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GENERALIZED FRACTIONAL INTEGRALS AND THEIR COMMUTATORS
OVER NON-HOMOGENEOUS METRIC MEASURE SPACES

Xing Fu, Dachun Yang* and Wen Yuan

Abstract. Let (X,d,u) be a metric measure space satisfying both the upper
doubling and the geometrically doubling conditions. In this paper, the authors
establish some equivalent characterizations for the boundedness of fractional in-
tegrals over (X, d, ). The authors also prove that multilinear commutators of
fractional integrals with RBMO( ) functions are bounded on Orlicz spaces over
(X,d, 1), which include Lebesgue spaces as special cases. The weak type end-
point estimates for multilinear commutators of fractional integrals with functions
in the Orlicz-type space Oscexp 1~ (14), Where r € [1, 00), are also presented. Fi-
nally, all these results are applied to a specific example of fractional integrals over
non-homogeneous metric measure spaces.

1. INTRODUCTION

During the past ten to fifteen years, considerable attention has been paid to the study
of the classical theory of harmonic analysis on Euclidean spaces with non-doubling
measures only satisfying the polynomial growth condition (see, for example, [11, 10,
37, 38, 39, 40, 41, 42, 5, 29, 14, 15, 16, 17, 4, 44]). Recall that a Radon measure p
on R? is said to only satisfy the polynomial growth condition, if there exists a positive
constant Cy such that, for all z € R? and r € (0, o0),

(1.1) pw(B(z,r)) < Cor",

Received August 11, 2013, accepted September 17, 2013.

Communicated by Der-Chen Chang.

2010 Mathematics Subject Classification: Primary 47B06; Secondary 47B47, 42B25, 42B35, 30L99.
Key words and phrases: Non-homogeneous metric measure space, Fractional integral, Commutator, Orlicz
space, Hardy space, RBMO( ), Oscexp ™ (11)-

This project is supported by the National Natural Science Foundation of China (Grant Nos. 11171027,
11361020 & 11101038), the Specialized Research Fund for the Doctoral Program of Higher Education
of China (Grant No. 20120003110003) and the Fundamental Research Funds for Central Universities of
China (Grant No. 2012LYB26).

*Corresponding author.

509



510 Xing Fu, Dachun Yang and Wen Yuan

where « is some fixed number in (0,d] and B(z,r) := {y € R?: |y — 2| < r}. The
analysis associated with such non-doubling measures 4 as in (1.1) has proved to play
a striking role in solving the long-standing open Painlevé’s problem and Vitushkin’s
conjecture by Tolsa [40, 41, 42].

Obviously, the non-doubling measure 1 as in (1.1) may not satisfy the well-known
doubling condition, which is a key assumption in harmonic analysis on spaces of
homogeneous type in the sense of Coifman and Weiss [6, 7]. To unify both spaces of
homogeneous type and the metric spaces endowed with measures only satisfying the
polynomial growth condition, Hytonen [18] introduced a new class of metric measure
spaces satisfying both the so-called geometrically doubling and the upper doubling
conditions (see also, respectively, Definitions 1.1 and 1.3 below), which are called
non-homogeneous metric measure spaces. Recently, many classical results have been
proved still valid if the underlying spaces are replaced by the non-homogeneous metric
measure spaces (see, for example, [18, 22, 2, 19, 20, 21, 25, 8, 24]). It is now also
known that the theory of the singular integral operators on non-homogeneous metric
measure spaces arises naturally in the study of complex and harmonic analysis questions
in several complex variables (see [43, 20]). More progresses on the Hardy space H*
and the boundedness of operators on non-homogeneous metric measure spaces can be
found in the survey [45] and the monograph [46].

Let (X, d, 1) be a non-homogeneous metric measure space in the sense of Hytonen
[18]. In this paper, we establish some equivalent characterizations for the bounded-
ness of fractional integrals over (X, d, ). We also prove that multilinear commutators
of fractional integrals with RBMO(x) functions are bounded on Orlicz spaces over
(X, d, i), which include Lebesgue spaces as special cases. The weak type endpoint es-
timates for multilinear commutators of fractional integrals with functions in the Orlicz-
type space Oscexp (1), Where r € [1, 00), are also presented. Finally, all these results
are applied to a specific example of fractional integrals over non-homogeneous metric
measure spaces. The results of this paper round out the picture on fractional integrals
and their commutators over non-homogeneous metric measure spaces.

Recall that the well-known Hardy-L.ittlewood-Sobolev theorem (see, for example,
[34, pp. 119-120, Theorem 1]) states that the classical fractional integral I,,, with o €
(0, d), is bounded from L?(R?) into L4(R%), forall p € (1,d/a)and 1/q = 1/p—a/d,
and bounded from L'(R?) to weak L% (¢=)(R?). Chanillo [3] further showed that
the commutator [b, I,,], generated by b € BMO(R?) and I,,, which is defined by

b, L] (f)(2) = b(2) La(f)(2) — La(bf)(z), @ €RY,

is bounded from LP(R9) into LI(R?) for all « € (0,d), p € (1,d/a) and 1/q =
1/p—a/d. These results, when the d-dimensional Lebesgue measure is replaced by the
non-doubling measure p as in (1.1), were obtained by Garcia-Cuerva and Martell [11]
and by Chen and Sawyer [5], respectively. Moreover, also in this setting with the non-
doubling measure 1 as in (1.1), some equivalent characterizations for the boundedness
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of fractional integrals were established in [17] and the boundedness for the multilinear
commutators of fractional integrals with RBMO(u) or Oscexp (1) functions was
presented in [14]. Notice also that Nakai [27, 28] introduced a class of generalized
fractional integrals and obtained their boundedness on Orlicz spaces over R with the
d-dimensional Lebesgue measure and also over spaces of homogeneous type.

On the other hand, due to the request of applications, as a natural extension of
Lebesgue spaces, the Orlicz spaces were introduced by Birnbaum-Orlicz in [1] and
Orlicz in [30]. Since then, the theory of Orlicz spaces and its applications have been
well developed (see, for example, [32, 33, 26]).

To state the main results of this paper, we first recall some necessary notions.

The following notion of the geometrically doubling is well known in analysis on
metric spaces, which was originally introduced by Coifman and Weiss in [6, pp.66-67]
and is also known as metrically doubling (see, for example, [13, p. 81]).

Definition 1.1. A metric space (X, d) is said to be geometrically doubling if there
exists some Ny € N such that, for any ball B(xz,r) C X, there exists a finite ball
covering { B(x;,r/2)}; of B(x,r) such that the cardinality of this covering is at most
No.

Remark 1.2. Let (X,d) be a metric space. In [18], Hytonen showed that the
following statements are mutually equivalent:

() (X,d) is geometrically doubling.

(if) For any € € (0,1) and any ball B(x,r) C X, there exists a finite ball covering
{B(x;,er)}; of B(z,r) such that the cardinality of this covering is at most
Noe~™, here and in what follows, Ny is as in Definition 1.1 and n := log, Np.

(iii) For every e € (0,1), any ball B(x,r) C X contains at most Noe~" centers of
disjoint balls { B(x;, er) }..

(iv) There exists M € N such that any ball B(x,r) C X contains at most M centers
{a;}; of disjoint balls { B(x;,r/4)}M,.

Recall that spaces of homogeneous type are geometrically doubling, which was
proved by Coifman and Weiss in [6, pp. 66-68].

The following notion of upper doubling metric measure spaces was originally in-
troduced by Hytonen [18] (see also [19, 25]).

Definition 1.3. A metric measure space (X, d, i) is said to be upper doubling if x
is a Borel measure on X’ and there exist a dominating function A : X x (0, co) — (0, o)
and a positive constant C', depending on A, such that, for each z € X, r — A(z,7) is
non-decreasing and, for all x € X and r € (0, c0),

(1.2) p(B(z,r)) < Az, r) < Cy\A(z,r/2).

A metric measure space (X', d, uu) is called a non-homogeneous metric measure space
if (X,d) is geometrically doubling and (X, d, ;) upper doubling.
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Remark 1.4.

(i) Obviously, a space of homogeneous type is a special case of upper doubling
spaces, where we take the dominating function \(z,r) := u(B(z,r)). On the
other hand, the Euclidean space R¢ with any Radon measure 4 as in (1.1) is also
an upper doubling space by taking the dominating function A(z, r) := Cyr*.

(ii) Let (X, d, u) be upper doubling with A being the dominating function on X’ x
(0,00) as in Definition 1.3. It was proved in [21] that there exists another
dominating function A such that A < A, C5 < C, and, for all z, y € X with
d(z,y) <r

(1.3) Az, r) < C’j\X(y, ).

(iii) 1t was shown in [35] that the upper doubling condition is equivalent to the weak
growth condition: there exist a dominating function A\ : X x (0, c0) — (0, 00),
with » — A(z, r) non-decreasing, positive constants C), depending on \, and ¢
such that

(@) forall r € (0,00),t € [0,r], z, y € X and d(z,y) € [0, 7],

A7+ = M) = € [ T2
(b) for all z € X and r € (0, o0),

p(B(z, 7)) < Az, 7).
Based on Remark 1.4(ii), from now on, we always assume that (X', d, i) is a non-
homogeneous metric measure space with the dominating function \ satisfying (1.3).
We now recall the notion of the coefficient K g introduced by Hytonen [18],
which is analogous to the quantity K¢ g introduced by Tolsa [38, 39]. It is well
known that K g 5 well characterizes the geometrical properties of balls B and S.

Definition 1.5. For any two balls B C S, define

1
Kpoim1+ / 1 aw,
B.S s Mo d(z, eg) M)

where cg is the center of the ball B.

Remark 1.6. The following discrete version, Kz s, of K5 g defined in Definition
1.5, was first introduced by Bui and Duong [2] in non-homogeneous metric measure
spaces, which is more close to the quantity K¢ r introduced by Tolsa [37] in the setting
of non-doubling measures. For any two balls B C S, let [?B,S be defined by

BS k
p(6%B)
KBS =1+ Z CB,GkT’B
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where rp and rg respectively denote the radii of the balls B and S, and Np g5 the
smallest integer satisfying 6V2.srp > rg. Obviously, Kp s < Kp s. As was pointed
out by Bui and Duong [2], in general, it is not true that Kp s ~ Kp g.

Though the measure doubling condition is not assumed uniformly for all balls in
the non-homogeneous metric measure space (X, d, i), it was shown in [18] that there
exist still many balls which have the following (n, 3)-doubling property.

Definition 1.7. Letn, 5 € (1,00). A ball B C X is said to be (n, 3)-doubling if
u(nB) < Bu(B).

To be precise, it was proved in [18, Lemma 3.2] that, if a metric measure space
(X,d, i) is upper doubling and 7, 3 € (1, cc) satisfying 5 > C’lfg"’" =: n¥, then, for
any ball B C X, there exists some j € Z. := NU{0} such that »’ B is (5, 3)-doubling.
Moreover, let (X, d) be geometrically doubling, 5 > 1" with n := logy, Ny and u a
Borel measure on X which is finite on bounded sets. Hytonen [18, Lemma 3.3] also
showed that, for p-almost every = € X, there exist arbitrary small (), 3)-doubling balls
centered at . Furthermore, the radii of these balls may be chosen to be the form =7 B
for j € N and any preassigned number r € (0,00). Throughout this paper, for any
n € (1,00) and ball B, the smallest (1, 3,)-doubling ball of the form 7’ B with j € N
is denoted by B", where

14) By = max{n®, 5%} + 30" 4+ 30" = pPmnrd) 4 g0m 4 307,

In what follows, by a doubling ball we mean a (6, 3)-doubling ball and BS is simply
denoted by B.

Now we recall the following notion of RBMO(x) from [18].

