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THE LIOUVILLE PROPERTY FOR PSEUDOHARMONIC MAPS WITH
FINITE DIRICHLET ENERGY

Ting-Hui Chang and Yen-Chang Huang

Abstract. In this paper, we first derive the CR Bochner formula and the CR Kato’s
inequality for pseudoharmonic maps. Secondly, by applying the CR Bochner
formula and the CR Kato’s inequality we are able to prove the Liouville property
for pseudoharmonic maps with finite Dirichlet energy in a complete (2n + 1)-
pseudohermitian manifold. This is served as CR analogue to the Liouville theorem
for harmonic maps in Riemannian Geometry.

1. INTRODUCTION

In the papers of [19] and [9], S.-Y. Cheng and S.-T. Yau derived a well known
gradient estimate for positive harmonic functions in a complete noncompact Riemannian
manifold. As a consequence, Liouville-type theorem holds for complete noncompact
Riemannian manifolds of nonnegative Ricci curvature. The Liouville- type theorem
is also studied by a series papers of P. Li and J. Wang ([15, 16]). In particular, in
the paper of Li and Wang ([16]), they extended their results to complete manifolds
with the condition (Pρ) (see Definition 1.2). Recently, S.-C. Chang, J.-T. Chen and
S.-W. Wei ([7]) considered the p-harmonic functions in a complete manifold with
(Pρ) and the Ricci curvature bounded below depending on ρ, then the Liouville-type
properties are still valid on these manifolds. In the paper of Chang, Chen and Kuo
([4]), they applied the method as in the paper [7] and obtained the Liouville-type
theorem for p-pseudoharmonic functions with finite Dirichlet p-energy in a complete
(2n + 1)-pseudohermitian manifold. In 1980, Cheng ([5]) extended the result in [9]
and obtained the Liouville-type theorem for harmonic maps. In this paper, we study
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the Liouville-type theorem for pseudoharmonic maps with finite Dirichlet energy in a
complete pseudohermitian (2n + 1)-manifold (M2n+1, J, θ).

Let (M2n+1, J, θ) be a complete pseudohermitian manifold and (Nm, g) be a Rie-
mannian manifold. We now recall the definition of the Dirichlet energy E(ϕ) of a
C2-map ϕ : M → N . At each point p ∈ M , we may take a local coordinate chart
Up ⊂ M of p and a local coordinate chart Vϕ(p) ⊂ N of ϕ(p) such that ϕ(Up) ⊂ Vϕ(p).
We define the energy density e(ϕ) of ϕ at the point x ∈ Up by

e(ϕ)(x) =
1
2
hαβ(x)gij(ϕ(x))ϕi

αϕj

β
.

Here hαβ is the Levi metric on (M2n+1, J, θ) and we may assume hαβ = δαβ (see
Section 2). It can be checked that the energy density is intrinsically defined, i.e.,
independent of the choice of local coordinates. The Dirichlet energy E(ϕ) of ϕ is
defined by

E(ϕ) =
∫

M

e(ϕ)dv,

where dv = θ ∧ (dθ)n is the volume element of M . We also define an extra energy
E0(ϕ) by

E0(ϕ) =
∫

M

e0(ϕ)dv.

Here the extra energy density e0(ϕ) is given by e0(ϕ) := gijϕ
i
0ϕ

j
0 which will help us

to deal with the term 〈J∇bϕ
k,∇bϕ

k
0〉 in the CR Bochner formula.

In the paper of E. Barletta, S. Dragomir and H. Urakawa [1], they introduced a no-
tion of the pseudoharmonic map from a pseudohermitian (2n+1)-manifold (M2n+1, J, θ)
into a Riemannian m-manifold (Nm, g) as following:

Definition 1.1. A C2-map ϕ : (M2n+1, J, θ) → (Nm, g) is said to be a pseudo-
harmonic map if it is a critical point of the energy functional E .

Definition 1.2. We say that M satisfies the condition (Pρ) if there exists a positive
function ρ(x) a.e. such that, for every smooth function Ψ with compact support on M,
the inequality ∫

M
ρΨ2dv ≤ ∫

M
|∇bΨ|2 dv

holds on M.

Note that if the first eigenvalue λ1 with respect to Δb is positive on
(
M2n+1, J, θ

)
,

then there holds the condition (Pλ1). We refer to [16] in case of complete Riemannian
manifolds.

