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THE CANTOR MANIFOLD THEOREM WITH SYMMETRY AND
APPLICATIONS TO PDEs

Zhenguo Liang, Zhuogqun Yu and Min Wang

Abstract. In this paper we introduce a new Cantor manifold theorem and then
apply it to one new type of one-dimensional (1d) beam equations

2 2
Utt + Uggaae + MU — 2u Ugy — 2““;,; = 07 m > 07

with periodic boundary conditions. We show that the above equation admits
small-amplitude linearly stable quasi-periodic solutions corresponding to finite
dimensional invariant tori of an associated infinite dimensional dynamical system.
The proof is based on a partial Birkhoff normal form and an infinite dimensional
KAM theorem for Hamiltonians with symmetry(cf. [19]).

1. INTRODUCTION AND MAIN RESULT

1.1. Cantor Manifold Theorem with Symmetry

In [23] Kuksin and Poschel introduced the famous Cantor manifold theorem, which
can be applied to one dimensional Schrodinger equations and wave equations under the
Dirichlet boundary conditions. There are further progress in infinite dimensional KAM
theory since then. We refer the readers to [3, 12] and [27] for one dimensional wave
equations and to [14, 15, 24] and [26] for one-dimensional Schrodinger equations.
The above mentioned quasi-periodic solutions are all close to 0. We refer to [19] for
the existence of quasi-periodic solutions of defocusing nonlinear Schrodinger equations
with large amplitude. More recently, there are also essential progress in nonlinear
Schrodinger equations by Eliasson-Kuksin [13] (with Fourier multipliers) in any space
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dimension. We refer to [18] and [31] for further progress based on [13]. All above
results obtain reducible elliptic tori.

If one only concerns with the existence of quasi-periodic solutions, many relevant
results are first proved by Bourgain by extending the Newton approach introduced by
Craig-Wayne [11] for periodic solutions. Its main advantage is to require only the first
order Melnikov non-resonance conditions for solving the homological equations. De-
veloping this perspective, Bourgain proved the existence of quasi-periodic solutions for
any dimensional wave equations and Schrodinger equations (refer to [7, 8, 9]). Most
recently, Berti and Bolle in [6] proved the existence of quasi-periodic solutions for n di-
mensional nonlinear Schrodinger equations with merely differentiable nonlinearities and
a multiplicative and merely differentiable potential. The corresponding reducible quasi-
periodic solutions results of nonlinear Schrodinger equations with merely differentiable
nonlinearities for any dimension are open. For high dimensional wave equations the
existence of reducible quasi-periodic solutions remains unsolved.

In this paper we prove a Cantor manifold theorem with symmetry, which can be
applied to one type of one dimensional beam equations. There are two reasons for
us to rewrite the Cantor manifold theorem. Firstly, one needs a new Cantor manifold
theorem to deal with some PDEs under the periodic boundary conditions while the old
version(refer to [23]) only deals with the Dirichlet boundary conditions. The techniques
mainly come from [19] and [16]. Secondly, we develop a new idea in obtaining the non-
degenerate condition for the first step in KAM iterations. We mention that in many
cases it is very difficult to obtain the non-degenerate condition(refer to [24]). For
technical reasons we weaken the non-degenerate conditions from A to A’(see below).
To obtain the non-degenerate conditions A’ we throw away suitable parameter set.

For introducing the theorem we consider a hamiltonian H = A + Q + R in a
neighbourhood of the origin in #>V, where R represents some higher order perturbation
of an integrable normal form A + @ and ¢>V is defined in Section 4. The latter
describes a family of linearly stable invariant tori of dimension b := |A| with quasi-
periodic motions. The dimension b is fixed, 1 < b < oc.

In complex coordinates ¢ = (g, §) on £>~, where ¢ = (gj)jea and § = (g;)jen,
and with

I=(lgj®jea,  Z=(gj|*)jeB:
the normal form consists of the terms

A=lan D+ (812), Q= 3(AL 1)+ (B, 2),

where «q, 31 and Ay, B; denote vectors and matrices with constant coefficients, re-
spectively. Its equations of motion are

q =idiag(an + A1l + B 2)q, ¢ =idiag(B1+ B11)q.
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They admits a complex b—dimensional invariant manifold £ = {¢ = 0}, which is
completely filled, up to the origin, by the invariant tori

T(I):{ij@P:Ij for j € A}, IGIP’_A,

where PA = {I: I; >0 for j € A}. On 7(I) and its normal space, respectively, the
flows are given by

q = idiag(w(I))q, w(l) = a1 + A1,

q =idiag(QI))g, Q)=+ Bl

They are linear and in diagonal form. In particular, since Q(I) is real, ¢ = 0 is an
elliptic fixed point, all the tori are linearly stable, and all their orbits have zero Lyapunov
exponents. As in [23], we call 7(I) an elliptic rotational torus with frequencies w([).
The following theorem is to show the persistence of a large portion of £ forming an
invariant Cantor manifold £ for the hamiltonian H = A + Q + R.

That is, there exists a family of b—tori

TICl=|JTU)CE
IeC

over a Cantor set C ¢ P4 and a Lipschitz continuous embedding
U TIC] — >N,

such that the restriction of ¥ to each torus 7' (/) in the family is an embedding of an
elliptic rotational b—torus for the hamiltonian H. The image £ of 7 (C) as [23] we call
a Cantor manifold of elliptic rotational b—tori given by the embedding ¥ : 7(C) — &.
In addition, the Cantor set C has full density at the origin, the embedding ¥ is close
to the inclusion map ¥ : £ «— (%N,

For giving the following theorem we introduce the notations v = (v;) ez Where
v; = j, for any j € Z. With the notation v4 = (vj)jca and v = (v;);jep One then
has k-v4a = > jk; and m-vp = ) jm;. For the existence of £ the following

€A j€B

assumptions a]re made. !

A. Nondegeneracy. The normal form A + () is nondegenerate in the sense that

det A1 7& 0,
{k, w (D)) + {1, (1)) # 0,

for all (k,1) € Z4 x ZP with 1 < |I| < 2, where w = oy + AT and Q = 31 + By 1.
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A’. Nondegeneracy. The normal form A + @ is nondegenerate in the sense that

detA1 7&0,
k-w(I)+e-QI)£0,

for all (k,e) € Z4 x ZB with 1 < |e| < 2, satisfying 0 < |k| < M., 0 < |e|; < M,
and k-vy +e-vg =0, where w = a; + A1 and Q = (81 + B I and the constant
M, is a fixed constant and for integer vectors such as e, the norm |e|; is given by

lefi = 2 (Iil v Dlejl and Je] = > fejl.
JjeB

JEB
B. Spectral Asympotics. There exists d > 1 such that
By =1+
where the dots stand for terms of order less than d in |j].

C. Regularity. Xg, Xp € A(¢(>N,2N), where A(¢>N, ¢2N) denotes the class
of all maps from some neighborhood of the origin in /%% into ¢V, which are real
analytic in the real and imaginary parts of the complex coordinate q.