Definition 1.8. Let p € (1,00). A function f € L (x) is said to be in the space

RBMO(p) if there exist a positive constant C' and, for any ball B C X', a number fp
such that

1
1(pB)

and, for any two balls B and B; such that B C B,

(L5) [ 1) = fal dutw) < €

(1.6) |fB — [B,| <CKpB B, .

The infimum of the positive constants C' satisfying both (1.5) and (1.6) is defined to
be the RBMO () norm of f and denoted by || f|| enmo(u)-
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From [18, Lemma 4.6], it follows that the space RBMO(u) is independent of the
choice of p € (1, 00).

In this paper, we consider a variant of the generalized fractional integrals from [10,
Definition 4.1] (see also [17, (1.4)]).

Definition 1.9. Let a € (0,1). A function K, € L (X x X\ {(z,2): = € X})
is called a generalized fractional integral kernel if there exists a positive constant Cx_,
depending on K, such that

(i) for all z, y € X with x # vy,

1 .
Az, d(z,y))]'

(ii) there exist positive constants § € (0,1] and cx, € (0,00) such that, for all
x, T,y € X with d(z,y) > ¢k, d(z, T),

L.7) [Ka(z,9)| < Ck,

‘K(X(x? y) - KO&(‘:E’ y)‘ + ‘Ka<y7 [E) - Ka<y7 EE)‘
(1.8) ~\10
BT () A
[d(z, y)°[Mz, d(z,y))]'
Let Lp°(u) be the space of all L>°(u) functions with bounded support. A linear

operator Ty, is called a generalized fractional integral with kernel K, satisfying (1.7)
and (1.8) if, for all f € Lp°(p) and = & supp f,

(L.9) Tof(z) = /X Kol 9) £ (4) duly).

Remark 1.10.

(i) Without loss of generality, for the simplicity, we may assume in (1.8) that cx, =
2.

(i) If a kernel K, satisfies (1.7) and (1.8) with oo = 0, then K, is called a standard
kernel and the associated operator T, as in (1.9) is called a Calderon-Zygmund
operator on non-homogeneous metric measure spaces (see [20, Subsetion 2.3]).

(iif) We give a specific example of the generalized fractional integrals, which is a
natural variant of the so-called “Bergman-type” operators from [43, Section 2.1]
(see also [20, Section 12] and [36, Section 2.2]). Let X’ := Byy be the open
unit ball in C¢. Suppose that the measure ;. satisfies the upper power bound
uw(B(z,r)) < r™ with m € (0, 2d] except the case when B(z,r) C Bag. How-
ever, in the exceptional case it holds true that r < d(x) := d(x, C?\ Byy), where
d(z,y) = ||lz| — |yl + |1 = Z - y/|=||y]| for all z, y € Bog C C% and hence
w(B(z,r)) < max{[d(z)]™, 7™} =: A(x,r). By similar arguments to those used
in the proofs of [36, Proposition 2.13] and [20, Section 2], we conclude that, if
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€ (0, 1), then the kernel K, o(z,y) := (1 -2 -y) ™™=, z, y € By, C CY,
satisfies the conditions (1.7) and (1.8). So, when « € (0, 1), the fractional in-
tegral 75, o, associated with K,, , is an example of the generalized fractional
integrals as in Definition 1.9. Recall that, when o = 0, the operator 7, ¢, associ-
ated with K, o, is just the so-called “Bergman-type” operator (see [36, 43, 20]).

Now we recall the notion of the atomic Hardy space from [21].

Definition 1.11. Let p € (1,00) and p € (1, oc]. A function b € L (x) is called
a (p, 1)-atomic block if

(i) there exists a ball B such that supp b C B;

(i) [y b(x)du(z) = 0;

(iii) forany j € {1, 2}, there exista function a; supported on ball B; C B and a num-
ber A; € C such that b = Aia1 + Azaz and [|a ]| oguy < [u(pB)]YP ' K. p.
Moreover, let \b\Hl,p(u) = | A1+ [Aal.

atb

A function f € L'(u) is said to belong to the atomic Hardy space H;t’{;(u)

if there exist (p, 1) -atomic blocks {b;}3°, such that f = >2°, b; in L'(u) and
21 [bil 1,y < 00 The HXP (1) norm of f is defined by
at

g =t { 30 Wil

where the infimum is taken over all the possible decompositions of f as above.

Remark 1.12.
(i) It was proved in [21] that, for each p € (1, oc], the atomic Hardy space H;t’{;(u)
is independent of the choice of p and that, for all p € (1, o], the spaces Halt’{;(u)

and H;t’ff(u) coincide with equivalent norms. Thus, in what follows, we denote
H;t’{;(u) simply by H'(x) and, unless explicitly pointed out, we always assume
that p = 2 in Definition 1.11.

(i) 1t was proved in [25, Remark 1.3(ii)] that the atomic Hardy space introduced by
Bui and Duong [2] and the atomic Hardy space in Definition 1.11 coincide with
equivalent norms.

Then we state the first main theorem of this paper.

Theorem 1.13. Let « € (0,1) and T,, be as in (1.9) with kernel K, satisfying
(1.7) and (1.8). Then the following statements are equivalent:

(I) T, is bounded from LP(y) into L(p) forall p € (1, 1/a) and 1/q¢ = 1/p—«;
(II) T, is bounded from L' (1) into LY/ (1=2)20(y);

(IIT) There exists a positive constant C' such that, for all f € L'/®(p) with T, f being
finite almost everywhere, || 7o f [ Remou) < ClIFfllL1/e )
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(IV) T, is bounded from H'(y) into LY/(=)(p);
(V) T, is bounded from H'(y) into LY/ (1=):%0(y).

Remark 1.14. Theorem 1.13 covers [17, Theorem 1.1] by taking X := R, d being
the usual Euclidean metric and x as in (1.1). The difference between Theorem 1.13
and [17, Theorem 1.1] exists in that no conclusion of Theorem 1.13 is known to be
true, while all conclusions of [17, Theorem 1.1] are true.

Let ® be a convex Orlicz function on [0, co), namely, a convex increasing function
satisfying ®(0) = 0, ®(¢) > 0 for all ¢ € (0,00) and ®(¢) — oo as t — oo. Let

: tP' (1) tP' (1)
(1.10) ap := inf and bg := sup .
Y 000 (1) " ieo0 ()
We refer to [26] for more properties of ag and bg.
The Orlicz space L® (1) is defined to be the space of all measurable functions f
on (X,d,p) such that [, ®(|f(x)|) du(z) < co; moreover, for any f € L®(y), its
Luxemburg norm in L®(y) is defined by

1flzogy = inf {t e 0.00): [ @150 dute) < 1}.

For any sequence b := (by, ..., by) of functions, the multilinear commutator T,

of the generalized fractional integral 7., with & is defined by setting, for all suitable
functions f,

(111) Ta7[; = [bk‘u 7[b17Ta].”]f7
where
(1.12) (01, To]f := 1 Taf — To(b1f).

The second main result of this paper is the following boundedness of the multilinear
commutator 7', ; on Orlicz spaces.

Theorem 1.15. Let a € (0,1), k € Nand b; € RBMO(y) forall j € {1,...,k}.
Let & be a convex Orlicz function and W defined, via its inverse, by setting, for all
t € (0,00), U7L(t) := @~ L(t)t~, where ®~1(¢) := inf{s € (0,00) : P(s) > t}.
Suppose that T, is as in (1.9), with kernel K, satisfying (1.7) and (1.8), which is
bounded from LP(y) into L(p) forallp € (1,1/a)and 1/¢=1/p—a. If 1 <ag <
be < oo and 1 < ay < by < oo, then the multilinear commutator Ta,E asin (1.11) is
bounded from L®(u) to LY (1), namely, there exists a positive constant C' such that,
forall f € L®(p),

k
1T, 5 fllw () < CH 1051l RBMO () 1 [l L2 (1) -
j=1
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Remark 1.16.

(i) Let all the notation be the same as in Theorem 1.15. By Theorem 1.13, we can,
in Theorem 1.15, replace the assumption that 7, is bounded from LP(u) into
Li(p) for all p € (1,1/a) and 1/¢ = 1/p — « by any one of the statements
(I)-(V) in Theorem 1.13.

(if) In Theorem 1.15, if p € (1,1/a) and ®(t) := ? for all ¢ € (0,00), then
U(t) =t?and 1/g = 1/p — . In this case, ap = by = p € (1,00), ay =
by =q € (1,00), L®(u) = LP(u) and LY () = L9(p). Thus, Theorem 1.15,
even when X := R9, d being the usual Euclidean metric and 4 as in (1.1), also
contains [14, Theorem 1.1] as a special case. In the non-homogenous setting,
Theorem 1.15, even when k& = 1, is also new.

(iii) If a convex function @ : [0, 00) — [0, c0) satisfies that ®(0) = 0, ®(¢) > 0 for
all ¢ € (0,00) and ®(t) — oo as t — oo, then @ is absolutely continuous on
any closed interval in [0, co) and bijective from [0, oo) to itself. Therefore, ® is
differentiable almost everywhere and ®~1(s) := inf{t € [0,00) : ®(t) > s} is
the usual inverse function.

The end point counterpart of Theorem 1.15 is also considered in this paper. To
this end, we first recall the following Orlicz type space Oscexpr-(p) Of functions
(see, for example, Pérez and Trujillo-Gonzélez [31] for Euclidean spaces and [14] for
non-doubling measures).

In what follows, let LL (1) be the space of all locally p-integrable functions on
X. Forall balls B and f € L _(u), mp(f) denotes the mean value of f on ball B,
namely,

1
1.13 m = —/ d .
(1.13) B(f) (B) Bf(y) 1(y)
Definition 1.17. Let r € [1,00). A function f € L. (p) is said to belong to the
space Oscexp (1) if there exists a positive constant C; such that
(i) for all balls B,

If —=mg(lexprr, B,u/uzB)

::inf{/\e (0, 00) - @Lexp(‘f@) _Amf‘(m)r dp(y) 32} <

(ii) for all doubling balls @ C R, |mqg(f) — mr(f)| < C1Kq,r.

The Oscexp 7 (1) NOrm of f, [| fllosces, 1 )+ 15 then defined to be the infimum of
all positive constants C; satisfying (i) and (ii).

Remark 1.18. Obviously, for any r € [1, 00), Oscexp - (1) € RBMO(p). More-
over, from [18, Corollary 6.3], it follows that Osc,,, 1 (1) = RBMO(u).
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We recall some notation from [15]. For i € {1,...,k}, the family of all finite
subsets o := {o(1),...,0(i)} of {1,..., k} with i different elements is denoted by C¥.
For any o € C¥, the complementary sequence o’ is defined by o’ := {1,...,k} \ 0.
For any o := {o(1),...,0(i)} € CF and k-tuple r := (r1,...,7x), we write that
Ure :=1/req)+: - —i—l/r yand 1/7’0/ :=1/r—1/r,, wherel/r —1/7’1—i— +1/r.

Now we state the third maln result of this paper.

Theorem 1.19. Let o € (0,1), k € N, r; € [1,00) and b; € Oscexp i (1) for
ie{l,...,k}. Let T, and T, 5 be, respectively, as in (1.9) and (1.11) with kernel K,
satisfying (1.7) and (1.8). Suppose that T, is bounded from L?(x) into L9(y) for all
p€ (1,1/a) and 1/g = 1/p — . Then, there exists a positive constant C' such that,
for all A € (0,00) and f € Ly°(u),

p{ze & T, pf(x)] > A})

k

k
<C (I)l/r H HijOScexerj (w) Z Z (I)l/ro (H(I)l/ro/(A_l‘fDHLl(u)) )

j=1 =0 geCt
where ®4(t) := tlog®(2 +¢) for all t € (0,00) and s € (0, ).