We now state our main theorem as follows.
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Theorem 1.1. Let (M2n+1, J, θ) be a complete noncompact pseudohermitian (2n+
1)-manifold, (Nm, g) be a Riemannian manifold with nonpositive sectional curvature.
Suppose that M satisfies (Pρ) and

(1.1)
(
2Ric− (n − 2)Tor

)
(Z, Z) ≥ −2τρ |Z|2

for some fixed constant τ ∈ (0, 1) and for all Z ∈ T1,0. If ϕ : M → N is a
pseudoharmonic map with finite Dirichlet energy E(ϕ) and

(1.2) [Δb, T ]ϕk = 0, k = 1, · · ·m,

then ϕ must be a constant map.

Remark 1.1.

(1) In [11], Graham and Lee defined the purely holomorphic second-order operator
Q by

Qu = 2i
n∑

α,β=1

(Aᾱβ̄uβ),α .

They showed that for any smooth function u, [Δb, T ]u = 2Im(Qu). Therefore,
if (M, J, θ) is a complete pseudohermitian (2n + 1)-manifold with vanishing
pseudohermitian torsion, that is, Aαβ = 0, then condition (1.2) holds. However,
it is not true vice versa.

(2) In the paper of [8], they observe that condition (1.2) is related to existence of
pseudo-Einstein contact forms in a closed pseudohermitian (2n + 1)-manifold
with n ≥ 2.

Corollary 1.2. Let (M2n+1, J, θ) be a complete noncompact pseudohermitian
(2n + 1)-manifold with vanishing pseudohermitian torsion and (Nm, g) be a Rie-
mannian manifold with nonpositive sectional curvature. Suppose that M satisfies (Pρ)
and

Ric (Z, Z) ≥ −τρ |Z|2

for some fixed constant τ ∈ (0, 1) and for all Z ∈ T1,0. If ϕ : M → N is a
pseudoharmonic map with finite Dirichlet energy E(ϕ), then ϕ must be a constant
map.

In particular, if M has positive spectrum λ > 0, then condition (Pλ) holds and we
have

Corollary 1.3. Let (M, J, θ) be a complete noncompact pseudohermitian (2n + 1)-
manifold with vanishing pseudohermitian torsion and (Nm, g) be a Riemannian man-
ifold with nonpositive sectional curvature. Suppose that M satisfies (Pλ) and

Ric (Z, Z) ≥ −τ |Z|2
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for some fixed constant τ ∈ (0, λ) and for all Z ∈ T1,0. If ϕ : M → N is a
pseudoharmonic map with finite Dirichlet energy E(ϕ), then ϕ must be a constant
map.

The organization of this paper is as follows. In section 2, we first introduce some
basic materials in a pseudohermitian (2n+1)-manifold. In section 3, we derive the CR
Bochner type formula and the CR Kato’s inequality. The CR Bochner formula derived
in section 3 consists the term

〈
J �b ϕk,�bϕ

k
0

〉
which is hard to estimate. However,

by deriving the CR Bochner type formula (see (3.2)) for e0(ϕ) for a pseudoharmonic
map ϕ, we can overcome the difficulty (see Remark 4.2) and the Liouville property for
pseudoharmonic maps with finite Dirichlet energy can be obtained in section 4.

2. PRELIMINARIES

In this section, we give a brief introduction to pseudohermitian geometry (see [13],
[14] for more details). Let (M, ξ) be a (2n + 1)-dimensional, orientable, contact
manifold with contact structure ξ, dimR ξ = 2n. A CR structure compatible with ξ is
an endomorphism J : ξ → ξ such that J2 = −1. We also assume that J satisfies the
integrability condition J([JX, Y ] + [X, JY ]) = [JX, JY ]− [X, Y ], where X, Y ∈ ξ.
We can extend J in a natural way to C⊗ξ and decomposes C⊗ξ into the direct sum
of T1,0 and T0,1 which are eigenspaces of J with respect to i and −i, respectively.

A manifold M with a CR structure is called a CR manifold. A pseudohermitian
structure compatible with ξ is a CR structure J compatible with ξ together with a
choice of contact form θ. Such a choice determines a unique real vector field T

transverse to ξ , which is called the characteristic vector field of θ, such that θ(T ) = 1
and LT θ = 0 or dθ(T, ·) = 0.

