . . .
1 rn−1�bn−1

�m−b1rn 1

⎞⎟⎟⎠ ∈ K ′,

implies that the above matrix belongs to kerχ, i.e.

(8.8) ψ(t1�b1−b2r1 + · · ·+ tn−1�
bn−1rn−1 + tn�

m−1−b1rn) = 1.
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Set r1 = · · · = rn−1 = 0. Then (8.8) gives ψ(tn�m−1−b1rn) = 1 for all rn ∈
�b1−m+1o ∩ o. If b1 ≥ m − 1, then we can take rn = �b1−m+1 to get ψ(tn) = 1,
a contradiction. Hence b1 < m − 1. Similarly, for any index 1 ≤ j < n, set ri = 0
for all i �= j. Then for all rj ∈ �bj+1−bj o ∩ o, (8.8) gives ψ(tj�bj−bj+1rj) = 1. If
bj+1 ≥ bj , then we can take rj = �bj+1−bj and arrive at a contradiction. We conclude
that

(8.9) 0 = bn < bn−1 < bn−2 < · · · < b1 < m− 1.

Conversely, it is clear from the above that if (8.9) holds, then (8.8) holds, so g is
relevant. This proves the following.

Proposition 8.18. Suppose g is the diagonal matrix (8.7). Then g is relevant if
and only if (8.9) holds.

Proof of Theorem 8.10. By Proposition 8.4, [g] = [ga
χh] = ga

χ[h], where [h] is not
divisible by gχ and 1 ≤ a ≤ n−1. By Proposition 8.5, [g] is relevant if and only if [h]
is relevant. By Proposition 8.17 and the above discussion, [h] is relevant if and only if
it contains a matrix of the form (8.5).
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