D. Symmetry. The perturbation R satisfies

{R, S} =0,
where
(1.1) S=a+b> jIj+c> jl
jeA jeB

witha € R and b, c € R\ {0}.

Remark 1.1. From the regularity assumption in fact we have b;; = O(1) uniformly
in ] € A, where ¢ € B and B, = (bij>i€B,j€A'

Theorem 1.1. (The Cantor Manifold Theorem With Symmetry). Suppose the
hamiltonian H = A + Q + R satisfies assumptions A or A’, B, C and D, and

R = O(lldlvllgllx) +Olaly) + OdlallR),

with g > 4. Then there exists a Cantor manifold £ of smooth, elliptic diophantine
b—tori given by a Lipschitz continuous embedding ¥ : 7[C] — &, where C has full
density at the origin, and W is close to the inclusion map ¥y :

¥ — Yol n,B.A7ic) = O7),

with o = %g—l.
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1.2. One New Type of Beam Equations

Theorem 1.1 can be applied to one new type of beam equations. Consider the
following one-dimensional beam equations

(1.2) Uit + Uppae + MU — 20Uy, — 2uu§, =0, m > 0,
with periodic boundary conditions

(1.3) u(t, z + 2m) = u(t, ).

We have the following

Theorem 1.2. Consider one-dimensional beam equations (1.2) with the boundary
condition (1.3). Then for each index set J = {(n1,ng,---,n)} with b > 1 and
|ni| # |nj| fori,5 € {1,---,b} and nyiny - - -y # 0, there exists, for all m > 0 but a
set with Lebesgue measure zero, a Cantor manifold £; of smooth, linearly stable and
Diophantine b—tori in an associated phase space carrying quasi-periodic solutions of
the nonlinear PDEs.

Remark 1.2. Theorem 1.2 holds true for
(1.4) Ut + Uggpr + MU — 2f(u2)um — 29(u2)uu§, =0, m > 0,

with periodic boundary conditions (1.3) where f(t) =t + > axt® and f is analytic
E>2
int € R and g(t) = f'(t). The special form of nonlinearity is to guarantee that the

corresponding equations are Hamiltonian. We refer to [2] for details.

Theorem 1.2 confirms that the one dimensional beam equations (1.2)+(1.3) has
infinite many linearly stable quasi-periodic solutions. We refer to [16, 17] and [25]
for beam equations whose nonlinearities don’t involve derivatives. It is worthy of
pointing out that there are increasing interests on the PDEs whose nonlinearity involves
derivatives since many important PDEs belong to this case. We review some known
results. Bourgain [7] announced the existence of quasi-periodic solutions for derivative
NLW equation

d2
~ )

The problem has been reconsidered by Craig in [10] for more general Hamiltonian
derivative wave equations like

=

Ut — Ugy + V(z)u + Bf(z,u) =0, B:(

Uty — Uge + g(x)u + f(2, DPu) =0, zeT,

where g(z) >0 and D is the first order pseudo-differential operator D := /=02 +¢g(x).
Their method for the search of periodic solutions works good for 5 < 1. For g =1
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we refer to the recent work by Berti, Biasco and Procesi [4] - [5]. For KDV equation
Kuksin [21] - [22](also refer to Kappeler-Poschel [20]) smartly got a weak normal
form around the torus. Then he proved the existence of quasi-periodic solutions from
the strong estimates of solutions of the following equation

(1.5) —i0yu + Au+ b(z)u = f(z), x e T

Actually a weak estimate of (1.5) also works well in the KAM proof at the cost
of losing the analyticity. We refer to Liu-Yuan [28] for one-dimensional derivative
nonlinear Schrodinger equation and Benjiamin-Ono equation. Since all their results are
relevant with a weak normal form, all the quasi-periodic solutions are not proved to be
linearly stable.

The rest of the paper is organized as follows. In section 2 the Hamiltonian of the
nonlinear beam equation is written in infinitely many coordinates and then transformed
into its Birkhoff normal form of order four. In section 3 based on the Cantor Manifold
Theorem with symmetry one gets Theorem 1.2. In section 4 we recall an infinite
dimensional KAM theorem with symmetry from [19] and also improve it. Then one
can use it to prove the Cantor Manifold Theorem with symmetry. Some technical
lemmas are deferred in the Appendix.

2. THE HAMILTONIAN SETTING OF BEAM EQUATIONS

In this section we will write one-dimensional beam equation mentioned above into
infinite Hamiltonian systems and then put the corresponding Hamiltonian into normal
form. For convenience, we rewrite (1.2) as follows

(2.1) wy + A%u — 20Uy, — 2uu§, =0, m > 0,
(2.2) u(t, z + 2m) = u(t, ),

where A = (Opgza + m)% and the operator A with periodic boundary conditions
has an exponential basis ¢;(z) = \/%eiﬂ and corresponding eigenvalues \; =

Vj*+m, j € Z. One can write equation (2.1)+(2.2) as the infinite dimensional
Hamiltonian systems

with Hamiltonian

27 ] 1
(2.4) H(%Q)ZM%GH%/O (A72(q+q)*(A 2 (¢p + @) ?dz = A+ P
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in the complex coordinates

1 1 i 1 1 1 i 1
= —=A2u+—=A"2v q§:=—=A2u— —=A"2v,

TR R TR

where (u,v) = fo% uodz for u, v € W1([0,27]), which is the Sobolev space of all

complex valued L2—functions on [0, 27] with an L?—derivative, and the gradient of

H is defined with respect to (-, -). Note that the nonlinearity in (2.1) is x-independent

implying the conservation of the momentum

2
(25) Holg.0) =i [ aduqda.
0

This symmetry allows to simplify the KAM proof (see also [4, 18, 16, 19, 31]).

Now setting ¢ = (g;)jez through the relations ¢(z) = Sq¢ = ) ¢;¢;(x), we obtain
JEZ
the Hamiltonian in infinitely many coordinates

H(q,q) = Mg, 9) + P(q,q),

where the coordinates are taken from the Hilbert space ¢>" of all complex-valued
sequences ¢ = (g;)jez With

A\2N
gz =Y ()M gsl* < oo,
JEZ

where (j) =1V |j|. Further computation shows

5
(2.6) H=A+P=>Y XNlgI*+) P,
JEZ 7=1
where
1 kl
Pl= Y Puagawa=-— Y, —————aigi%u
jkl14) N 145 )
i+j+k+1=0 8w itjrkt+=0 V AiAGARAL
) 1 k(i+j— 21 _
P2= Y Pluaitiad = % > ﬁqiqjqqu,
i+j+k—1=0 i+j+k—1=0 2@ JARAL
o 1 (—k* 4+ 1j — jl —il) _
pP3 = Z Pig‘ GiqiTed = —— Z o
k1 2959k q1 ~ 9i45 941,
itj—k—1=0 8w itj—k—1=0 VA /\k;\l
1 (2Kl — il — ki
P Y Plagaa--— Y I
jkl414) 3 147
i—j—k—1=0 8 i—j—k—1=0 Aidj AR AL

and
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1 kl
P5 = E P2 gd:an0 — —— E: M Gaana.
ikt 494k ql S NN 4i95 9k q1

—i—j—k—1=0 —i—j—k—1=0

Its equations of motion are

(2.7) g; = —105,H,  jE€L,
where we use the symplectic structure i ) dg; A dg;. From a straightforward compu-
JEL
tation we have
(2.8) Hy(q,9) = jlal*
JEL
As we mention above H, satisfies
Lemma 2.1.
{HQ, P} =0.