Let {T, Zα, Zᾱ} be a frame of TM⊗C, where Zα is any local frame of T1,0, Zᾱ =
Zα ∈ T0,1 and α = 1, · · · , n. Then the dual coframe {θ, θα, θᾱ} satisfies

(2.1) dθ = ihαβ̄θα ∧ θβ̄ ,

for some positive definite hermitian matrix of functions (hαβ̄). Actually we can always
choose Zα such that hαβ̄ = δαβ; hence, throughout this paper, we assume hαβ̄ = δαβ.

The Levi form h = 〈 , 〉 is the Hermitian form on T1,0 defined by

〈Z, W 〉 = −i
〈
dθ, Z ∧ W

〉
.

This can be extend 〈 , 〉 to T0,1 by defining
〈
Z, W

〉
= 〈Z, W 〉 for all Z, W ∈ T1,0.

The Levi form induces naturally a Hermitian form on the dual bundle of T1,0, also
denoted by 〈 , 〉, and hence on all the induced tensor bundles.

The pseudohermitian connection of (J, θ) is the connection ∇ on TM ⊗ C (and
extended to tensors) given in terms of a local frame Zα ∈ T1,0 by

∇Zα = ω β
α ⊗ Zβ , ∇Zᾱ = ω β̄

ᾱ ⊗ Zβ̄, ∇T = 0,
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where ωα
β are the 1-forms uniquely determined by the following equations:

(2.2)

dθβ = θα ∧ ω β
α + θ ∧ τβ,

0 = τα ∧ θα,

0 = ω β
α + ω α

β

By Cartan lemma, we write τα = Aαγθγ , where Aαγ = Aγα are so called the pseudo-
hermitian torsion of (M, J, θ).

Let θ = θ0. The curvature of the Webster-Stanton connection, expressed in terms
of the coframe {θ0, θα, θᾱ}, is

Πβ
α = Πβ̄

ᾱ = dωβ
α − ωβ

γ ∧ ωγ
α,

Π0
α = Πα

0 = Π0
β̄ = Πβ̄

0 = Π0
0 = 0.

Webster showed that Πβ
α can be written

Πβ
α = Rβ

α
ρσ̄θρ ∧ θσ̄ + Wβ

α
ρθ

ρ ∧ θ − Wα
βρ̄θ

ρ̄ ∧ θ + iθβ ∧ τα − iτβ ∧ θα,

where the coefficients satisfy

Rβᾱρσ̄ = Rαβ̄σρ̄ = Rᾱβσ̄ρ = Rρᾱβσ̄, Wβᾱγ = Wγᾱβ .

We will denote components of covariant derivatives with indices preceded by
comma; thus write Aαβ,γ. The indices {0, α, ᾱ} indicate derivatives with respect
to {T, Zα, Zᾱ}. For derivatives of a scalar function, we will often omit the comma, for
instance, fα = Zαf, fαβ̄ = Zβ̄Zαf −ωα

γ(Zβ̄)Zγf, f0 = Tf for a (smooth) function.
For a smooth function u, the Cauchy-Riemann operator ∂b be defined locally by

∂bu = uαθα, and ∂b be the conjugate of ∂b. For a real function f , the subgradient
∇b is defined by ∇bf ∈ ξ and 〈Z,∇bf〉 = df(Z) for all vector fields Z tangent to
contact plane. Locally ∇bf = fαZα + fαZᾱ. We can use the connection to define the
subhessian as the complex linear map ∇2

bf : T1,0 ⊕ T0,1 → T1,0 ⊕ T0,1 by

(∇2
bf)(Z) = ∇Z∇bf.

In particular, we have in local coordinates,

|∇bf |2 = 2fαfα and
∣∣∇2

bf
∣∣2 = 2 |fαβ|2 + 2

∣∣∣fαβ

∣∣∣2 .

The sub-Laplacian Δbf is the differential operator defined to be the trace of the
subhessian

Δbf = Tr
(∇2

bf
)

= fαα + fαα.
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The pseudohermitian Ricci tensor and the torsion tensor on T1,0 are defined by

Ric(X, Y ) = Rαβ̄XαY β̄,

T or(X, Y ) = i
∑
α,β

(
Aᾱβ̄X ᾱY β̄ − AαβXαY β

)
,

where X = XαZα, Y = Y βZβ, Rαβ̄ = Rγ
γ
αβ̄.