Remark 1.20. Theorem 1.19 covers [17, Theorem 1.1] by taking X := R?, d being
the usual Euclidean metric and p as in (1.1).

The organization of this paper is as follows.

In Section 2, we show Theorem 1.13 by first establishing a new interpolation
theorem (see Theorem 2.7 below), which, when pg = oo, is just [23, Theorem 1.1] and
whose version on the linear operators over the non-doubling setting is just [17, Lemma
2.3]. Moreover, we prove Theorem 2.7 by borrowing some ideas from the proof of [23,
Theorem 1.1], which seals some gaps existing in the proof of [17, Lemma 2.3]. The
key tool for the proof of Theorem 2.7 is the Calderon-Zygmund decomposition in the
non-homogeneous setting obtained by Bui and Duong [2] (see also Lemma 2.6 below).
Again, using the Calderon-Zygmund decomposition (Lemma 2.6) and the interpolation
theorem (Theorem 2.7), together with the full applications of the geometrical properties
of Kp s and the underlying space (X, d, 1), we then complete the proof of Theorem
1.13.

Section 3 is devoted to proving Theorems 1.15 and 1.19. We first prove, in Theorem
3.9 below, that, if the generalized fractional integral 7,, (o € (0, 1)) is bounded from
LP(u) into L9(p) for somep € (1,1/a) and 1/q = 1/p — «, then so is its commutator
with any RBMO(y) function, by borrowing some ideas of [5, Theorem 1]. The main
new ingredient appearing in our approach used for the proof of Theorem 3.9 is that we
introduce a quantity K](3 ?9 which is a fractional variant of Kp .5 and, in the setting
of non-doubling measures, was introduced by Chen and Sawyer in [5, Section 1]. As
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the case K B.S» f(](;g also well characterizes the geometrical properties of balls B and

S and, moreover, it preserves all the properties of Ké?ﬁ}% in [5, Lemma 3]. To prove

Theorem 3.9, we also need to introduce the maximal operator M# associated with
f(](;‘) , adapted from the maximal operator M#:(%) in [5, Section 2]. Then we complete
the ’proof of Theorem 1.15 by the interpolation theorem in [8] on Orlicz spaces and
borrowing some ideas from the proof of [15, Theorem 2]. To obtain the weak type
endpoint estimates of multilinear commutators in Theorem 1.19, we need to use the
generalized Holder inequality over the non-homogeneous setting from [8, Lemma 4.1]
and the Calderon-Zygmund decomposition mentioned above.

In Section 4, under some weak reverse doubling condition of the dominating func-
tion A (see Section 4 below), which is weaker than the assumption introduced by Bui
and Duong in [2, Subsection 7.3]: there exists m € (0, co0) such that, for all z € X
and a, r € (0,00), A(x,ar) = a™\(z, ), we construct a non-trivial example of gener-
alized fractional integrals satisfying all the assumptions of this article. The key tool is
the weak growth condition (see Remark 1.4(iii)) introduced by Tan and Li [35], which
is equivalent to the upper doubling condition.

Finally, we make some conventions on notation. Throughout the whole paper, C
stands for a positive constant which is independent of the main parameters, but it
may vary from line to line. Moreover, we use C,,,, . or C,, . to denote a positive
constant depending on the parameters p, v, .... For any ball B and f € LllOC (),
mp(f) denotes the mean value of f over B as in (1.13); the center and the radius
of B are denoted, respectively, by cg and rp. If f < Cg, we then write f < g; if
f < g =< f, wethen write f ~ g. For any subset £ of X', we use xg to denote its
characteristic function.

2. PrRooF oF THEOREM 1.13

In this section, we prove Theorem 1.13. We begin with recalling some useful
properties of K g in Definition 1.5 (see, for example, [18, Lemmas 5.1 and 5.2] and
[21, Lemma 2.2]).

Lemma 2.1.
(i) Forallballs BC RC S, Kpr<Kp,gs.

(i) For any p € [1, 00), there exists a positive constant C/,, depending on p, such
that, for all balls B C S with rg < prp, Kp g < C'(p).

(iii) For any a € (1, oo), there exists a positive constant C',, depending on «, such
that, for all balls B, KB’EQ < Cla)-
(iv) There exists a positive constant ¢ such that, for all balls B ¢ R C S,
Kps < Kpr+cKRggs.

In particular, if B and R are concentric, then ¢ = 1.
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(v) There exists a positive constant ¢ such that, for all balls B C R C S, Krs <
cKp s; moreover, if B and R are concentric, then Kr s < Kp .

Now we recall the following equivalent characterization of RBMO(u) established
in [21, Proposition 2.10].

Lemma 2.2. Let p € (1,00) and f € L} (). The following statements are
equivalent:
(8) f € RBMO(p);
(b) there exists a positive constant C' such that, for all balls B,
1
1(pB)

and, for all doubling balls B C S,

(2.1) Imp(f) —ms(f)| < CKpgs.

Moreover, let || f||. be the infimum of all admissible constants C' in (b). Then there ex-
istsa constant C' € [1, co) such that, forall f € RBMO(p), || fl+/C < || fll RBMO() <

ClIf s

/B F(2) = msf| du(z) < C

We also need the following conclusion, which is just [8, Corollary 3.3].

Corollary 2.3. If f € RBMO(u), then there exists a positive constant C' such
that, for any ball B, p € (1,00) and r € [1, 00),

1 ; 1/r
e {og [ 1@ - maf du@) | <l nasiog

Moreover, the infimum of the positive constants C' satisfying both (2.2) and (2.1) is an
equivalent RBMO(y) norm of f.

The following interpolation result is from [8, Theorem 2.2].

Lemma 2.4. Let a € [0,1), pi, ¢ € (0, 00) satisfy 1/¢; = 1/p; — a for i € {1,2},
p1 < p2 and T' be a sublinear operator of weak type (p;, ¢;) fori € {1,2}. Then T'is
bounded from L®(u) to LY (1), where ® and ¥ are convex Orlicz functions satisfying
the following conditions: 1 < p; < agp < by < p2 <00, 1 < q1 < ay < by < ¢ <
oo and, for all ¢ € (0,00), U~1(¢) = &~ 1(¢)t.

We also recall some results in [2, Subsection 4.1] and [18, Corollary 3.6].

Lemma 2.5. (i) Let p € (1,00), r € (1,p) and p € [5,00). The following
maximal operators defined, respectively, by setting, for all f € L} () and
T e X,
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M, ,f (@) ::sup[ ! /Q \f<y>v“du<y>r,

05z L1(pQ) ¢
Ni@= s o /Q 1F)] du(y)
and .
Mg f(w) s=swp o /Q 1F@)] ds(y),

are bounded on LP(y) and also bounded from L!(p) into L1 (p).

(i) For all f € L} _(u), it holds true that | f(x)| < N f(z) for u-almost every
T € X.

Before we prove Theorem 1.13, we establish a new interpolation theorem, which is
adapted from [23, Theorem 1.1]. To this end, we first recall the following Calderon-
Zygmund decomposition theorem obtained by Bui and Duong [2, Theorem 6.3]. Let
~o be a fixed positive constant satisfying that vo > maX{C'i 1°g26, 63"}, where C) is
as in (1.2) and n as in Remark 1.2(ii).

1
2071 22

e "

Lemma 2.6. Let pe[1, o00), f€ LP(u) and t € (0, co) (¢ >
p(X) < 00). Then
(i) there exists a family of finite overlapping balls {6B;}; such that {B;}; is pair-
wise disjoint,
23) 7 [ @Pdu(a) > = forall
. _ T T — ,
w(@B;) Js, P T
: / |f(2) P du(z) < ? for all j and all € (2, )
—— T T — , 00),
u(6nB;) Jys, =g T !
and
(2.4) |f(z)] <t for u-almost every = € X \ (U;6B;);

(ii) for each j, let R, be a (3 x 62, C'*&(**%)*1)_doubling ball of the family {(3 x
6%)*B;}ren, and w; == x65,/(3_; X6m,). Then there exists a family {¢;}; of
functions such that, for each j, supp(y¢;) C Rj, ; has a constant sign on R;,

(25) /X (@) dp(z) = | Fe)w;(x) dulz)

6B,
and

(2.6) > " lpj(@)| <t for p-almost every x € X,
J
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where ~ is a positive constant depending only on (X, x) and there exists a
positive constant C, independent of f, ¢ and j, such that, if p = 1, then

@7) loillmgoin(Ry) < C /X |F @)y (2)] dp(z)
and, if p € (1, o0), then
1/p
(2.8) {/R,\wj(wﬂpdu(@} [u(R)VP Stp—l/ |f(z)wj () [P du(z);

(iii) when p € (1, oo) if, for any j, choosing R; to be the smallest
(3 x 62, Cl2G*%1) doupling ball of the family {(3 x 62)%B;}xen, then
h = Z(fw] — ;) € H'(u) and there exists a positive constant C, inde-

J
pendent of f and ¢, such that

(2.9) 10l a1t HfH

_tp

Recall that the sharp maximal operator A/# in [2] is defined by setting, for all
feLl (uandxelX,

o 1 . Imof = mrf|

where A, :={(Q,R): x € @ C Rand @, R are doubling balls}.

Theorem 2.7. Let T be a bounded sublinear operator from LPo () into RBMO(p)
and from H'(u) into LPo>° (1), where py € (1,00] and 1/pg + 1/pj = 1. Then T
extends to a bounded linear operator from LP(u) into L9(u), where p € (1, pg) and
1/¢=1/p—1/po.

Proof. By the Marcinkiewicz interpolation theorem, it suffices to prove that

(2.10) p{z € X [Tf(2)] > 1) S [ Fllzoga)
forall p e (1,po) and 1/q = 1/p — 1/po. We consider the foIIowing two cases.
Case (i) u(X) = oo. Let Ly (u) := {f € L®(n) = [y f( = 0}. Then,

by a standard argument, we know that Ly (u) is dense in LP(u ) for aII p € (1, po).

Let r € (0,1). Define N,(g) := [N(|g|" )]1/7" forall g € Lj . (n). By Lemma 2.5(ii)
and a standard density argument, to prove (2.10), it suffices to prove that, for any

fe Ly, pe(l,po)and1/g=1/p—1/po,

(2.11) I (e € X 5 INTHE)] > 1) £ 1
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To this end, for any given f € Lj5(n), applying Lemma 2.6 to f with ¢ replaced
by t9/?, and letting R; be as in Lemma 2.6(iii), we see that f = g + h, where

9 = fxau,e; T Zj wj and h = Zj(wjf — ;). By Minkowski’s inequality,
Holder’s inequality and 1/¢ = 1/p — 1/py, together with (2.4), (2.6) and (2.8) with ¢
replaced by ¢2/?, we conclude that

Lo (1 Z ¥i

LPo ()

S E16)  f, -+ 0% {Zml

HQHLPO(M) < HfXX\UjGB

1/po

(2.12) 1/po
SRR + 9PN | o [ (Ry)] P
J
1/po
<tHpr/p0 +¢la/p)/Po—a/ (P'po) |: /\w] pdﬂ(ﬂf)]
S AR

For each r € (0,1), define M7 g := {M#(\g\r)}l/r. Then, from [23, Lemma 3.1],
together with the boundedness of 7" from L0 (1) into RBMO( ) and (2.12), we deduce
that

IMFTgl 1) S 1T9l Rmvtogn S N9llzroe < HIFITAS.

Hence, if C, is chosen to be a sufficiently large positive constant, we then see that
(2.13) u({wex: METg@) > CllrIm, }) =o.