Before turning to the normal form analysis of the Hamiltonian (2.6), we state a
result concerning the regularity of the gradient P;. The proof is well known(see [23]).

Lemma 2.2. For N > 0, the gradient P; is real analytic as a map from some
neighbourhood of the origin in ¢2% into ¢%, with

1Pl = O(llalIX)-

In the following we will put the Hamiltonian H into normal form. We will use

A to stand for the tangent sites and while B for the normal sites and b := |A]. It is

clear Z = AU B. We denote Cy := ma}{\j\} + 1 and C, to be an absolute constant
Je

which is variant. In the following discussion, the parameter m will be defined in
[My, Ms] C (0, 00), where M; > 0 and My > 1. As in [26], we denote

Ag = {(Zu.ja k7l>‘ﬁ{<27]7kal> ﬂB} = 0};
Ay = {(Zu.ja k7l>‘ﬁ{<27]7kal> ﬂB} = 1}7

Ag =A{(i,5, k. DIt{(i, 5.k, 1) N B} = 2},
and

Ag =A{(i,5, k. DIg{(, 5.k, 1) N B} > 3}.
Then we rewrite the terms P?, ¢t = 1,---,5, in H into P* = P04 ptl 4 pt2 4 pt3,
Here

1 k(i+ 7 —2l)
P27L = PZ? qqq 1 = — —— — . _
§ : jkl1i4g k4l § ~ 9459k 41,
i+j+k—1=0 8w i+j+k—1=0 VA AR

(i7j7k7l)€AL (17]7k7Z)EAL
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where + = 0,1,2,3. Similarly, we also similarly define P+, P3¢ P*t and P5*,
t=20,1,2,3.

Lemma 2.3. For any (i, j, k,1) € Z* and m > 0,
Ai A+ A+ N 24\/E

Lemma 2.4. If (i, 7, k,1) € Ay, Ay or Ag, then for V m € [My, Ms] \ Ro,

A+ A+ A — Al = min{2y/m, 1, b = ming]i, |51, [k], II}.

w
LR SN}
\/h4+m}

where i + j + k — 1 = 0 and meas(Ro) < C,C%Myb*p and p is a small parameter
and will be chosen in the end.

Lemma25. Ifi+j—k—I1=0and m >0,

‘Az + A] - Ak - Al‘ > c(m)/ \% (2 + h>4 +m, h = mln{\z\, ‘.7‘7 ‘k‘a ‘l‘}a
except the trivial case {i,j} = {k,[}.

The proof for Lemma 2.3 is clear. The long proofs for Lemma 2.4 and Lemma 2.5
are put into the Appendix.

Next we transform the hamiltonian (2.6) into the partial Birkhoff form. Denote
A3 2N as the class of all real analytic maps from some neighbourhood of the
origin in /2 into /%N,

Lemma 2.6. For each m € [M;, M)\ Ry, there exists a real analytic, symplectic
change of coordinates I := X1 in some neighborhood of the origin that takes the
hamiltonian (2.6) into

Hol'=A+P+P+K,

where X, X 5, X € A(02N, (2N,
P= Y Pylallel
{1d}AAD
with uniquely determined coefficients, and

[Pl = o(ldlvllgl~) + odldly), 1K1 =0lal%),

. - 2-5;:) 2442
q= <Qj>j€Ba q= <Q]>]€A and PZ] = ( SW])—ZA;’;\]]' . Moreover,

(29)  Hyol = H,, {Hy, HoT} =0, {Hy,P+ K} =0,
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and the neighborhood can be chosen uniformly and the dependence of T" on m is real
analytic.

Proof.  For the proof it is convenient to introduce the notations q;i, T = =1, by
setting ¢; = q} and g; = ¢; . The hamiltonian then reads

H = A+P
o 012 TiTjTkTL T3 T5 Tk Tl
= E Ajlgil® + E , P ™ 4 4" q
JEZ Tii+’rjj+"rkk+nl:0

(Ti,75,Tk>T1)ES
where
s={1,1,1,1), (1,1,1,-1), (1,1,-1,-1), (1,-1,-1,-1), (-1,—-1,-1,-1)}.

In the following we construct a suitable sympletic transformation, which is defined
below, to put the above hamiltonian into normal form. Let I' := X[, be the time
1-map of the flow of the hamiltonian vector field X given by the hamiltonian

— TiTiTkTL Ti 75 Tk Tl
F= Z Fijkl 4; 95 49 4q; »
Tii+’rjj+"rkk+nl:0
(735757, T1)ES

with coefficients

priTiTkTL

. 17kl L

\/—1FZ?]:ZTW = { TiNi+Tj N+ TR AL+ (0,5, k1) € LAN )
0

where £ = {(i,j, k,0) € Z* : {i,j,k, 1} € Do UAL U Ay, 70 + 755 + Tk +
nl =0, (7,75, 7, 7) € S} and N C L is the subset of all {i,j} = {k,!} and
{7, 75,7, } = {1,1,—1,—1}. The definition for F' is correct in view of Lemma
2.3, Lemma 2.4 and Lemma 2.5. The remaining proof is a minor change of Main
Proposition in [29]. In the end, we go to (2.9). The first one is clear. For the second,
note {Ho o', Ho '} = {Hy, H} o' = 0. The last one is obvious. |

3. ProoF oF THEOREM 1.2

We prove Theorem 1.2 from deducing it from Theorem 1.1. It is clear that our
hamiltonian is H = A + P with Xp in A(¢2N,¢2Y), where we fix N > 1 arbitrary.
With the help of Lemma 2.6 we put H into its Birkhoff normal form up to order four
by a real analytic symplectic map T, such that HoI' = A+ P+ P + K.

Now we choose any finite number | A| of normal modes (¢;)je 4, where we choose

A={(ny,ng---,mp)}
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and
(3.1) 0<\n1\<\n2\<~~~<\nb\.