Definition 2.1. Let (M, J, θ) be a pseudohermitian (2n+1)-manifold. A piecewise
smooth curve γ : [0, 1] → M is said to be horizontal if γ ′(t) ∈ ξ whenever γ ′(t) exists.
The length of γ is then defined by

l(γ) =
∫ 1
0 〈γ ′(t), γ ′(t)〉

1
2
Lθ

dt.

The Carnot-Carathéodory distance between two points p, q ∈ M is

dc(p, q) = inf{l(γ)|γ ∈ Cp,q}
where Cp,q is the set of all horizontal curves joining p and q. We say M is complete
if it is complete as a metric space. By Chow connectivity theorem [6], there always
exists a horizontal curve joining p and q, so the distance is finite. Furthermore, there
is a minimizing geodesic joining p and q so that its length is equal to the distance
dc(p, q).

3. CR BOCHNER TYPE FORMULA AND KATO’S INEQUALITY

In this section, we derive some key lemmas. First, we derive the CR version of
Bochner formula for pseudoharmonic maps.

Lemma 3.1. (CR Bochner formula). Let (M2n+1, J, θ) be a complete pseudo-
hermitian manifold and (Nm, g) be a Riemannian manifold. If ϕ : M → N is a
pseudoharmonic map, then we have

Δb

(
2e(ϕ)

)
= |∇2

bϕ
k|2 +

(
2Ric− (n − 2)Tor

)(
(∇bϕ

k)C , (∇bϕ
k)C

)
+ 2〈J∇bϕ

k,∇bϕ
k
0〉 − 2

[
R̃ijk	ϕ

i
αϕj

βϕk
αϕ	

β
+ R̃ijk	ϕ

i
αϕj

β
ϕk

αϕ	
β

]
.

(3.1)

Moreover, assume that condition (1.2) holds, we then have

(3.2)
1
2
Δb

(
e0(ϕ)

)
= |∇bϕ

k
0|2 − 2R̃ijk	ϕ

i
αϕj

0ϕ
k
αϕ	

0.

Here for any smooth function u, (∇bu)C = uαZα is the corresponding complex (1, 0)-
vector of ∇bu and R̃ijk	 =

〈
R̃( ∂

∂yk
, ∂

∂y�
) ∂

∂yj
, ∂

∂yi

〉
with R̃ the Riemannian curvature

tensor of (N, g).
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Proof. For each point p ∈ M we may choose a normal coordinate chart U of p

and a normal coordinate chart V of ϕ(p) such that ϕ(U) ⊂ V and fulfill the following
computations at the point p.

1◦ To prove equation (3.1), we first recall the following version of Bochner formula
for smooth functions (see [12, 3]). For any smooth function u, there holds

1
2
Δb|∇bu|2 = |∇2

bu|2 + 〈∇bu,∇bΔbu〉 + 2〈J∇bu,∇bu0〉
+
(
2Ric− (n − 2)Tor

)(
(∇bu)C , (∇bu)C

)
.

(3.3)

Thus at the point p,

Δb(gijϕ
i
αϕj

α)

= gijΔb(ϕi
αϕj

α) + ϕi
αϕj

αΔb(gij)

=
1
2
Δb|∇bϕ

k|2 + ϕi
αϕj

αΔb(gij)

= |∇2
bϕ

k|2 + 〈∇bϕ
k,∇bΔbϕ

k〉 + 2〈J∇bϕ
k,∇bϕ

k
0〉

+
(
2Ric− (n − 2)Tor

)(
(∇bϕ

k)C , (∇bϕ
k)C

)
+ ϕi

αϕj
αΔb(gij).

(3.4)

Here we used equation (3.3) in the last equality. Furthermore, at the point p, we
have by direct computations that

2
[
R̃ijk	ϕ

i
αϕj

βϕk
αϕ	

β
+ R̃ijk	ϕ

i
αϕj

β
ϕk

αϕ	
β

]
= −〈∇bϕ

k,∇bΔbϕ
k〉 − ϕi

αϕj
αΔb(gij).

The reader may refer to the proof of Lemma 3.2 in [2] for details of the above
equation. Therefore, equation (3.1) follows immediately from (3.4).