On the other hand, since both f and A belong to H'(u), by (2.9) with ¢ replaced by
t2/P, we conclude that g € H'(p) and

[nly

From this, together with the boundedness of 7' from H'(p) into Lo (y) and [23,
Lemma 3.3], we deduce that, for any ¢ satisfying 1/¢ =1/p—1/po and R € (0, 00),

sup tu({x € X: N (Tg)(z)>t})

oMo < 150 + Wl S 10 + o7y

te(0,R)
(2.14) < sup 9P sup Pou({x € X [Tg(z)| > 7))
te(0,R) TE[t,00)

S RITPNTYI ooy S BNl 1y < 00

(u) ™~
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From the fact that N, o T is quasi-linear, (2.14), [23, Lemma 3.2] and (2.13), we
deduce that there exists a positive constant C' such that, for all f € Lp3(n),

sup 19 ({a € X+ NATF) (@) > CCulI IR, )

te(0,00)
N tes(ggo) tu ({33 eX: N.(Tg)(z) > COtHpr/pO })
+ sup tiu ({x e X: N.(Th)(z)> C tHpr/po })

(2.15) 1e(0e0) . i
< st ({zex: MFTo)@) > CutllFIT, })

te(0,00)

+t:££o) 1, ({x € X : N.(Th)(z) > C tHpr/po })
~ st ({re X NTRE) > AR, )

te(0,00)

By the boundedness of N from L!(p) into L1>°(u) (see Lemma 2.5(i)), the layer
cake representation, the boundedness of 7" from H'(p) into LPo>°(y) and (2.9) with
t replaced by t9/7, we conclude that

u({o e 2 NTh)@) > el 71, )
p({o e Nmnn@ > eI })

. r tre/p
n ({ € 2 NUTH e a0 > S112003 )

IN

LP(p)
—r —T'P/PO T
t HfHLP(M) /X |Th(.’17)| X{QL‘EX: |Th(x)|>2’1/”"t”f“p/p0 }(.’I}) d,U/(.’I})

LP ()
/PO

. 271/7‘t“f”Lp(M)
~ el | |

(2.16) I
xp ({w € X |Th(@)| > 27 f150, 1) ds
+/ s u({x € X2 |Thiz)| > s}) ds
21/t FI[577,

Su({rea: w2, })

[tHpr/ppO } v sup spf),u({x e X: |Zh(x)| > s})
Lr(p)
s€(0,00)

P e B ,
< b2 o L £l St s
(1) (1) (1)

which, together with (2.15), completes the proof of (2.11).

Case (ii) u(X) < oo. In this case, assume that f € Lp°(n). Notice that, if
t € (0,to), where ¢ := BGHquLp(M)/M(X), then (2.10) holds true trivially. Thus, we
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only need to consider the case when ¢ € (¢y,00). Let N, and M, be as in Case (i).
For each t € (g, c0), applying Lemma 2.6 to f with ¢ replaced by t9/7, we then see
that f = g+ h with g and & as in Case (i), which, together with the boundedness of T’
from LPo (1) into RBMO(u) and [23, Lemma 3.1], shows that (2.13) still holds true
for M (Tg).

We now claim that, for any » € (0, 1),

@17) P | ITo@ duto) S IS

where the implicit positive constant only depends on M( ) and r. To see this, since
pu(X) < oo, we may regard X as a ball, then g := fXg )€ H(u).
Precisely, by (2.12), we see that

(2.18) lgoll 1 S AT

On the other hand, by Holder’s inequality, the fact that 71 € RBMO(u) and the
locally integrability of RBMO(u) functions, we conclude that

[ mi@r aua [/ 1) dp(a ][u<x>11—7"<oo.

From this and the layer cake representation, together with » € (0, 1), Holder’s inequal-
ity, (2.12), the boundedness of 7' from H'(y) into LP0>°(y) and (2.18), we deduce

that
/X Ty ()" dpu(x)

<[ {\W@H]ﬁ [ s duty
| .

HgoHHl(u)/ﬂ(X 1 .,
S/ " u({z e X :[Tgo(z)| > t})dt+ gl zeo )
0 HQOHHI(H)/“(X)

T

\T1<x>v} dp()

lgoll 71 0y /1() / o0
</ 5 tr—l dt + HgOHZE)l / 7 1—p; dt—i—tTHfHTp/po
~ (1)

0 lgoll 1 ¢y /1(X)

S 9ol + EIFITES S IS,

which implies (2.17).
Observe that [ [|Tg(x)|" — F]du(x) = 0 and, for any R € (0, ),

sup tlu({z e X: N(|Tg|"— F)(z) > t}) < RIu(X) < .
te(0,R)



526 Xing Fu, Dachun Yang and Wen Yuan

From this and (2.17), together with [23, Lemma 3.2], MT#(F) =0, (2.13) and some
arguments similar to those used in the estimates for (2.15) and (2.16), we deduce that
there exists a positive constant ¢ such that

o, e ({o € % TP > 2l 137 )

< q X: N(Tal" = F O 7“10/100
s st ({oe X N(Tal = F)a) > oY IAIEGH)

+ sup tqu({a:e)(: N(Th)(x) > Cot £[5/7. })
te(to,00)

S sw tip({ze X MET)() > Cotl FI, 1)
te(0,00)

v s o ({re 2 M) > ol 1, })

~ st ({a e x: NATH)@) > eI ) S OUSIR,
te(0,00)

where C; is chosen to be a sufficiently large positive constant, which completes the
proof of Theorem 2.7. |

Proof of Theorem 1.13. (I)=(ll) Let f € L'(x). Without loss of generality, we
may assume that || f|[1(,) = 1. We denote 1/(1 — «) by go. Applying Lemma 2.6 to
f with p = 1 and ¢ replaced by t%, and letting R; be as in Lemma 2.6(iii), we see

that f = g+ h, where g := fxa\(,68,) T 2_; s and h:= 3. (w;f — ¢;). By (2.7)
and the assumption [ f{|1(,) = 1, we easily see that

(2.19) gl S Nfllprg ~ 1
From (2.4) and (2.6) with ¢ replaced by t%, it follows that, for u-almost every x € X,
(2.20) lg(2)] S 1.

Since T, is bounded from LP'(u) into L9 (u) for any p; € (1,1/a) and 1/¢1 =
1/p1 — «, by (2.20) and (2.19), we conclude that

p{z € X o |Tag(@)] > 1}) S Tagll Ty S M9 T0 )

(2.21)
<4 n (tqo>(p1—1)q1/p1 <7,

On the other hand, from (2.3) with p = 1 and ¢ replaced by ¢%, and the fact that
{B;}; is a sequence of pairwise disjoint balls, we deduce that

(2.22) (62 B;) < £ /X £ duy) S 0.
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Therefore, to show (Il), by f = g + h, (2.21) and (2.22), it suffices to prove that
(2.23) p({z e X\ (U;6°B;): |Tah(z)| >t}) S0,

To this end, denote the center of B; by x;, and let IV, be the positive integer satisfying
Rj = (3 x 62)M1B;. Let 0 be a bounded function with HGHL%(M) < 1 whose support

is contained in X'\ (U;62B;). Then

[ o) du
X\(U;62B;)
< [, o ks 0 e +Z/

X\6R; R]\62B
=: F1 + Fo,
where h; := w;f — ¢;. By (2.5), we see that [, h;(x)du(x) = 0, which, together

with (1. 8) Holder’s inequality and (2.7), further |mpI|es that

P < Z /X - /X 10(2)|| K a(,y) — Ko, 25)] ;)] du(y) dp(z)

)

S Z/ [Z/z+113 \6i5, (6B, )5[/\($ji GirB]-)]l_a‘e(x)‘ du(a:)] 1y (W) duly)

<3 [ 11w du<y>;6—“ueumm <1

For Fy, by hj := w; f — ¢;, (1.7), Holder’s inequality and an argument similar to that
used in the proof of [8, Lemma 3.5(iii)], together with the boundedness of T, from
LP2(y) into L% (p) with po € (1,1/a) and 1/g2 = 1/pa — «, we have

F2<Z/R]\GB )| Talw; /) (@) du(z +2/ )| T3 ()] dps()
16(2)
5 on, 57 s dute) [ 110y ity
+Z

1/q0
/ |Tosp;( \qodu(ﬂi)] 101 a5

1/q0

161l

Ni+1 3><62>kB>
SZ/X\f(yWJ ) dp(y) [Z A(zj, (3 x 62)krp,)

J

qu (1)

1/Q2
/ |Tapj ()] du(x)] [u(6R;)] /01 <1,

J

J
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where we chose p, and go such that po € (1,1/«) and 1/g2 = 1/pa — . The estimates
for F; and F4 give (2.23), and hence complete the proof of (I)=-(ll).

(I)=(IN) Indeed, for any f € L'Y*(u), to show T,f € RBMO(u), by the
assumption that 7, f is finite almost everywhere, it suffices to show that, for any ball

Q and hq == mq(Ta(fXxx\(6/5)Q)):

1
(2.24) o) /Q Tt (2) = hal du(z) S 1l re

and, for any two balls @ C R, where R is doubling,
(2.25) lhg — hrl S KQRHJcHLl/a(My

Now we first show (2.24). Write
1
5 [, T @) ~ haldua)
1
< 5 [, P Xm0 )] dna)

1
T ul6Q) /Q I Ta(fX2\(6/5)Q) (%) — hg| dp(z) = H+ 1.

Notice that Kolmogorov’s inequality (see, for example, [12, p.485, Lemma 2.8])
also holds true in the non-homogeneous setting. By Kolmogorov’s inequality, namely,
for 0 < p < ¢ < oo and any function f,

[ £l ooy < Sup I xEl e/ IxENLs () S 11 Laee ()

where 1/s = 1/p — 1/q and the supremum is taken over all measurable sets £ with
0 < u(E) < oo, together with (1) of Theorem 1.13 and Holder’s inequality, we know
that .

H S mHXQHLUQ(M)HTa(fX(G/@Q)HLquOO(M)

Q «
S %"fx(6/5)QHL1(M) N HfHLl/a(M)~

To estimate |, we write
1 Ta(fx2\6/5)0) (@) — Ta(FX2\6/5)0) )]
<[ Ka() — Koy 2)£G) dul2)
6Q\(6/5)Q

:/ \Ka<a:,z>—Ka<y,z>uf<z>\du<z>+/ =T 4D,
X\6Q X\(6/5)Q
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Let cg and rg be the center and the radius of @, respectively. To estimate I;, from
(1.7) and Holder’s inequality, together with (1.2) and (1.3), it follows that

1 1
e /GQ\(6/15)Q <[A<IB, e ) d(y,z))]l—a) [/ (2)] dpu(2)

[ du(z) S N1 pava:-

S ey

[Aleq, rQ)]'=* Joq

To estimate I, by (1.8), (1.2), Holder’s inequality and (1.3), we see that, for any
z,y€Q,

[d(z,y)]°
I < Z /l (6Q)\2i-1(6Q) [d(z, )]6[/\(3/, d(z, y))}l_a‘f(,z)‘ du(z)
5
o ) ]
. i=1 /i(GQ)\W’ 1(6Q) [Qi_l(GrQ)](S[/\(y’Qi—16rQ>]1_a‘f< ) dp(2)

00 6 -«
s *[xtestoms] Mo < Ul

Therefore, I < || £ 11/a(,)

Combining the estimates for H and I, we obtain (2.24).

Now we show (2.25) for the chosen {hg}g. Denote Ng r+1 simply by N,. Write
\hq = gl

= |mq(Tu(fxx\(6/5)0)) — Mr(Ta(fXx\(6/5)R))]

< ImQ(Ta(fx6qQ\(6/5)Q))| + Imo(Ta(fXev20\60))]
+mQ(Ta(fXa\6320)) — Mr(Ta(fX2\6320))| + [Mme(Ta(fXeN20\(6/5)R))]

= J1+Js+J3+ J4.