We assume (3.1) solely for simplifying the discussion. From (3.1), we have 0 € B.
With the notation of the previous section we then write

A =(ay, 1)+ (51, Z)

and .
P = 5<AlI,I> +(B11, Z),

where a1 = (Aj)jear B1 = (N\j)jeB,

(ni+n})  2(ni+n3)  2(ni+ng)
>\%1 >\n1 >\n2 >\n1 >\"b

2ni+nd)  ni4ni o 2Angdng)
1 >\7l2>\7ll >\%2 >\7l2>\7lb

Al = — )
47 : :
2(n§+n%) Z(ni—l—ng) o n%—i—n%
>\7lb>\’n/1 >\7lb>\’n/2 A%b

B I
and By = (bji) jeB,ica, Where bj; = % It is clear that

[P =0(ldl¥dllv) + o), 1K= O(lldl%),

Thus Hol = A+ Q + R with Q := P and R := P + K, for which we verify the
assumptions of Theorem 1.1.

Lemma 3.7. For m € [My, Ms] \ R° and 0 < |k| < M, + 2, then
‘k ' WO‘ > w > 07
where wo = (Anys Ang, =+ » Any )» o is @ small constantand meas(RY) < C(M,., My, Ma, b)-
n=s
Lemma 3.8. For m € [My, M5] \ R, the normal form A + @ is nondegenerate,
1
where meas(R1) < C(M., My, My, b) - uo+1. So assumption A’ is satisfied.

We put the proof of Lemma 3.8 in Appendix B. Lemma 3.7 is a simple case of
Lemma 3.8. We omit the proof.

The conditions B and C are clear. For D, we choose S := H,. From Lemma 2.6,
condition D is satisfied. From Lemma 2.6, we have g = 6. So Theorem 1.1 applies,
and we obtain in particular

1@ — Wolln,B,n71c) = O(r?).
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Composing with T' we obtain a Cantor manifold £ of smooth diophantine b—tori in
¢>N carrying quasi-periodic solutions

Viw: t—q(t)=To W (e Dty)
for the hamiltonian H = N + P. Recall that Sq = )" ¢;¢;(x). Now Going back to
HN*1 by the isomorphism

2N N+ q,_)u:A—%(%(Sq—i—Sq)),

£ is mapped into another Cantor manifold of smooth diophantine tori in A+, which
carry smooth quasi-periodic solution « of the quasi-linear beam equation.

We only need to explain the statement of Theorem 1.2 holds true for a.e. m > 0.
First we choose m € J;, = [1/1,k](1=2,3,--- ,k=2,3,---). In other words we set

My =1/l and My = k. Fix k firstly. Note meas(RE* URYY) < C(M,,b, 1, k)T
and M, is a fixed constant, then

meas(Ré’k U Rllk) <1/l,1=2,3,---

if u < C(M,,b,1,k). Denote J') = Rék U RLF. For any m € Tie = Tk \ Ty,
Theorem 1.2 holds true(note the size of the Cantor manifolds is not uniform, but
depends on I, k, A) with

(3.2) meas(J7y) < 1/1.
Note (0, k] \ (UiZix) = (;((0, k] \ Z; %) and (3.2), we then have
meas((0, k] \ UZ1 k) < meas((0,k]\ Z; 1)
< meas((0, k] \ Jux) + meas(J;5)
<1/1+1/1=2/1

for any [ = 2,3,---. This shows us meas((0, k] \ (UZ;x)) = 0. Varying k in the
end, we thus have finished the proof.

4, AN INFINITE DimeENsIONAL KAM THEOREM WITH SYMMETRIES

Theorem 1.1 is derived from an infinite KAM Theorem with symmetries in [19],
which is based on the KAM theorem from Kuksin [21] and also Poschel [30] (cf also
[20]). Following the exposition in [19, 20] and [30], consider small perturbations
of a family of infinite dimensional integrable Hamiltonians H = H(y, u, v;§) with
parameter £ in the normal form

@.1) =Y wi(©u+ 5 30 %O +2)

jeA jeB
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on the phase space
MY =TA x RA x (2N x 2N

with coordinates (x,y, u,v) where A C Z with |A| < oo, B=Z\ A, N € Z>; and
where T4 = R4 /27xZ4 denotes the |A|—dimensional torus, conveniently indexed by
the set A. Here ¢ = (2N (B, R) denotes the Hilbert space of all real sequences
u = (uj)jeg with

lallfr =Y (2N lul? < oo,
JjeB

where (j) =1V [j|. The ‘internal” frequencies, w = (w;);ca, as well as the ‘external’
ones, Q = (Q;);ep, are real valued and depend on the parameter ¢ € IT ¢ R4 and
IT is a compact subset of R4 of positive Lebesgue measure. The symplectic form on

M is the standard one given by Y dx; A dy; + Y duj A dv;. The Hamiltonian
JEA j€B
equations of motion of H are therefore

where for any j € B, (Q(f)u)j = Q;(&)u;. Hence, for any parameter ¢ € II, on the
| A|—dimensional invariant torus,

To = T4 x {0} x {0} x {0},

the flow is rotational with internal frequencies w(&) = (w;(£));jca. Inthe normal space,
described by the (u, v) coordinates, we have an elliptic equilibrium at the origin, whose
frequencies are Q(&) = (2;(€))jep. Hence, for any £ € II, T is an invariant, rota-
tional, linearly stable torus for the Hamiltonian H. Our aim is to prove the persistence
of this torus under small perturbations H + P of the integrable Hamiltonian H for
a large Cantor set of parameter values £. To this end we make assumptions on the
frequencies of the unperturbed Hamiltonian H and on the perturbation P.

Assumption A: Frequencies.
(A1) The map & — w(&) between IT and its image w(II) is a homeomorphism
which, together with its inverse, is Lipschitz continuous.

(A2) There exists a real sequence (£2;) e, independent of £ € II, of the form
(4.2) Q=i+ alj|™ + -+ aplj|??
where d =dy > dy > --- > dp > 0 with D € Z>p,d > 1, and ay,...,ap € R, S0

that & — (€ — Q;);ep is a Lipschitz continuous map on IT with values in £°>—9 =
¢>=9(B, R) for some 0 <6 < 1A (d—1).
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(A3) Forany (k,e)in Z := {(k,e) € ZAxZP\(0,0) : |e| < 2; k-va+e-vp = 0}
with e # 0

(4.3) meas{fél'[:hw(f)—t—eQ(f) :0} =0.

The second set of assumptions concerns the perturbing Hamiltonian P and its vector
field, Xp = (0,P, —0,P, 0,P, —0,P). We use the notation i X p for Xp evaluated
at £&. Finally, we denote by MC the complexification of the phase space M, MY =
(C/277Z)4 x CA x éC X é . Note that at each point of MY, the tangent space is
given by

Py .=cA xc? xéC xé

Assumption B: Perturbation.
(B1) There exists a neighborhood V' of Ty in MY such that P is a function on
V' x II and its Hamiltonian vector field defines a map

(4.4) XP:VXHHPéV,

Moreover, i¢ X p is real analytic on V' for each ¢ € II, and 4., X p is uniformly Lipschitz
on II for each w € V. (Here i¢Xp denotes the vector field Xp, evaluated at the
parameter value &; 7, X p is defined similarly.)

(B2) {P, S} =0 where

(4.5) S=a+bY jy;+cd jud+v?)/2
jEA jEB
witha € R and b, c € R\ {0}.