2◦ To prove equation (3.2), one has, by direct computations, that at the point p,

1
2
Δb

(
e0(ϕ)

)
=

1
2
Δb(gijϕ

i
0ϕ

j
0)

= |∇bϕ
k
0|2 + ϕk

0Δb(ϕk
0) +

1
2
ϕi

0ϕ
j
0Δb(gij)

= |∇bϕ
k
0|2 + ϕk

0(Δbϕ
k)0 +

1
2
ϕi

0ϕ
j
0Δb(gij)

= |∇bϕ
k
0|2 − 2Γ̃k

ij,	ϕ
i
αϕj

αϕk
0ϕ

	
0 +

1
2
ϕi

0ϕ
j
0Δb(gij).

Here we used the assumption that [Δb, T ]ϕk = 0, for k = 1, · · · , m, in the third
equality. Again, at the point p, direct computations as in the proof of Lemma
3.2 in [2] show that
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2R̃ijk	ϕ
i
αϕj

0ϕ
k
αϕ	

0 = 2Γ̃k
ij,	ϕ

i
αϕj

αϕk
0ϕ

	
0 −

1
2
ϕi

0ϕ
j
0Δb(gij).

Therefore, equation (3.2) follows immediately.

Next, we recall the following remark, which is an important fact that should be
observed.

Remark 3.1. Let (M2n+1, J, θ) be a complete pseudohermitian manifold, (Nm, g)
be a Riemannian manifold and ϕ : M → N be a smooth map. Suppose that the
sectional curvature of N is nonpositive, then

m∑
i,j,k,	=1

n∑
α,β=1

R̃ijk	ϕ
i
αϕj

βϕk
αϕ	

β
+ R̃ijk	ϕ

i
αϕj

β
ϕk

αϕ	
β ≤ 0.

Moreover, if condition (1.2) holds, we also have
m∑

i,j,k,	=1

n∑
α=1

R̃ijk	ϕ
i
αϕ

j
0ϕ

k
αϕ	

0 ≤ 0.

The result of this remark was proved in Theorem 1.1 of [2].
We now show the CR version of Kato’s inequality. This is the key point that we can

extend the Liouville properties to pseudohermitian manifolds with negative curvatures
(see Remark 4.1).

Lemma 3.2. (CR Kato’s inequality). If u is any smooth function on M, then
(3.5)

∣∣∇2
bu
∣∣2 ≥ n

2 u2
0

and the following CR version of Kato’s inequality

(3.6) f2
∣∣∇2

bu
∣∣2 ≥ |∇bf2|2

4

hold for all x ∈ M , where f = |∇bu|.

Proof.
Fix x ∈ M, then

nu2
0 =

n∑
α=1

(uαᾱ − uᾱα) (uᾱα − uαᾱ)

=
n∑

α=1

(
2 |uαᾱ|2 − u2

αᾱ − u2
ᾱα

)
≤ 4

n∑
α=1

|uαᾱ|2 ≤ 2
∣∣∇2

bu
∣∣2

and
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∣∣∇bf
2
∣∣2 =

∣∣∣∣∣∇b

(
2

n∑
α=1

uαuᾱ

)∣∣∣∣∣
2

= 8
n∑

α,β=1

(uαuᾱ)β (uαuᾱ)β̄

≤ 8
n∑

α,β=1

(
|uαβ|2 + |uᾱβ |2 + 2 |uαβ|

∣∣uαβ̄

∣∣) |uα|2

≤ 8 |∇bu|2
n∑

α,β=1

(
|uαβ|2 + |uᾱβ |2

)
= 4 |∇bu|2

∣∣∇2
bu
∣∣2 .

4. LIOUVILLE PROPERTIES FOR PSEUDOHARMONIC MAPS

In this section, we will prove the Liouville-type theorem for pseudoharmonic maps.
Let ϕ be a pseudoharmonic map on a complete noncompact pseudohermitian (2n+1)-
manifold (M, J, θ). Let fk = |∇bϕ

k| and for each ε > 0, we define

fk
ε =

√
|∇bϕk|2 + ε, k = 1, · · · , m.