An argument similar to that used in the estimate for H shows that Jy < ||l 11/a,,)-
Also, an argument similar to that used in the estimate for I gives us that J3 <

11 p1e ()
Next we estimate Jo. For any = € @, by Holder’s inequality, the fact that 6V2Q C
72R and (ii) and (iv) of Lemma 2.1, we have

11—«

1
Ta(fXGN?Q\6Q><x>’ < [/6N2Q\6Q Mo d ) A e

S KQ,SGRHJCHLl/a(M) S KQvRHfHLl/a(M)

This implies that Jo < K, gl fll1/a(,- Similarly, we have

J1 S KQeQl fll ey < KQualfll e,
) )
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Combining the estimates for Jq, Jo, J3 and J4, we obtain (2.25) and hence complete
the proof of (I11)=-(I11).

(1M=-(1V) We first show that, for any ball B, bounded function a supported on B
and go :=1/(1 —«),

(2.26) /Wa )1 du(e) S [0(2B)) a2,

To prove this, we borrow some ideas from the proof of [25, Lemma 3.1] by con-
sidering the following two cases for r 5.

Case (i) rp < diam(supp u)/40, where diam(supp p) denotes the diameter of the
set supp p. By Corollary 2.3 and (I1) of Theorem 1.13, we have

@myémmm—mﬂmwwm> p(2B)all%, 0,y S 1(2B)® ]y,
Thus, by (2.27), to prove (2.26), it suffices to show that
(2.28) Imp(Taa)| < [(2B)]* |lall L ()
We first claim that there exists j; € N such that
(2.29) (6B \ 2B) > 0.

Indeed, if, for all j € N, u(6°B\ 2B) = 0, then we see that u(X \ 2B) = 0,
which implies that supp © C 2B, the closure of 2B. This contradicts to that rg <
diam(supp u)/40 and thus (2.29) holds true. Now assume that S is the smallest ball
of the form 67 B such that ;(S \ 2B) > 0. We then know that (6= \ 2B) = 0 and
p(S\ 2B) > 0. Thus, u(S\ (671S U2B)) > 0. By this and [18, Lemma 3.3], we
choose o € S\ (6715 U 2B) such that the ball centered at x¢ with the radius 6 %rg
for some k£ > 2 is doubling. Let B, be the biggest ball of this form. Then we see that
By C 2S5 and dist(By, B) 2 rp. We now claim that

(2.30) Kpas < 1.

Indeed, if S = 6B, then by Lemma 2.1(ii), we have (2.30). If S O 62B, then
(1/12)S > 3B. Notice that, in this case, (67" S\ 2B) = 0 implies that Ky (1/12)s =
1. By this, together with (iv) and (ii) of Lemma 2.1, we further have

Kpos S Kpop+ Kap 1/12)s T K(1/12)525 S KB 2B+ K(1/12)525 S 1-

Thus, (2.30) also holds true in this case, which shows (2.30). Moreover, assume that
rp, = 6 F0rg, where ko > 2, and there exists N € N such that 6By = 6V 1By,
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By the definition of By, we see that N — kg + 1 > —1, hence "6 (6T%) > rg and

25 C 24(6AB/0). Therefore, by (i) through (iv) of Lemma 2.1, we see that

(2.31) Kpo2s < KB0,24(6§0) S KBO,GEO + K6§0,24(6§0) S

By (2.1), (2.31), (2.30), Lemma 2.1(iii) and Theorem 1.13(lIl), we know that

|mp,(Taa) — mE(Taa)\
< |mp,(Taa) — mas(Taa)| + |mas(Taa) — mp(Tua)|
(2.32) +mp(Tha) — mg(Tha))
S (Ky2s + Kpps + Ky p)lTaal REMO (1)
Slallpivagy S [2B)]*|lall oo

Moreover, by (1.7), dist(By, B) 2 rpg, (1.2) and (1.3), we conclude that, for all y € By,

(2.33) |Taa(y)| S = llall oo (u) S [(2B)]%|lal| Loy

The estimate (2.28) follows from (2.32) and (2.33), which completes the proof of (2.26)
in this case.

Case (ii) rp > diam(supp p)/40. In this case, without loss of generality, we may
assume that rp < 8diam(supp ). Then, by Remark 1.2(ii), we see that B N supp i
is covered by finite number balls {B} _, with radius r/800, where J € N is

ina Since (2.26)

is true if we replace B by 2B; which contains the support of a;, by (1. 7) (2.26), (1.3),
(1.2) and the fact that, if BN B; # 0, then 4B; C 2B, we have

independent of 5. Forany j € {1,...,J}, we define a; :=

| [Tt duta)
< Z/

J

<
~ ]Z; /13\213]-

J

Taa(w)® dute) + 3 [ -

j=1 i

A 0 J
/B, ne ‘CZJQE?;‘)W—OC dﬂ(y)] dpa() + ) llajl|Fee y [(4B))]

B\2B;




532 Xing Fu, Dachun Yang and Wen Yuan

d q0 1 v q0
sZuaﬂLw(m{ /| \23].[ / wy,d(x,y))p—ad“(y)] du(z) + [u(4B;)] }

Jj=1
J

>l { [ i | ) + e}

AN

.
Il

M~

< a1y (@B CR(B) + (4B} S all e, [1(2B)]®

.
Il
-

Thus, (2.26) also holds true in this case.
Now we turn to prove (IV). By a standard argument (see [21, Theorem 4.1] for the
details), it suffices to show that, for any (oo, 1)-atomic block b,

(234) HTOébHLqO(u) S ‘b‘H;é?(u)

Assume that suppb C R and b = 23:1 Aja;, where, for j € {1, 2}, a; is a function

supported in B; C R such that ||| fee() < [u(4Bj)]—1K]§j1R and |[A1] + [A2] ~
6] 11,00, . Write
Hatb (w)

/X\Tab(a:)\qodu(a:) :/ZR\Tab(xWOdM(x)+/X\2R.--:: L + Lo.

For L, we see that

2
L S YIRS / Taa qo du —|— YIRS / e = L171 + LLQ.
;\J\ ZBJ-‘ i(2)] Z\ il o,
From (2.26), [la;ll poo(uy < [M(4Bj)]_1K]§].1,R for j € {1, 2}, and Definition 1.11(iii),
it follows that
2 2
Lig S ) 1%l [e(@B)1® S D7 INI® S 1Bl 1.0
: =
For Ly 2, by (1.7), Minkowski’s inequality, (1.2), (1.3), (ii) and (iv) of Lemma 2.1, the
fact that [|a; || oo () S [M(4Bj)]_1K]§].1,R and Definition 1.11(iii), we see that

~

S Ja;(»)] Y e
bz 5 2, /ZR\QB].{/B]. [A(az,du,y»]l—ad“(y)} R

1/q0
< ;\w { /B Jas(0) [ / s mdmml du(y)}

(1)’

q0
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2

1
< | [u(B;)]%||a / dy(z)
Z‘ il lasllz =W 2r\2B; AcB;, d(z, cB;))
2 2
S Z A (B Nlajl T ) KBy S Z RIS \b\qom

< |p|90
Therefore, L; < \b\H ()’

On the other hand from the fact that [ b(y) du(y) = 0, (1.8) and Definition
1.11(iii), we deduce that

o< [ . [ / \Ka<a:,y>—Ka<x,cR>Hb<y>\du<y>]qo ()

: [/R\b(y)\ ) ]qo > /2z+1R\2zR Alcr; d(ﬂfacR}sio[d(ﬂfaCRﬂ&qo (=)

S (Al +1A20) "022_"5‘“ S \b\"%oo
=1

o)’

which, together with the estimate for L1, implies (2.34) and hence completes the proof
of (I)=(IV).

(IV)=-(V) is obvious, the details being omitted.

(V)=-(I) We first claim that, for any ball B and f € L'(u) with bounded support

n(6/5)B
2.35 ! T, d S
(2.35) e /B T ()] dp(y) S 1o

Assume first that rp < diam(supp u)/40. We consider the same construction in the
proof of (I1N=-(1V). Let B, By and S be the same as there. We know that B, By C 25,
B() is doubling, KB,2S S 1, KB0,2S S 1 and diSt(B(), B) Z rg. Let g = f+CBoXBoa
where C, is a constant such that [, g(x) du(x) = 0. Then g is an (oo, 1),-atomic
block supported in R. It is easy to show that

(2.36) 9l 1y S (6B £ o
where qg = 1/(1 — ). For y € B, by (1.7), the fact that dist(By, B) = rg, (1.3),
Jy 9z = 0, Holder’s inequality and (1.2), we have
\Ta(CBOXB0>(y>\
1 |CBo |14(Bo)
<|C d < _1ZBolPAP0)
ean A1l Rt " S Reg, rp)

1 p((6/5)B
S g, rB)]i— S [ Aes;TB)

11—«
>] 1Al e S 1 v
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Denote |[g|| 1, [(B)]~1/% simply by E. Then by (V) of Theorem 1.13 and (2.36),
we conclude that

o0

035) [ sl dnts) = [ty B Tagt) > yar+ [

E
SEu(B)+ [ 9l dt S OB Flsrsegy

The estimates (2.37) and (2.38) imply (2.35) in this case.

If rg > diam(supp u)/40, by an argument similar to that used in the proof of
(2.26) in the case of rp > diam(supp i)/40, we can prove that (2.35) also holds true
in this case.

Now we turn to prove (I). By Theorem 2.7, we only need to prove that 7T, is
bounded from LY/“(x) into RBMO(u). Repeating the proofs of (2.24) and (2.25)
step by step, only needing to replace the (L'(p), LY/ (*=%).>°(;;))-boundedness of T,
by (2.35) when estimating H, we then know that 7,, is bounded from L'/%(p) into
RBMO(p), which completes the proof that (V) implies (I) and hence the proof of
Theorem 1.13. ]

3. Proors oF THEOREMS 1.15 AnD 1.19

In order to prove Theorem 1.15, we need a technical lemma which is a variant over
non-homogeneous metric measure spaces of [5, Lemma 2].

Lemma 3.1. Let « € (0,1), p € (1,1/), p € [5,00), r € (p,1/a) and 1/q =
1/r — «. Then there exists a positive constant C' such that, for all f € L"(u),

HMZS:);)).]EHLQ(M) < CHfHLr(M)u
where

1/p
(@) £(2) := su 71 p
M) () : Qai{w)w—w /Q W) du@)}

and the supremum is taken over all balls Q > z.

Proof.  We first prove that
@ 11—«
e w({rex MEI@ > 1)) S [/,

Let B :={z € X: M%) f(x) >t}
For any x € E, there exists a ball @, containing x such that

(3.2) ! 1_ap/ LF)IP duly) > 17

[M(an:” Quz
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By [13, Theorem 1.2] and [18, Lemma 2.5], there exist countable disjoint subsets
{Q;}; of {Q, : x € E} such that E C U;pQ;. Let ¢ :=p/(1 —ap). Then p/q < 1.
Hence, by (3.2) and p/q = 1 — ap, we see that

Hprp
[W(E )]p/q<[ (UjpQ;)] p/q<z (pQ;) p/q<ztp/ )P dp(y) ; (1)

Hence u(E) < t—quHqu(u), namely, (3.1) holds true.

Notice that, if p < s < 1/«, by using Holder’s inequality, we have Mp‘};f <
Ms(ff,)f. Hence, by the proceeding arguments, we see that p(E) < [+ (e ]S/ (1-as),
which, together with (3.1) and the Marcinkiewicz interpolation theorem further |mpI|es
the desired result and hence completes the proof of Lemma 3.1. ]

Remark 3.2. Let « € (0,1). By Lemma 3.1, the maximal operators Mﬁo‘p) (r e
(0, 00)) and M((;) : Ml(f;) are bounded from LP(u) to L4(p) for p € (r,1/a) and
1/g=1/p— o

Now we introduce the fractional coefficient f(](;‘?g adapted from [5].