To state the KAM theorem we need to introduce some domains and norms. For
s > 0 and r > 0 we introduce the complex Ty—neighborhoods

D(s,r) = {[Sz] < s} x {ly| <} x {JJullv + [v]x <7} € ME.
Here, for z in R4 or C4, |z| = max |z|. For a vector Y in P& with components
J€

(Yz,Y,,Y,,Y,) introduce the Weighted norm

Yy = Yal + \YH HYHN+ HYHN

Such weights are convenient when estlmatlng the components of a Hamiltonian vector
field Xp = (0,P, —0,P, 0,P, —0,P) on D(s,r) in terms of r. For a vector field
Y : V x II — P{ we then define the norms

YNy = sup [V (w, )],
(w,8)eV xII
A AecY |12

. - up 9
TNV XL ecen 1€ =]
§#¢
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where A¢cY =iy —icY, and

lieY Il Ny = = sup 1Y (w, &) [l n-

In a completely analogous way, the Lipschitz semi-norm of the map F : II — ¢°~9
is defined as

‘F‘llp ;= sup HAggFHfoo’_‘; )
L.t ecen 1€ =]
E#C

Finally, let 1 < M < oo be a constant satisfying

(4.6) Wl + |2 s < M.

Note that if Assumption .A and Assumption B hold such an M exists. By Assumption
(Al), there exists a constant 1 < L < oo satisfying

—1lip
4.7) L> w2

Theorem 4.1. Suppose H is a family of Hamiltonians of the form (4.1) defined
on the phase space M"Y, N € Zs;, and depending on parameters in II so that
Assumption A is satisfied with ¢ and §. Furthermore, assume that s > 0. Then there
exist a positive constant v depending on the finite subset A C Z of (4.1), d, ¢, the
frequencies w and 2 of H, and s such that for any perturbed Hamiltonian H + P with
P satisfying Assumption B on a neighborhood V' of Ty in MY, with D(s,r) C V for
some r > 0, and the smallness condition

li
(48) HXPH;u]{)f ;D( sr)><H HXPHTZZ])V ;D(s,r) <11 S ay

for some 0 < « < 1, the following holds. There exist

(i) aclosed subsetII, C II, depending on the perturbation P, with meas(IT\IL,) —
0Oas a— 0,

(ii) a Lipschitz family of real analytic torus embeddings ¥ : T4 x I, — MY,
(iii) a Lipschitz map f : II, — R4,

such that for any ¢ € IL,, U(T4 x {¢}) is an invariant torus of the perturbed Hamil-
tonian H + P at ¢ and the flow of H + P on this torus is given by

T4 xR — MY, (2,t) = U(x +tf(E), £).
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Thus for any z € T4 and ¢ € I1,, the curve t — U(z + tf(€), €) is a quasi-periodic
solution for the Hamiltonian i¢(H + P). Moreover, for any ¢ € II,, the embedding
U(-, &) : T4 — MY is real analytic on D(s/2) = {|Imz| < s/2}, and
li ce
v — ‘I’OHT?G D( 5/2)xn* H\I/ \IIOHT‘ZZ])V D(s/2) 1L, = o’

o+ —\f w\l’p < cg,

where
Uy : TA x I — Ty, (z,€) — (z, 0, 0, 0)

is the trivial embedding, and ¢ is a positive constant which depends on the same
parameters as ~. If the unperturbed frequencies are affine functions of the parameter
&, then

4.9) meas(IT\ I1,) < épl4~1a

where p = diamlIl. The constant ¢ depend on the finite subset A C Z of (4.1),d, L, M
and the frequencies w and 2 in a ‘monotone’ way. That is, ¢ do not increase for a
closed subsets of II.

Remark 4.1. From the proof(see [19]), one can see that (A3) can be weakened to
the following

(A3') Forany (k,e) € ZA x ZB, 1 < |e| < 2, satisfying 0 < |k| < M,, 0 <
lefa—1-5 < M,

meas{f:k~w(§)+e~Q(§):0, k~VA+e~VB:O}:O,

where the constant M, depends on |A|, d, L, M and the frequencies w and Q in

a ‘monotone’ way. For integer vectors such as e, the norm |e|4—1_s IS given by

lela—1—s = > (j)4717%]e;|. For our application to beam equation, we choose d — 1 —
JEB

d=1sinced=2and § =0.

Remark 4.2. We delay the proof of (4.9) in the Appendix.

We finally prove the Cantor Manifold Theorem with symmetry based on Theorem
4.1. We only give a sketch since the method is similar as the proof of the Cantor
Manifold Theorem in [23]. For readers’ convenience, we follow the most of notations,
which are appeared in [23]. We are given a hamiltonian H = A + @ + R in complex
coordinates ¢ = (g, G), where R is some perturbation of the normal form

A+ Q= (o0, 1)+ (B, 2) + 5 (AL )+ (B], Z),
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with I = (|g;]?)jea and Z = (|¢;|?)jep. Assumptions 4’, B, C and D are supposed
to hold.

Step 1. New coordinates. We introduce symplectic polar and real coordinates by

setting
q; = { V §j+yj€_imj7 JeEA
;=

Z(u;+iv;), jEB

depending on parameters & € IT = [0, 1]°. It is clear that the symplectic form now is
iqu]‘ Ndgj = dej A dy; + Zdu]‘ A dvj,
JEZ jEA jeB

I=¢+yand Z = L(u? +0?), with the componentwise interpretation. The normal
form becomes

A+ Q= ((©),) + 5(0A6), 2 + 0 + @

with frequencies w(&) = ag + A1&, (&) = f1 + B1€ and remainder Q = O(|lylI*) +
O(||u® +v?|| - ||ly|). The total hamiltonian is = N + P with P = Q + R.

Step 2. Checking assumptions A1, A2, A3’ and B1,B2. The map & — w(¢)
is @ homeomorphism which, together with its inverse, is Lipschitz continuous since
det A1 # 0. So the condition Al is satisfied. The condition A2 follows from Assump-
tion B and Remark 1.1(6 = 0). A3’ is clear from Assumption A’. The condition B1
is from Assumption C, while B2 is directly from Assumption D.

Step 3. Domains and estimates. Let » > 0 and consider the phase domain
D(2,r): [Ima| <2, Jy| <r?, |lullx + oy <
and the parameter domain
2 =U_ 425, B, ={6:0<&<rP}, 0< A< 1,

—

where U_,= is the subset of all points in = with boundary distance greater then p.
Then as [23], we have |Q| = O(r*) as well as

|R| = O(r* ™ + vt 4+ 129) = O(r* 1)

on D(2,2r), where we choose 0 < X = -2y < 1. It follows that

y
[ Xplrpam + el Xpl by = o(r'*)

with respect to the parameter domain II, = U_,=,, o > 8r2, where o will be chosen
as a function of r later.