We first derive the following lemma:

Lemma 4.1. Let (M2n+1, J, θ) be a complete noncompact pseudohermitian man-
ifold and (Nm, g) be a Riemannian manifold with nonpositive sectional curvature.
Suppose that ϕ : M → N is a pseudoharmonic map. Then for any 0 < ε1, ε2, σ < 1,
we have( 1

ε1
+ (1− σ − ε1)

( 1
ε2

− 1
)) ∫

M
|∇bη|2(fk

ε )2dv

≥(1 − ε2)(1− σ − ε1)
∫

M
ρη2(fk

ε )2dv +
∫

M
η2
[
σ|∇2

bϕ
k|2 + 2

〈
J∇bϕ

k,∇bϕ
k
0

〉]
dv

+
∫

M

η2
(
2Ric− (n − 2)Tor

)(
(∇bϕ

k)C ,
(∇bϕ

k)C

)
dv,

where η is a cut-off function on M satisfying⎧⎪⎨⎪⎩
η (x) = 1 if x ∈ B (R) ,

0 < η (x) < 1 if x ∈ B (2R) \B (R),

η (x) = 0 if x ∈ M\B (2R),

and {
|∇bη (x)| = 0 if x ∈ B (R) or x ∈ M\B (2R),

|∇bη (x)|2 ≤ cηR−2 if x ∈ B (2R)\B (R).
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Proof. Using (3.6) we have

|∇2
bϕ

k|2 = (1 − σ)|∇2
bϕ

k|2 + σ|∇2
bϕ

k|2

≥ (1 − σ)(fk
ε )−2(fk)2|∇2

bϕ
k|2 + σ|∇2

bϕ
k|2

≥ 1 − σ

4
(fk

ε )−2|∇b(fk)2|2 + σ|∇2
bϕ

k|2

=
1 − σ

4
(fk

ε )−2|∇b(fk
ε )2|2 + σ|∇2

bϕ
k|2

= (1 − σ)|∇bf
k
ε |2 + σ|∇2

bϕ
k|2,

where 0 < σ < 1. Thus, by multiplying both sides of (3.1) by the cut-off function
η2 ∈ C∞

0 (M) mentioned above and integrating over M , one has∫
M

η2Δb

(
2e(ϕ)

)
dv

≥ (1− σ)
∫

M

η2|∇bf
k
ε |2dv +

∫
M

η2
(
2Ric(k) − (n − 2)Tor(k)

)
dv

+
∫

M
η2
[
σ|∇2

bϕ
k|2 + 2〈J∇bϕ

k,∇bϕ
k
0〉
]
dv.

(4.1)

Here we used the expression

2Ric(k) − (n − 2)Tor(k) =
(
2Ric− (n − 2)Tor

)(
(∇bϕ

k)C , (∇bϕ
k)C

)
for convenient and used the fact that

m∑
i,j,k,	=1

n∑
α,β=1

R̃ijk	ϕ
i
αϕj

βϕk
αϕ	

β
+ R̃ijk	ϕ

i
αϕj

β
ϕk

αϕ	
β ≤ 0

under the assumption that the sectional curvature of N is nonpositive (see Remark 3.1).
On the other hand, for each point p ∈ M we may choose a normal coordinate chart

U of p and a normal coordinate chart V of ϕ(p) such that ϕ(U) ⊂ V and fulfill the
following computations at the point p.

divb

(
η2∇b(gijϕ

i
αϕ

j
α)
)

= η2Δb(gijϕ
i
αϕ

j
α) +

〈∇bη
2,∇b(gijϕ

i
αϕ

j
α)
〉

= η2Δb

(
2e(ϕ)

)
+
〈∇bη

2,
1
2
∇b|∇bϕ

k|2〉.
By integrating over M and using the divergence theorem (the reader may refer to
Proposition 5.2 in [10]), we have∫

M
η2Δb

(
2e(ϕ)

)
dv = −

∫
M

〈∇bη
2,

1
2
∇b|∇bϕ

k|2〉dv

≤ 2
∫

M
ηfk

ε |∇bη||∇bf
k
ε |dv

≤ ε1

∫
M

η2|∇bf
k
ε |2dv +

1
ε1

∫
M

|∇bη|2(fk
ε )2dv,

(4.2)
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where ε1 ∈ (0, 1) is a constant. Combining (4.1) and (4.2) one obtains
1
ε1

∫
M

|∇bη|2(fk
ε )2dv ≥ (1 − σ − ε1)

∫
M

η2|∇bf
k
ε |2dv

+
∫

M
η2
[
σ|∇2

bϕ
k|2 + 2〈J∇bϕ

k,∇bϕ
k
0〉
]
dv

+
∫

M

η2
(
2Ric(k) − (n − 2)Tor(k)

)
dv.