Definition 3.3. For any two balls B := B(c,,r,) C S, f(](;‘?g is defined by

NB,s E 1—a
~ 6 B)
20 o
B =T ; [A(cB,GkrB> ’

where o € [0,1) and Np s is defined as in Remark 1.6.

Now we give out some simple properties of f(](;‘?g, which are completely analogous
to [5, Lemma 3]. We omit the details; see [8, Lemma 3.5] for the proofs of the case
that o = 0.

Lemma 3.4. Let o € [0,1).

(i) Forallballs BC RC S, Ky < 2K4%.

(ii) For any p € [1, 00), there exists a positive constant C,,), depending only on p,
such that, for all balls B ¢ S with rg < prg, f(](;‘?g < C).

(iii) There exists a positive constant C,, depending on «, such that, for all balls
B, f(](;‘% < Clay-

(iv) There exists a positive constant ¢, depending on C and «, such that, for all
balls BC RC S, f(](;‘?g < f(](;f)R + cl?](%.

(v) There exists a positive constant ¢, depending on C and «, such that, for all
balls BC RC S, Ky < eKg%.
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Now we introduce the sharp maximal operator M# 2 associated with f(](;‘?g.

Definition 3.5. Leta € [0,1). Forall f € L] _(u) and = € X, the sharp maximal
function M# @ f of f is defined by

—, 1 mqf —mgf
M# f(x) = sup —— / [f(y) —mpfldu(y) + sup ‘Q~<—>R‘
Bz W(6B) Jp @Rer.  Kgh

where A, :={(Q,R): x € Q@ C Rand @, R are doubling balls}.

Similar to [2, Theorem 4.2], we have the following lemma.

Lemma3.6. Let f € Li (u) satisfy that [, f(z) du(z) = Owhen ||uf| := pu(X) <
oo. Assume that, for some p € (1,00), inf{1, Nf} € LP(u). Then there exists a
positive constant C, independent of £, such that || N f|| ,o(,) < Cl[M# f |l 1o(,0)-

The following two lemmas are completely analogous to [5, Lemmas 5 and 6], the
details being omitted.

Lemma 3.7. For any a € [0,1), there exists some positive constant P, (big
enough), depending only on C in (1.2) and o, such that,if m e N, By C --- C B,,, are
concentric balls with K](;Lf)BM > P, fori e {1,...,m—1}, then there exists a positive

. = -
constant C, depending only on C and «, such that " K](;Lf?BM < CKJ(;?,BW'

Lemma 3.8. For any a € [0, 1), there exists some positive constant P, (large
enough), depending on C), B¢ as in (1.2) with » = 6 and «, such that, if z € X is

some fixed pointand { f5} 5>, is a collection of numbers such that | f— fs| < f(](;‘?g(}’m
for all doubling balls B C S with = € B satisfying f(](;‘g < P,, then there exists a

positive constant C, depending on C), (¢, « and 13; such that | fp— fs| < C4I~(](3°f?90m
for all doubling balls B C S with z € B, where C,. is a positive constant, depending
on z, and Cy a positive constant depending only on C), Gs and a.

The following theorem is adapted from [5, Theorem 1].

Theorem 3.9. Let b € RBMO(u) and T, for o € (0,1) be as in (1.9) with
kernel K, satisfying (1.7) and (1.8), which is bounded from LP(u) into L9(u) for
all p € (1,1/a) and 1/¢ = 1/p — . Then the commutator [b, T,] satisfies that
there exists a positive constant C' such that, for all f € LP(u), ||[b, Ta]fllLagn <

ClIbllrBMO () 1 122 (10 -
Proof.  The case that ;(X) < oo can be proved by a way similar to the proof of

[8, Theorem 3.10]. Thus, without loss of generality, we may assume that p(X') = occ.
Let p € (1,1/). We first claim that, for all » € (1,00), f € LP(u) and x € X,
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M# (b, Tl f) )
(3.3) -
< 1ol tog { MG F@) + Meo(Taf) () + Tall (@)}

Once (3.3) is proved, taking 1 < r < p < 1/a, by Lemma 2.5(ii), Lemma 3.6, an
argument similar to that used in the proof of [8, Theorem 3.10], and Remark 3.2, we
conclude that

1, T fllcagey < 1N b Tal )l ae) < 1M (16, Tal Dl o
S lbll mmarogn {1058 Fllzage + 1Mr6(Tadl gy + 1 Taf oo §

S bl Mo 1 f 1 e (u)s

which is just the desired conclusion.
To show (3.3), by Definition 1.9, there exists a family of numbers, {bg}¢, such
that, for any ball @,

/Q 1b(y) — bol diuly) < 1(6Q) 1] rerON

and, for all balls @, R with Q C R, |bg — br| S Kq,r||bl| RBMO(1)- FOr any ball @,
let

hq = mq(Ta([b — bglfXx\(6/5)Q))-
Next we show that, for all x and @ with @ > =z,
1

— b, Ty, —hold

6, b T~ el duty
< bl enio { MY S () + My o(Taf) (@) }
and, for all balls Q, R with Q Cc Rand QQ > z,
(35) |k — hal S [bllrsro () {MSE F(2) + Tu(| f) (@) } Kq.rES

To prove (3.4), for a fixed ball @ and = with x € @, we write [b, T,,| f as

(3.6) [0, To]f = [b = bQ|Taf — Ta([b — bl f1) — Tu([b — bQl f2),

where fi:= fx(6/5)q and fo:= f — fi.
Let us first estimate the term [b—bg|T, f. By Holder’s inequality and [18, Corollary
6.3], we see that

1
m/(g‘[b(y)—bQ]Taf(y>‘du(y>

1 P v 1 p
< [m /Q Ib(y) — bo du(y>] [m /Q Tt (y) du(y>]
S bl Mo () Mp6(Ta f) (),

(3.4)

(3.7) L/p
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which is desired.

To estimate T ([b — bg] f1), take s := /p and 1/r := 1/s — . From Holder’s
inequality, the (L*(u), L™(n))-boundedness of T, and [18, Corollary 6.3], it follows
that

1
T /Q ITa([b = bal 1) (v)| du(y)

(@)1 B (@)1
< M(6Q> HTOC([b bQ]f1>HL’"(u) S M(6Q>

1 » )
S TH(6Q)]7" {/(6/5)Q b(y) — bg du(y)} [/(6/5)Q |f(y)] du(y)]

S 1ol RBMO(M)MZS?é)f(ﬂf),
which is desired.
By (3.6), (3.7) and (3.8), to obtain (3.4), we still need to estimate the difference
|To([b— bg) f2) — hq| by writing that, for all y;, y2 € Q,

T ([b =gl f2) (1) — Ta([b — bolf2) (12)]

S [ Kl - Kol 2)| M)~ boll ()| du() du()+ [ -
6Q\(6/5)Q X\6Q

16 = Q) fill s ()
(3.8)

B =

Let cg and rq be the center and the radius of @, respectively. To estimate I;, from
(1.7) and Holder’s inequality, together with (1.2) and (1.3), it follows that

1 1
e /6Q\(6/5)Q <[A(y1, A = Ny d(ms, Z))}l—a) |f(2)]|b(2) —bg| du(z)

P LR e e U STE)

S 10l Rmogy Mpis f (@),
which is desired.

For any y1,y2 € Q, by (1.8), (1.3), (1.2), Holder’s inequality and [18, Corollary
6.3], we know that

[d(yl,y2)]5 N . .
IZS/X\GQ Al 2P, d(yn, e o) ~ bl dn(z)

3 (2rq)° 1 o s
Z:I/Qk 6Q)\25-1(6Q) [2F—1x6rg)? [/\(CQ,Qk_leirQ)]l—a‘b( )=ball f(2)| du(2)
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AN

> o [ L P~ b))

k=1

whllmoviogy [, 1762) du(Z)]

1
7

o ([@klgo@ / o) "~ tarsl” d“('z)] p
1/p
1 p p
" {[u(2k x 30Q)]1~or /zkw@ T >}

1 1/p
+k[0]l RBMO(12) { (2 % 30Q)] o7 /2k(6Q) \f(z)\pdu(z>} )

< Sk + 1275 bl wpvioy Mas £(2) < 110l memoqy ML £ (@),
k=1

NE

S

i

where we used the fact that

1bq — bars/5)0] S Ko 2n60) |1l RBMO() < K0l RBMO()-

Combining the estimates for I; and I, we see that, for all y € Q,

ITa([b — bQlf2) () — hal S 1Bl ReMOG) MY f(2)-

537 L 7 =Bl 2)0) = gl o) % 18] manao M3 7o),

which, together with (3.6), (3.7) and (3.8), implies (3.4).
Now we show the regularity condition (3.5) for the numbers {h¢}¢o. Consider two
balls Q@ C R with z € Q and let N := Ng r + 1. Write |hg — hg| as

\mQ(T ([b— b ]fXX\(G/s) )) - mR(T ([b— bQ]fXX\(G/s)Rm
< ImQ(Ta([b — 0ol fx6q\(6/5)Q))| + Im@(Ta(bg — brlfXx\6q))]
+mo(Ta([b = 0rl fXenvr6@))| + Ima(Tallb — bRl fXA\6vq))

—mp(Ta([b— bR]fXX\GNQm + [mp(Tu([b - bR]fXGNQ\(G/s)Rm

=:U; + Uy + Uz + Uy + Us.

Following the proof of [5, Theorem 1], it is easy to see that

Ui+ Us+Us S |Jbfl RBMO(M)MZS%)f@)

539
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and Uy 5 Kq rl|bll kpaogy [Ta(lf) (@) + M3 ().
Now we turn to the estimate for Us. For y € Q, by (1.7) and Holder’s inequality,
we conclude that

To([b = bR] fx6nQ\60) (V)]

N-1 1
< " _b .
S Y e Tl g M0 PRI
N-1 1 ) 1/p \/p
< o )
~ = [Mag 6ol [/MHQ“’(?/) bl du(y)] [/6k+1Q\f(y)\ dp(y)

Notice that, by Minkowski’s inequality and Lemma 2.1(i), we see that

[/GkﬂQ b(y) — brl”’ du(y)] 1/pf

’ l/p/ k41 l/p/
<\ 1o = bl dut)]| o+ (w6 1Q)] " g — b
6k+1Q

1/p'
< Karllbll wviogy [1(5 x 61Q)]

Thus, by (1.7), (1.3) and (1.2), we conclude that

ITa([b = br] f X6~ Q\60) ()]

= [u(5 x 651Q)) /P

S Kq,rllb [/ FW)IP duly
Q.rlIbll RBMO() 1; Nz, 6Frg)| = GWQ\ ()P du(y)

No,r k42 1—a
p(6"72Q)
< Koalbll nemo [7

N ) ,; Az, 6%rq)

1 1/p
p
: { (5 X 6FIQ) o /6Q F ) dﬂ<y>}
S KQ,RI?C(QO%W?H RBMO(M)MZE%)f(a:).