1498 Zhenguo Liang, Zhuogun Yu and Min Wang

Step 4. Application of Theorem 4.1. To apply Theorem 4.1, it suffices to require

a(r) > eyt

for all small » with a sufficiently large constant ¢; which depends on the parameters
indicated in Theorem 4.1. Then we obtain a Cantor set II, , C II. of parameters,
a Lipschitz continuous family of real analytic torus embeddings @, : T? x I, , —
D(1,r), and a Lipschtiz continuous frequency map @, : I,., — R?, such that for each
¢ €11, the map @, restricted to T® x {¢} is a real analytic embedding of an elliptic,
rotational torus with frequencies @, (&) for the hamiltonian H at . The following
estimates

|, — Dol + | B, — |l < erttH/q,
& — w| 4 a|@, — w|'P < et
1

hold on |Imx| < 5 and II.,, where the generic constant ¢ depends on the same

parameters as c¢;. Moreover, we have the measure estimate

_ car _
meas(Z, \ II, o) < TT/\meas(:T).

Hence, to obtain a nonempty Cantor set we also need a(r) < cl‘lr”.

Step 5. This step is the same as [23].

Step 6. Estimates. We can prove that if »!**/a(r) is a nondecreasing function of
r, then on |Im¢| < 1/2 and C N =,, one has

Ay (@ = o)y, _ crpt
|\ —J| = arg)’

(4.10) |® — Dol,, ri)

provided I € C,,. This holds for all & > 0. If also a(r)/r?* is a nondecreasing
function of r, then

meas(C N E,,) .1 ca(ry)
meas(Zr,) rid

Step 7. The embedding ¥. We can show that

1+A
crk

v - < Tk
H OHN Ck(?’k)

uniformly on 7[C N =, ] for k > 0.
For the proof, consider ¢ = v/Ie~'* and ¢ = %(u + iv), understood component-
by-component. On 7[C N R,, | we have
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qd—ql=/I+y
ly|( Iglégk\\/?\

| /\

A
5
falS
=
&
o
3

cre 322 ey,
. "” .
~ o) F a(rr)

using a > ¢+ and (4.10). Similarly, we have ||¢'||y < SE~ ( ) - . The right-hand
sides decrease as k increases, so this bound holds also on 7[C N R,,] with [ > k and
thuson all of 7[CNE,,].

Step 8. Choice of a(r). Finally we choose @ = r® = r2(3*1) which clearly
satisfies ¢! < a(r) < ey 'r?* since 0 < A < 1. Then
g—4
meas(CNE,,) >1— crg_Q’\ =1-— cr,i(g_”.

It is clear 2—(99‘_%) > 0. This means that Cantor set C has full density at the origin, and

1
1(3-A
H\I/—\IIOHNScr,?’\_”rk:cr,i(g ).

Thus
1

H\Ij_\IIOH SCT’UA, U:§<g_2>7

on 7[CNZE,]. The latter contains the set 7[C] N B,., and so the estimate of Theorem
1.1 is obtained.

5. APPENDIX

In this section we fix m € [M;, Ms], where M; > 0 and M, > 1. We define

/\il /\iz T /\ir+1

d)\il d>\i2 d>\ir+1
N N

d"Xip  d" iy dr >\z,n_,_1

dm” dm” U dm”

where ‘21‘ < ‘22‘ < e < ‘ir+1‘ < M. Set 1 = vi‘f—i—m, To = \/i%—i-m,

Typ1 = /12 41 +m. From a straightforward computation we have

1
2
J

).

(27’—3)!<_1>T+1 . H (

TXLc Tyl
r+1>i>j>1

K=

1
det A==

2 2r2(p —2)l2r 2
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Denote
fe(m) = kihi, +kadiy + -+ krpi i, m € [My, Ms],
where we suppose that £k 0 and 1 <r < b+ 1,r € Z. Following [1], we have
Lemma 5.1. For k # 0, there exists igp € {1,---,r + 1} such that

dlio=1) ), dlio=1) ), in{ My, 1})(b+3)(0+D)
dm(io—l)l +- 4+ kr-i—l > Cb<m1n{ ! }> -

I Y O

Gl |k

The following lemma and its proof can be found in [32].

Lemma 5.2. Suppose that g(z) be rth differentiable function on the closure I of
I, where I C Ris an interval. Let Ij, := {x € I : |g(x)| < h}, h > 0. If for some
constant d > 0, |¢\") ()| > d for any = € I, then meas(I,) < 22 +3+ ---+ 7+
d-hr.

Proof of (4.9). In fact, in the proof of Theorem 4.1 (i)(see [19]) we have

meas(Z2 UE3 UEL) < & plti—ta.

We only need to give a new measure estimate of Z! under the condition that the

(e
unperturbed frequencies are affine functions of the parameters. We recall that =} =
U RL(ao). Rewrite
|| <F
(k,e)EZ,e0

[1]

1 — —=1,1 U:l,Z
« — e’
= ( U Re(a0)) [ U Rie(a0))-
|k[<Kxlela—1—6 > Ex |k <Kx,lelg—1 -5 <Ex

(k,e)eZ,e#0 (k,e)eZ,e#0

From Corollary 6.2 in [19] we have

meas(Z-1) < Z 12L(LMp)|A|_1a‘k‘_%A;1 < &pll-1a.
|k[<K-«

We only need to estimate the measure of the set =52, Denote w(§) = @+ ().
Similarly Q(¢) = Q + Q(€). Denote

fre(©) = (k- @+e Q)+ (k- +e-Q)), eIl
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Ifk-wE)+e- Q(f) = 0, note the unperturbed frequencies are affine functions of &,
then 3 ip € {1,2,---,|A|} such that ]af’” | > & > 0. Therefore we get

1
2ale|?
meas(RY,(ap)) < % CplAl—t
for any (k,e) satisfying |k| < K., |elg—1-5 < E, (k,e) € Z and e # 0. Counting
the number of (k, ¢), we have meas(Z57) < épld—a.

If k- +e-Qé)=0and k-w+e-Q#£0,note |[k| < K, and |e|q_1_5 < Ex,
we have meas(Z57) = 0 if a < 1.

If k- -wlé)+e- Q& =0and |kl < Ky, |e|lg—1-5 < Fx, (k,e) € Z and e # 0,
then meas(RY, (o)) = meas(II) # 0. It contradicts with Assumption A3’(choosing
M, large enough).

In the following we will prove Lemma 2.4, Lemma 2.5 and Lemma 3.8. Lemma
2.4 directly follows from the following Lemmas.

Lemma 5.3. If (4,7, k,1) € Ag or Ay or Ay and || = |i| + |j| + | k| then for any
m & [Ml, Mg] \R(l),

. @
Ai + A+ A — N 2> min{ ———,2v/m, 1},
‘ J k l‘ {\/m \/_ }
6 A
where meas(R}) = meas( ‘U1 Ry') < C.C40* M p.
]:
Proof. Denote
fijrr(m \/Z4+m+\/9 +m+\/k4+m \/l4+m, m € [My, Ms].
Then by a straightforward computation we have f]kz( m) > 5 h}l—l—m > 0. In the

following we discuss three subcases.