(4.3)

By using the weighted Poincaré inequality
∫
M ρΨ2dv ≤ ∫M |∇bΨ|2 dv with Ψ = ηfk

ε ,
we have∫

M
η2|∇bf

k
ε |2dv =

∫
M

|∇b(ηfε)− (∇bη)fk
ε |2dv

≥ (1 − ε2)
∫

M
|∇b(ηfk

ε )|2dv +
(
1 − 1

ε2

) ∫
M

|∇bη|2(fk
ε )2dv

≥ (1 − ε2)
∫

M
ρη2(fk

ε )2dv +
(
1 − 1

ε2

) ∫
M

|∇bη|2(fk
ε )2dv,

(4.4)

where ε2 ∈ (0, 1) is a constant. The lemma now follows from (4.3) and (4.4).

Lemma 4.2. Let (M2n+1, J, θ) be a complete noncompact pseudohermitian man-
ifold, (Nm, g) be a Riemannian manifold with nonpositive sectional curvature and
ϕ : M → N be a pseudoharmonic map. Assume that condition (1.2) holds, then∫

M
η3|∇bϕ

k
0|2dv ≤ 3

∫
M

η2|∇bη||ϕk
0||∇bϕ

k
0|dv.

Here η is the cut-off function mentioned in Lemma 4.1.

Proof. By multiplying both sides of equation (3.2) by η3 and integrating over M
gives

(4.5)
1
2

∫
M

η3Δb

(
e0(ϕ)

)
dv ≥

∫
M

η3|∇bϕ
k
0|2dv.

Here we used the fact that
m∑

i,j,k,	=1

n∑
α=1

R̃ijk	ϕ
i
αϕj

0ϕ
k
αϕ	

0 ≤ 0

under assumption that the sectional curvature of N is nonpositive.
On the other hand,

1
2

∫
M

η3Δb

(
e0(ϕ)

)
dv =

1
2

∫
M

η3Δb(gijϕ
i
0ϕ

j
0)dv

= −1
2

∫
M

〈∇bη
3,∇b(gijϕ

i
0ϕ

j
0)
〉
dv

≤ 3
∫

M
η2|∇bη||ϕk

0||∇bϕ
k
0|dv.

(4.6)
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Then the lemma follows immediately from (4.5) and (4.6).

The Proof of Theorem 1.1. Combining Lemma 4.1, Lemma 4.2 and the assumption
(1.2), we obtain

d
( 1

ε1
+ (1 − σ − ε1)

( 1
ε2

− 1
)) ∫

M
|∇bη|2(fk

ε )2dv

≥(1 − ε2)(1− σ − ε1)
∫

M
ρη2(fk

ε )2dv

+
∫

M
η2
[
σ|∇2

bϕ
k|2 + 2

〈
J∇bϕ

k,∇bϕ
k
0

〉]
dv

+
∫

M
η2
(
2Ric− (n − 2)Tor

)(
(∇bϕ

k)C , (∇bϕ
k)C

)
dv

+
∫

M

[
aη3|∇bϕ

k
0|2 − 3aη2|∇bη||ϕk

0||∇bϕ
k
0|
]
dv,

(4.7)

where a ∈ R is to be determined. Let

D =
∫

M
η2
[
σ|∇2

bϕ
k|2 + 2

〈
J∇bϕ

k,∇bϕ
k
0

〉]
dv

+
∫

M

[
aη3|∇bϕ

k
0|2 − 3aη2|∇bη||ϕk

0||∇bϕ
k
0|
]
dv,

and we will give a lower bound of D.
From (3.5), one has

D ≥ σn

2

∫
M

η2(ϕk
0)

2dv − 2
∫

M
η2fk|∇bϕ

k
0|dv

+ a

∫
M

η3|∇bϕ
k
0|2dv − 3a

∫
M

η2|∇bη||ϕk
0||∇bϕ

k
0 |dv.

(4.8)

Also by Young’s inequality, we have

2
∫

M
η2fk|∇bϕ

k
0|dv ≤ 2

∫
M

η2fk
ε |∇bϕ

k
0|dv

≤ δ1

∫
M

η(fk
ε )2dv +

1
δ1

∫
M

η3|∇bϕ
k
0|2dv,

(4.9)

and

3a

∫
M

η2|∇bη||ϕk
0||∇bϕ

k
0|dv

≤ 9a2δ2

2

∫
M

η|∇bη|2(ϕk
0)

2dv +
1

2δ2

∫
M

η3|∇bϕ
k
0|2dv,

(4.10)
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where δ1, δ2 ∈ (0, 1) are constants to be determined. Substituting (4.9) and (4.10) into
(4.8) implies

D ≥ σn

2

∫
M

η2(ϕk
0)

2dv − δ1

∫
M

η(fk
ε )2dv +

(
a − 1

δ1
− 1

2δ2

) ∫
M

η3|∇bϕ
k
0|2dv

− 9a2δ2

2

∫
M

η|∇bη|2(ϕk
0)

2dv.