1/p

Taking the mean over @, we obtain Us < KQ,RI?C(QO%HI?H RBMO(M)MZS%)f(ﬂf)a which,
together with the estimates Uy, Uy, Uy and Us, further implies (3.5).
By (3.4), if @ is a doubling ball and = € @, we have

B9 Imalb, Tulf) — hal S 16l wmmiog [My3 () + Mys(Tuf) ()]

Since, for any ball Q with = € Q, K, 5 < C and Kc(g% < C, by (3.4), (3.5) and
(3.9), we see that 7
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%Q / 16, Tal £ (y) = m (16 Tl )| dia(y)

50 / 6. Tal £ (9) — Rl dpa(y) + Ihg—hg|+Ihg—mg([b Tl

151l RBM0Go {M;,;f<x> + My o(Taf) (&) + Tall (@)}

(3.10)

| /\

AN

On the other hand, for all doubling balls Q c R with x € @ such that K c(gga < P,,
where P, is the constant as in Lemma 3.8, by (3.5), we have

Ihg — hal S Ko rllbl emog) (MY (@) + Tl f)(@)] P
Hence, by Lemma 3.8, we know that, for all doubling balls Q C R with x € @,
Iho — il S Kl rmsioqs [ M F(@) + Tl F)(@)]
and, using (3.9), we further obtain
Imq([b, Tal f) — mr([b, Tolf)|
< Bl mmviog) { MY £(2) + Mys(Taf) () + Tullf1) (2) }

which, together with (3.10), induces (3.3) and hence completes the proof of Theorem
3.9. [

To prove Theorem 1.15, we need to recall some notation from [14]. Let C¥ be
as in Section 1. For any sequence b := (by,...,b;) of functions and all i-tuples
o= {U(l), RN U(Z)} < Clk, let b, := (ba(l), cey ba(i)) and

1651l REMOH) H 10j) | RBMO (1)

Forany o € CF and z € X, let

=,

(58— 5(2)]

j=1
and T 7 := [by(i), [bo(i=1)s " » [bo(1), Tal - - -]]. In particular, when o := {1, ..., k},
Ta . 0|nC|des with T - as in (1 11).

Now we are ready to prove Theorem 1.15.
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Proof of Theorem 1.15. By Lemma 2.4, it suffices to prove that 7' ; is bounded

from LP(u) into L(p) for all p € (1,1/«) and 1/¢ = 1/p — a. We show this by
induction on k.

By Theorem 3.9, the conclusion is valid for £ = 1. Now assume that & > 2 is
an integer and, for any i € {1,...,k — 1} and any subset o = {o(1),...,0(i)} of
{1,...,k—1}, T,5, is bounded from LP(u) to L9(u) for the same p, ¢ as those such
that 7, is bounded from LP(u) to L(p).

The case that u(X') < co can be proved by a way similar to that used in the proof
of [8, Theorem 3.10], the details being omitted. Thus, without loss of generality, we
may assume that x(X) = co. We first claim that, for any r € (1, 00), f € LP(u) and
T e X,

M# T, 5)(@) S 15l rmvo) | MroTaf () + MY f(2)

k-1
+Z Z 1bo || RBMO() Mr6 (T, 5, )(2)-

i=1 geck

(3.11)

Once (3.11) is proved, by Lemmas 2.5 and 2.6, an argument similar to that used
in the proof of Theorem 3.9, and Remark 3.2, we conclude that, for all p € (1,1/«),
1/g=1/p—aand f € LP(u),

. . < | p#e(r -
IT, 0 < INCT, )z S [ AT 500,

< 18l oo {16 (T ) L zage + 1M (F) a0

k-1
+ Z Z 166 || RBMO(M)HMT,G(TajU/f)HLq(M)

i=1 geck

k-1
1T f Nl pagy + Il oo + Z Z 1T, 5, fllag

=1 JECf

S 116l RBMO(1)

< 18l mBroq 11 2o

which is desired.
As in the proof of [14, Theorem 2], to prove (3.11), it suffices to show that, for all
x and B with B > «z,

@/B\Tavgﬂy)—hmdu(y)

(3.12) < 116) RBMO(y) |:M7~76<Taf><gj> + M%)Jc@)

k-1
+Z Z 16| RBMO () M6 (T, 5, f) ()

=1 JECf
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and, for an arbitrary ball @, a doubling ball R with Q C R and z € Q,

i~ k a X a
lhg — hrl S [Ko.xl Kég,;{ubu rBA0 () { M6 T () + ML) f(2)}

(3.13) k-1
+ Z Z 1o |l RBMOW) Mr6(T, 5, ) () 0 s
i=1 gect
where
k
hg :=mgq <Ta <H[m@(bi) - bi]fXX\gQ>>

i=1

and

k
hR = MR <Ta <H[mR(bl) — bi]fXX\%R)) .

i=1
Let us first prove (3.12). With the aid of the formula that, for all y, z € X,

k

k
[Timae) — i) = 32 37 [by) — b(=)]orlmg (8) — b

i=1 i=0 geCk
where, if i = 0, then o/ = {1,...,k} and o = 0), [mg(b) = b(y)lp = 1, it is easy to
see that, for all y € X,

k

k
T, 5:f(y) =T, <H[m@(bi) - bi]f) ()= > > Imad) —bW)oT, 5 f(y),

i=1 i=1 geCh

where, if i =k, T_» f(y) := Ta(f)(y). Therefore, for all balls Q) > =, we have

a,br

T, 5/ (y) - hQ’ dp(y)

1
u(6Q) /Q
1 k
< m/@ T <Zl—[1[m@(bz> - bi]fX%cg) (y)

k
+3 %@/Cgl[m@w)—b(yﬂo]

+@/Q

=1 + L+

du(y)

T,5.,f (y)’ dp(y)

k
T, <Hl [m@(bi) - bz} fo\gQ> (y) = hq| du(y)
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Take 1/s> = 1/r — . Using the boundedness of T,, from Ls/(1+s2)(;) into
L*(p) for s € (1,00) and some arguments similar to those used in the proofs of
[14, Theorem 1.1] and [8, Theorem 1.9], we conclude that, for all x € X, I} <

18] RBMO(M)Mﬁg)Jc(x)a

k

1 S50 3 1ol msniog Mes (7,5, 1) (@)

=1 JECf

and Iy < [|bo |l Remo(y M3 f(2), which imply (3.12).
Now we turn to prove (3.13). Let @ be an arbitrary ball and R a doubling ball in
& such that x € Q C R. Denote Ng r + 1 simply by V. Write

|hq = hgl
< |mpg |T, <Ak1 [m@(bz‘> - bz} fXX\6NQ>]
—mq |Ta <ﬁ1 [m@(bi> - bz} fXX\GNQ>] |
+ |mp |Ta <ﬁ1 [m@(bz‘> - bz} fXX\GW)]
—mp | Ty <ﬁ1 [mr(bi) — bi] fXX\GNQ>] |
a5 ([T -+l ) |
+ |mg | T, <ﬁ1 [mr(bi) — bil fXGNQ\gR>] | =:Ly+ Ly + L3+ Ly

An estimate similar to that for I3, together with K¢ r < K.z, we see that, for all

reX, L1 g [KQ,R]kHEHRBMO(M)M%)J“(HJ)-
By some arguments similar to those used in the proofs of [14, Theorem 1.1] and
[8, Theorem 1.9], we easily see that, for all z € X,

k-1

Ly < [[?Q,R}k {Z Z HEU/HRBMO(M)MT,G (ng ($>>

i=1 oeCt

+16]l RBMO (1)) M6 (Tof) () + 1] RBMO(M)M;?JC(HJ)},
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Ls < [Ko.i* K¢ RlIbl reso (M3 £(x) and Ly < 5] remoq M3 £ ().
Combining the estimates for Ly, Lo, L3 and Ly, we then obtain (3.13) and hence
complete the proof of Theorem 1.15. [ |

Now we are ready to prove Theorem 1.19. In what follows, for any £ € N
and i € {1,...,k}, let C¥ be as in the introduction. For all sequences of numbers,

r = (r1,...,m4), and i-tuples o := {o(1),...,0(i)} € C¥, let b and b, be as in
Theorem 1.15,

i
HbO'HOSCexp Lo (1) *= 1—[1 Hba(j)HOscexp Lo () (1)
]:
and, in particular,
k
HbHOsCexer (w) = H HijOscexerj (u)*
7=1

Then we prove Theorem 1.19.

Proof of Theorem 1.19. Without loss of generality, by homogeneity, we may assume
that || fll () = 1 and HbiHOSCexpw (w = 1forallie{1,...,k}.
We prove the theorem by two steps: k=1 and k£ > 1.

Step (i) k& = 1. It is easy to see that the conclusion of Theorem 1.19 automatically
holds true if ¢ < Bgl| fll () /1(X) when p(X) < co. Thus, we only need to deal with
the case that ¢ > Ss|| fI| 1(,)/1(X). For any given bounded function f with bounded
support, go := 1/(1 — «) and any t > Sgl| f||L1(,)/1(X), applying Lemma 2.6 to f
with ¢ replaced by ¢, and letting R; be as in Lemma 2.6(iii), we see that f = g + h,
where g := fxa\u,68, t2_;pjand b= (wjf—p;) = > h;. Letpr € (1,1/a)
and 1/q1 :=1/p1 — a. By (2.7), we easily know that ||g|| () < t%. From this, the
boundedness of T,, from LP'(u) to L9 (x) and (2.19), it follows that

il € X+ [Tasg(@) > 1) 6 [ [Tasg@" dulo) S 0 gl

< 4~ 01 ¢90(P1—1)q1/p1 HquLll/(pl) < %
~ pn) ~ ’

where T, := Tup,. On the other hand, by (2.3) with p = 1 and ¢ replaced by
t%, and the fact that the sequence of balls, {B;};, is pairwise disjoint, we see that
1 (U;6%B;) St [, [ f(y)du(y) < t79, and hence the proof of Step (i) can be
reduced to proving

(3.14) H ( T € X\ (L]J GQBj) | Taph(z)] >t )

S [H(I)l/ra_l‘f‘)HLl(u) + (I)l/r<t_1HfHL1(u)>]qo :
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For each fixed j and all z € X, let b;(z) := b(z) — méj(b) and write
Toph(x Z b;( ) = > Ta(bjhy)(x) = L(x) + II(x).
J

For the term I1(z), by the boundedness of T,, from L' () to L9%-°°(1), we conclude
that

p({z € X 2 |ll(z)] > t})

<t Z / 163 ()05 (0) | dpu(y >}

<t Z / 1by) —m O)I1f(y )wj(y)du(w}
T {me / 1b) — mz ()] duly >} — UtV

By Lemma 2.6(iii), we easily know that R; is also (6, 8s)-doubling and R; = Ej.
Thus, from Lemmas 2.2 and 2.1, an argument similar to that used in the proof of [14,
Theorem 1.2], (2.5) and the fact that {68;}; is a sequence of finite overlapping balls,
we deduce that

q0
q0
(3.15) VSt el oo )M(R)} St Lf ()l duly)| -
|:Z]: JIL(p J [/X ]

On the other hand, by the generalized Holder inequality ([8, Lemma 4.1]), Lemma
2.2 and an argument similar to that used in the proof of [14, Theorem 1.2], we have

(3.16) U S 121/ DLty + ayr @ IF 1))

Combining (3.15) and (3.16), we know that

B17) p({re : @) > 1) < (1Pt DIy + Payrt I Lr)]™

which is desired.
Now we turn our attention to I(x). Let z; be the center of B;. Let ¢ be a bounded
function with HQHLQ/O(M) < 1 and the support contained in X \ (U;6°B;). By the

vanishing moment of /; and (1.8), we see that
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[ @) dut)
X\(U;62Bj)
<), o) / ) al,) ~ Ko, 23] o) | du)
\2R] X
+Z/ )0(a) | [Tuhs 2| du(z)

2R;\62B;
i [ 1,()00) )
SZT’R]-/ |hj(y)| du(y) /)(\2R]- [d(m,xj)](s[/\(xj,d($,$j))]1—a dp(x)
# f y E)0) d)
+Z/ DIITal5) (@) difz) = G+ H+ 1.