Subcase 1: (i,7,k, 1) € Ay.
We count the number of the following set

8{(i, 4, k, 1) € Aq[]l] = [i| + |j] + [k|} < CaCab®.
Denote the set

Ry ={m € (My. Ma] ¢ [ fgua(m)] < s (3., D)€ Ay and 1= 171+ )

Then meas(R(l)’l) < C,0pbp.
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Subcase 2: (i, j, k,1) € Ag. There are two cases. One is I € A. In this case one
has |i, |5], |k| < Ca. It follows that #{(i, j, k, 1) € Aq||l|=]i| + 5] + |k} < C.b*C4.
As above denote the set

Ry*={m € [My, My : | fyjra (m)|
o

< —F—
Vhi+m

Then meas(Ry™>) < C,C%b%u. The other is [ € B. Since I € B and (i, j, k1) € Ay,
then ¢ or j or k belongs to the set B. We first consider [ € B and ¢ € B. It results in
j, k € A. In the following discussion we use the simple fact:

(i, 4, k,1) € Ag and |I| = |i| + [j] + |K|, 1 € A}.

1 1 1
(5.2) 1+§x—§x2§(1+x)%§1+§x (z > 0).
Denote fijn(m) = A + Xj + A — . From (5.2), if il # 0, then
(5.3) figra(m) < (& = 12) + (I) + (IT),

where (I) = /74 +m+ VE* +mand (II) = 12 — 1m 4 1m* Cleary |(I)] <

(3

2,/C4 + M and |(IT)] < 2M2 since My > 1. If |j| + |k| = 0, then | fiji(m)| =
2v/m > 0. If |j| + |k| # 0, then i — 12 < —2|i|. Hence fiju(m) < —2[i| +
21/C4 + My +2M3. If |i| > 12C% M3, then | f;j(m)| > 1. If |i| < 12C4 M3, from
1| = |i| + || + | k], then || < 14C3 M3. Thus
8{(4,4, k1) € Al
= |i| +|j| + |k|,1 € B, i € B, |i| < 12C3M3,|l| < 14C3 M3} < C.b*C4Mj.
We now introduce the set

Ry® = {m € [My, My] : | fijra(m)| < s

VhE+m’

(i,4,k,1) € Ay and |I| = |i| + || + |k|, L € B, i € B, |i| <12C5Mj3}.
Then meas(Ry™) < CoCAb2 M. Similarly
Bk
VhY +m’

(i,5,k,1) € A and [I| = [i| + |j| + k|, L € B, j € B, |j| < 1205M3}.
One gets meas(R(l)’4) < C,C40* M p.
Introduce the set

Ro® = {m € [My, My] : | fijna(m)| <

Ry = {m € [My, My] : | fygna(m)] <

Bk
Vhr+m’
(i,7,k,1) € Ay and |I| = |i| + |j| + |k|, l € B, k € B, |k| <12C%M23}.
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Then meas(R(l)’5) < C,CY4b* My pu.

Subcase 3: (i, j, k, 1) € Ag. We throw away a set Ré’G whose measure is no more
than C,b* . n

Similarly
Lemma 5.4. If (i, 4, k,1) € Ag or Ay or Ay and |i| + |j] = |k| + |I] then for any
m e [Ml, Mg] \Rg,

‘/\i-i-/\j—i-/\k— 2%,1},

: p
Al > min{ ———,
N
where meas(R3) < C,C4b6* M pu.
Lemma 5.5. If (4,7, k,1) € Ag or Ay or Ay and || + |k| = |j| + |I| then for any
m & [Ml, Mg] \Rg,

‘/\i-i-/\j—i-/\k— 2%,1},

: p
Al > min{ ————,
N
where meas(R3) < C,C4b* M pu.
Lemma 5.6. If (¢,7,k,1) € Ag or Ay or Ay and || + |I| = |j| + | k| then for any
m & [Ml, Mg] \Ré,

‘/\i-i-/\j—i-/\k— 2%,1},

. u
Al > min{ ———,

= mind e
where meas(R§) < C,C4b* M pu.

4 .
To obtain Lemma 2.4 we choose Ro = |J R}.
j=1

Proof of Lemma 2.5. Since i +j —k—1 = 0, we have 8 cases. From the symmetry
we only need to consider the following three cases:

Case 1: I = [i| + [j] + |k|. Denote gjjri(m) = A\ + Ap — Ai — Aj. Suppose
|k| < |7] < |i|(the case |k| < |i| < |j| is similar). Note h(t) = vt* 4+ m is convex, it
follows
(5.4) il = Al Z Aij—p — Vil
for any 0 < p < |i|. Choose p = |i| — |k|, then

(5.5) Al = il = Aljl+2ik = Al
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Suppose k& # 0 in the first discussion. Thus if j # 0 from (5.5) and mean value
theorem we have
gigw (m) = A+ Ay = Aji| = Ayj)
2 Ajl+2lkl — Al
2 2(A 11K = A1)
Alkll® b

SVl T Vi
If 7 = 0 itresults in k£ = 0. It contradicts with £ # 0. The remained case is
h =k = 0. It follows |I| = |i| + |j|. From a straightforward computation we have

/\|l|+/\0 > /\|i|+/\|j|+ﬁ ifm>1. If0 <m < 1onehas /\|l|+/\0 > /\|i|+/\|j|+i.
In the both cases we have

1

1
Alitsl Ao = A = Ay 2 min{ =, 7

}=c(m) >0, ij # 0.

If k=0and ij = 0 it is trivial.
The remained case is |i| = min{|l|, |k|, ||, |j| } (the case for |j| = min{|{|, |k], |4|, 7|}
is similar). In this case one has
A+ Ak = Ajil+g + Ao
2 A + A+ e(m),

ifij #0. If i = 0, then |I| = |j|+|k|. From the convexity, one has Ay =Aj| = A= o-
Therefore if k£ £ 0

/\|l| + /\|k| — Ao — /\|j| > 2(/\|k| — /\0) > 2(\/1 +m — \/E) = c(m) > 0.

If £ =0, combing with i = 0 we have j = [. It is trivial.

Case 2: |i| + |j| = |k| 4+ |I|]. Note the symmetry one only needs to consider
il < (1] < [k] < |j] and |j] — k| = [i] — || # 0. Using (5.4) we have Ay — Ay >
Alfj+1 — Ajij+1 @nd A1 — A > A2 — Ajg+1- Hence,

(5.6) Aljl it = At = A 2 Ayifr2 = 2jig + A

Denote w(t) = \/(t + 1)* +m — Vt* + m(t > 0). Then
(5.6) = w'(0)locyil,jit+1|
=HW(H+1)-H ()
_ iL//(el)’
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where 60y € [|7], |¢| + 2]. If |i] # 0, then

- 6? 461
h// 9 — 1 6 — 1
(61) \/9‘11+m( 9‘11+m>
203 o 2

T V0T Em T J(hr2) e m

If i = 0 then |j] = |k| + |I|. As before one has 1| + Ao — A — Ay = e(m) >0
if kI # 0. The remained cases are trivial.