Let a = σR. By choosing δ−1
1 = (2δ2)−1 = a

3 and using the fact |∇bη|2 ≤ cη
R2 , then

the above inequality becomes

D≥ (σn

2
− 27c

4
σ

R

) ∫
M

η2(ϕk
0)

2dv− 3
σR

∫
M

η(fk
ε )2dv+

σR

3

∫
M

η3|∇bϕ
k
0|2dv

≥ σn

4

∫
M

η2(ϕk
0)

2dv − 3
σR

∫
M

η(fk
ε )2dv +

σR

3

∫
M

η3|∇bϕ
k
0|2dv,

(4.11)

whenever R large enough. This gives a lower bound of D.
Substituting (4.11) into (4.7) and using |∇bη|2 ≤ cη

R2 again, we have[( 1
ε1

+ (1− σ − ε1)
( 1
ε2

− 1
)) c

R2
+

3
σR

] ∫
M

η(fk
ε )2dv

≥ (1− ε2)(1− σ − ε1)
∫

M
ρη2(fk

ε )2dv +
σn

4

∫
M

η2(ϕk
0)

2dv +
σR

3

∫
M

η3|∇bϕ
k
0|2dv

+
∫

M

η2
(
2Ric− (n − 2)Tor

)(
(∇bϕ

k)C , (∇bϕ
k)C

)
dv.

Since the second and the third terms on the right-hand side of the above inequality are
nonnegative, we may drop it and then we obtain, by letting ε → 0, that[( 1

ε1
+ (1− σ − ε1)

( 1
ε2

− 1
)) c

R2
+

3
σR

]∫
M

η(fk)2dv

≥ (1− ε2)(1 − σ − ε1)
∫

M

ρη2(fk)2dv

+
∫

M
η2
(
2Ric− (n − 2)Tor

)(
(∇bϕ

k)C , (∇bϕ
k)C

)
dv.

By assumption (1.1), we may write
(
2Ric− (n − 2)Tor

)
(Z, Z) ≥ −2δρ|Z|2 for

0 < δ < 1, and then the above inequality gives[( 1
ε1

+ (1 − σ − ε1)
( 1
ε2

− 1
)) c

R2
+

3
σR

] ∫
M

(fk)2dv

≥[(1 − ε2)(1 − σ − ε1) − δ
] ∫

M
ρη2(fk)2dv.

(4.12)



1280 Ting-Hui Chang and Yen-Chang Huang

Since δ < 1, we may choose ε1, ε2 and σ small enough such that[
(1 − ε2)(1− σ − ε1)− δ

]
> 0.

Finally, let R → ∞ and by the assumption that ϕ has finite Dirichlet energy∫
M

m∑
k=1

|∇bϕ
k|2dv < ∞,

we then conclude from (4.12) that |∇bϕ
k| = fk = 0, k = 1, · · · , m. This shows that

ϕ must be a constant map and the proof is now complete.

Remark 4.1. The key point that we can release our assumption in Theorem 1.1 to
negative curvatures (see (1.1)) is that we have the positive term

(4.13) (1− ε2)(1− σ − ε1)
∫

M
ρη2(fk)2dv

on the right-hand side of inequality (4.12). This positive term comes originally from
Lemma 4.1, in which we apply the CR Kato’s inequality (3.6) to equality (3.1) and
then obtain the desired positive term (4.13).

Remark 4.2. In the proof of Theorem 1.1, there is a mixed term 〈J∇bϕ
k,∇bϕ

k
0〉

in (4.7). This mixed term comes from the CR Bochner formula (see (3.1)) and is hard
to estimate. However, by deriving the CR Bochner formula for e0(ϕ) (see (3.2)), we
get the positive term ∫

M
aη3|∇bϕ

k
0 |2dv

in (4.7) and then we may deal with the mixed term by estimating the lower bound of
the term D instead.
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