Case 3: |i| + |k| = |j| + |I|]. From the symmetry suppose |i| < || and |i| — |j| =
|{]—|k| < 0. One can further suppose || = min{|é|, |j], |k|, |{|}. We have two subcases.
The first is |i| < |j] < |I| < |k|. The second is |i| < |I| < |j] < |k|. Since
Akl + A = Al — Al = A+ A — Ajip — Ap- We only need to consider the
second one. Note |k| — |j| = |I| — |i| # 0, then |i| < |I| < |j| < |k|. It follows
/\|k| — /\|j| > /\|l| — /\|i|- Thus

Al A = A = A = 2000 = A

> 2(/(lil + D* +m = /]il* + m)
1

I+h)i+m

>

Proof of Lemma 3.8. From a straightforward computation, we have det A; #
O(note 0 € B).
Next we will check the second condition in A’. The set R will be clear in the

following.

Case 1: e/ =1. Note k- w+ € = k- wo + Aj + = (ATk + 2e0, I), we discuss

. ) 2442 2 42
the following subcases, where j € B, eo = (3,5 35 x;)" and I = (Ij)jea
Subcase 1: [j] &€ {|n1|, |na|,-- -, |ns|}. We reorder (ny,no,---,ny, j) as iy, -- -,

ip41 Such that |iq| < |ia] < -+ < |ip41|. Suppose that |j| < M, and 0 < |k| < M,.
Without losing generality, suppose that M, > |ng|. It follows |ip1| < M. We write

f,;(m) =k- wo + /\j = ]_fl/\il + ]22/\1‘2 —+ -+ ]51,4_1/\“_’_1.

It is clear that & = (k1,-- -, kpr1) # 0. From Lemma 5.1, there exists ig € {1,---, b+
1} such that

d(io—l)/\i1 dlio=1) \

o +...+Eb+1 =d; > 0.

b4 > cp(min{ My, 1})¢+2)(0+1)

k :
’ 1 dmio—1 - (M$+M2>(b+1)2+%(b+l)
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If ig = 1, itiis clear that k - wy + \; > 0. While for iy € {2,---,b+ 1} we define
R ;(m) = {m € [My, My] = |fi(m)] < u}.

From Lemma 5.2, meas(Ry, ;) < C(M., My, Mo, b)-us. If denote B! =

7 [k <M. 1< M.
Ry, ;, counting the number of (k, j), we have meas(R') < C(M., My, My, b) - [e.
Thus, if m € [My, Ma] \ R' we have k-wq + A; # 0 for any |k| < M, and |j| < M..

Subcase 2: |j| € {|ni], |n2l, -, |ns|}. Without losing generality, suppose that
j = —ni1. As above, we define fi(m) = (ki + 1)An, + kadny, + -+ + kpAy,. If
kO = (klu k27 e 7kb>T = <_1707 e 70>T’ then fk‘O(m) = 0. But ATkO + 260 =
2
(3L, )T #0, since ny # 0. For the case (ki, k2, -+, kp) # (—1,0,---,0) and
ny
j = —ngq, from Lemma 3.7 we have |(k1 + 1)\, + koA, + -+ kp Ay, | > p for any
m € [My, M)\ RY. In conclude, in this subcase if m € [My, Ms] \ (R° U R'), then
we have two possibilities: one is k - wo + A; # 0 for any |k| < M, and |j| < M,,
while the other possibility is ATk + 2e # 0.

Case 2: |e| = 2. We will divide this case into the following three subcases.

Subcase 1: e = (---,1,---,1,---). The nonzero sites are jith and jsth sites
respectively, where ji, jo € B.
(0). [j1] # Ij2l and [j1], [j2] & {Iml,|nal, -, |ms|}. As above, we will throw a

set denoted by R? whose measure is smaller than C(M,, My, Ma, b) - ub%l. For
any m € [My, Ma] \ R?, we have k - wy + Aj, + Aj, # 0 for any |k| < M, and

|71, 2| < M.

(2. |71l € {Imal,--- s |nel} or |j2| € {Ina],---,|ns|}. In this subcase, we need to
throw away a set denoted by R3, whose measure is smaller than C(M,., My, Ms, b)-
1.

(). [j1ls |j2| € {|na]---,|ns|}. To fix our idea we suppose that j; = —ny, jo =
—nq. For the other cases the discussion is similar. If (k1+1, ko+1, ks, - -, kp) #

0 and m € [My, Ms]\ R°, from Lemma 3.7 we have |(k1+1)Ap, + (ko +1) Ay, +
<o+ kA, | > p > 0. The left case is (ki,ko--- ,ky) = (—1,—1,0,---,0).
2
For this case ATk + 2eq + 2e; = (i%, k)T 0.
ni
Subcase 2: e = (---,2,---). We discuss the following two cases. The first one
is 7] & {|n1l,- - ,|ns|}. We need to throw away a set denoted by R*, whose measure
is smaller than C (M., My, Mo, b) - /ﬁ. The second case is that |j| € {|n1], -, |ns|}-
In this subcase as above if m € [My, M) \ R°, we have two possibilities: one is
k-wy+2\; # 0 for any |k| < M, and |j| < M,, while the other possibility is
ATE + 4eq # 0.
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Subcase 1: e = (---,1,---,—1,---). The nonzero sites are j;th and joth sites
respectively, where ji, jo € B. If |j1] # |je|, then we discuss the following three

cases.

Q).

@).

@3).

l71l, [g2] € {|nal,|n2l,---,|ns|}. As above, we throw a set denoted by R3,
whose measure is smaller than C(M,, My, Ms, b) - ubi_l.

Only one of |j1], |jo| belongs to {|ni],- -, |ns|}. In this subcase we throw away
a set denoted by RS, whose measure is smaller than C(M,., My, My, b) - /ﬁ.
l71], 172] € {In1]---,|ns|}. To fix the idea we suppose that j; = —nj, jo =
—ng. For the other cases the discussion is similar. If (k1+1, ko—1, ks, - -+, kp) #
0 and m € [My, Ms)\ R?, from Lemma 3.7 we have |(k1+1)\n, + (ko —1)An, +
-+ kpAn,| > p > 0. The left case is (ki, ko -+, k) = (—1,1,0,---,0). For

2
2n7

this case, ATk + 2eg — 2e; = (52, -+, )T #0.
ni

If |51 = |j2|, j1,J2 € B. In this case we have jo = —j;. If & # 0, then from
Lemma 3.7 we have k - wo + X\j — A_j = k - wo # 0 for any m € [My, Ma] \ R°. If
k=0and j # 0, we have kyny + - - - + kyny — 25 = —25 # 0. This shows that this
subcase doesn’t satisfy the symmetry condition.

6

Finally, we set R, = |J R'.
=0
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