From (1.2), Holder’s inequality, Corollary 2.3, (2.1), (i) through (iv) of Lemma 2.1, we
deduce that

<3 () 5 lerR = /R ba) = m; (D6(2)] o)
k=1 ’
+§ () i O~ O 1] )
<3 () [HEGI]
2 () [
<r Rf

where we used the fact that

§K§j7Rj+KRj72k+1Rj+K KR]2k+1R <k

B, 2"1R; ok +LR, o+, ~

Since (|l S Jv [F(W)]w;i(y) duly), we further see that G < [ £l 11,

On the other hand applying Holder’s inequality, Corollary 2.3, (2.1), (iv), (i) and
(iii) of Lemma 2.1, the boundedness of T, from LP* (1) to L% (1) with p; € (po, 1/)
and 1/¢1 = 1/p1—c, (2.7), and the fact that {60, }; is a sequence of finite overlapping
balls, we obtain
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(16(2) — mazs (6)] + Iz (6) — maze )] 1Tulo)(@)8() | ()

< 161 §j{ [/
0 (1) - 2R,
/2R

J

S {Ta@qul(u) [/ZR [b(2) — myg (0)|©\0/%) dp(x)

i J

1/q0
[b() = mgp ()| Tasp; ()| du(w)]

1/q0
+ \Tm(w)\%dmm] i, (6) = g (0)]

] 1/q0—1/q1

+[u(4Rj>]l/"°‘”‘“\m§j(b> - mfR].(bﬂ} S (AR 5| Lo
J
S S AR o RN S [ 170 duo)
J
where we used the fact that
[mig: (b) = gz ()] < [mig: (b) = m, (B)] + [, (b) — myz (B)] S 1.
To estimate H, by (1.7), (1.2) and (1.3), we see that, for all = € 2R, \ 62B;,
1

To(wif)(x)] < / w;i(y)d ,
‘ ( J )( )‘ [A([Bj,d((l?,(ﬂj))]l_a 6B ‘f(yﬂ ](y> M(y>

J

which further implies that
|bj ()0()|
H < d
Z{/ R;\R; l’],d(l’,,’ljj))]l—a :u( J\62B }/le |w] ,u()
u((

1/go0 N-1
(ZO
{M],TR 2 | [ @ s >] "

N-1 -«
u((3 % 615,
-%k [AC@,C3X62)TBJ] hnﬁxb)_7n@xé$gﬁBAb”}

x /X () w3 (9) (),

where N € N satisfies that R; = (3x62)" B;. Obviously, for each k € {0,..., N—1},
(3 x 6%)*B; C R; and hence

[ ((3 x 62)F+2B)) ] -
= [ My, (3 % 62)krp;)

mg,(0) =m e p O S Kp,@xepin; S Kby, S 1
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Consequently, by the fact that R; is the smallest (3 x 62, C§3X62)+1)-doubling ball of
the family {(3 x 62)*B,}ren and an argument similar to that used in the proof of
Lemma 3.4(iii), we see that

H‘<ZIG+§Z[A Sl )/Wf ey () ity

S/X\f(yﬂ du(y)

Combining the estimates for G, H and J, we then conclude that

[ @) dae) £ 1
A\(U;6%B;)

Thus, we have

e (v v

q0
sen [ {wwwmmsk*/ \NM@@J,
A\(U;6%B;) A\(U;6%B;)

which, together with (3.17), implies (3.14) and hence completes the proof of Theorem
1.19 in the case that & = 1.

Step (i) k& > 1. The proof of this case is completely analogous to that of
[14, Theorem 1.2], the details being omitted, which completes the proof of Theorem
1.19. [ |

4, SOME APPLICATIONS

In this section, we apply all the results of Theorems 1.13, 1.15 and 1.19 to a specific
example of fractional integrals to obtain some interesting conclusions.
We first need the following notion.

Definition 4.1. Let € € (0,00). A dominating function A is said to satisfy the e-
weak reverse doubling condition if, for all » € (0,2 diam(X’)) and a € (1, 2 diam(X) /),
there exists a number C(a) € [1, c0), depending only on a and X, such that, for all
ek,

4.1) Mz, ar) > Cla)\(z,r)
and, moreover,

> 1
“2 2 0

k=1
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Remark 4.2.

(i)

(v)

We remark that the 1-weak reverse doubling condition is just the weak reverse
doubling condition introduced in [9, Definition 3.1]. Moreover, it is easy to see
that, if e; < e; and X satisfies the e¢;-weak reverse doubling condition, then A
also satisfies the e;-weak reverse doubling condition.

Assume that diam(X) = co. Let a = 2% and » = 27% in (4.1). Then, by (4.2),
we see that, for any fixed z € X,

1
li 270y < lim ——~\(z,1) = 0.
dm Az,277) < lim mamA, 1) =0
Thus, by the fact that » — A(z,r) is non-decreasing for any fixed =z € X, we
further know that lim, g A(z,r) = 0.

On the other hand, by (4.2), we see that limy_.., C(2*) = co. Letting a = 2*
and » = 1 in (4.1), by an argument similar to that used for the case » — 0, we
know that, for any fixed x € X, lim,_,oc A(z, 1) = o0.

By Remark 1.4(i), the dominating function in the Euclidean space R? with a
Radon measure p as in (1.1) is A(x,r) := Cpr"®, which satisfies the e-weak
reverse doubling condition for any € € (0, co).

If (X,d, ) is an RD-space, namely, a space of homogeneous type in the sense
of Coifman and Weiss with a measure p satisfying both the doubling and the re-
verse doubling conditions, then A\(x, r) := p(B(x,r)) is the dominating function
satisfying the e-weak reverse doubling condition for any € € (0, oo). It is known
that a connected space of homogeneous type in the sense of Coifman and Weiss
is always an RD-space (see [47, p.65] and [9, Remark 3.4(ii)]).

We remark that the e-weak reverse doubling condition is much weaker than the
assumption introduced by Bui and Duong in [2, Subsection 7.3]: there exists
m € (0, 00) such that, for all z € X and a, r € (0, 00), A(z,ar) = a™A(z,r).

Before we give an example, we first establish a technical lemma adapted from [10,
Lemma 2.1]. It turns out that the integral kernel 1/[\(y, d(z,y))]'~® for a € (0,1) is
locally integrable.

Lemma 4.3. Let o € (0,1) and X satisfy the a-weak reverse doubling condition.
Then there exists a positive constant C, depending on «, such that, for all z € X and
r € (0,2diam(X)),

1
/B(J:,T) [A<y7 d((E, y)ﬂ

= du(y) < ClA(z, r)]™
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Proof. From (1.3), (1.2), (4.1) and (4.2), we deduce that

3

which completes the proof of Lemma 4.3. |

Forall o € (0,1), f € Ly°(p) and x € X, the fractional integral I, f () is defined
by

“9 1o1(0) = [, e gy 0

Notice that, if (X,d,u) := (R |- |, 1), Mx,r) := Cor® with x € (0,d] and the
measure 4 is as in (1.1), then I, is just the classical fractional integral in the non-
doubling space (R?, |- |, u).

We now show that the kernel of I, satisfies all the assumptions of this article. By
(1.3), we know that the integral kernel K, (z,y) := W satisfies (1.7). By
Remark 1.4(iii), without loss of generality, we may assume that A satisfies that there
exist e, C' € (0, 00) such that, for all z € X, r € (0,00) and ¢t € [0, 7],

(4.4) A7+ 8) = A, 1) < T LA, ).

Remark 4.4. By (4.4), we see that, for a fixed z € X', » — A(z, r) is continuous
on (0, co).

Now we show that the integral kernel K, of I, also satisfies (1.8).

Proposition 4.5. Assume that \ satisfies (4.4). Then the integral kernel K, of I,
in (4.3) satisfies (1.8).

Proof. For all z, z, y € X with d(z,y) > 2d(z,z), we consider the following
two cases.
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Case (i) d(z,y) <d(z,y). Lett =d(z,y) — d(z,y) and r = d(z,y). Then, by
0<t<d(z7) <id(z,y) <d(z,y) =r and (4.4), we see that
Ay, d(Z,y)) — Ay, d(z,y))]
< @, y) — d(z,y)]° d(z,7)]°
< B2y, dto ) 5 | G2 | Ay (o)

From this, d(z,y) < d(z,y), Definition 1.3 and (1.3), we further deduce that

‘Koc@:a y) - Koc@?a y)‘

- 1 - 1 T MW, d@ y) — My, d(w, y)) |
Ay d(z,y) Ay, d(7,y)) Ay, d(Z,y) Ay, d(z,y))]
< [d(x, T)](1 =) < [d(x, T))( =)

™ [d(z, )My, d(@ )] T [d(z, y) U (@, d(z, y)]
This finishes the proof of (1.8) in this case.
Case (ii) d(z,y) < d(z,y). In this case, since d(z,y) > 2d(z, x), it follows that
~ 1 1 ~ ~

and hence d(z,x) < d(z,y). Then, by an argument similar to that used in the proof
of Case (i), we see that

~ [d(z, 2)] )
KOé r,Y)— KOé xz,Yy S ~
Halesy) = K@ IS G 0T (e )
which, together with d(z, y) < d(z,z) + d(z,y) < 2d(Z, y), further implies that (1.8)
holds true in this case. This finishes the proof of Proposition 4.5. |

To consider the boundedness of I, on Lebesgue spaces, we need the following
Welland inequality in the present setting, which is a variant of [11, Theorem 6.4].

Lemma 4.6. Assume that diam(X) = co. Let a € (0,1), € € (0, min{c, 1 — a})
and X\ satisfy the e-weak reverse doubling condition. Then there exists a positive
constant C, independent of f and «, such that, for all z € X and f € L°(u),

1/2

Laf(@)| < C MG p)MG @]
where Ml(%) for a € (0, 1) is defined as in Lemma 3.1.

Proof.  Without loss of generality, we may assume that the right-hand side of the
desired inequality is finite. Let s € (0, 00). We write

W) -
‘Ioéf@:)‘ = /B(ags) [A<y7 d((l?, y>>]1—a du(y) " /X\B(a,ys) Al
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By (1.3), (1.2), (4.1) and (4.2), we see that

/()] =
: S/B(m) A, d(z, y))]* 4 ]Zg Nz, 29 1s)]i- a/B(m_js)\f(y)\du(y)
20 Mz, 279 L))
- A, 275 Tg)[ ke /B(a:,2—fs) | ()| d(y)
€ = 1 a—e e p(a—e)
S Mz, 8)] ;WMI(G )f(a:) < Mz, s)] M fla).

Similarly, we also see that IT < [A(, 5)] =M% f(z). Thus,

Lt (@)] £ A, )My F (@) + [N, )]~ MyG (@),
By Remark 4.2(ii) and Remark 4.4, we can choose s € (0, c0) such that
e 1/2
o _[M5 s @)
[A(fL’,S)] = W .
M1,6 f(x)
Then we obtain the desired conclusion and hence complete the proof of Lemma 4.6. m

Now we are ready to state the main theorem of this section.

Theorem 4.7. Assume that diam(X) = oco. Let « € (0,1), p € (1,1/«) and
1/qg = 1/p — a. If X satisfies the e-weak reverse doubling condition for some ¢ €
(0, min{c, 1 — a, 1/q}), then I,, is bounded from LP(u) into L9(u).

4. 1_,. 1.1 +._94d e
Proof. Let i =,teq ._2q and ¢~ : 2q.Thenwehave

l<p<gq <q<6q6+ <oo,1<q  <q"<ooand1/q"+1/¢q~ = 1. From Lemma
4.6, Holder’s inequality and Lemma 3.1, it follows that

@+ ] Ve a-g) 717/2||"*
Itafllieg | (215 [arf575)
Lat (p) La™ (p)
o e 1/2 1/2 1 2 1 2
~ GO HM [ Sz L F 1 ot ~ 11l zon
which completes the proof of Theorem 4.7. ]

From Theorems 4.7, 1.13, 1.15 and 1.19, we immediately deduce the following
interesting conclusions, the details being omitted.
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Corollary 4.8. Under the same assumption as that of Theorem 4.7, all the conclu-
sions of Theorems 1.13, 1.15 and 1.19 hold true, if T, therein is replaced by I,, as in
(4.3).
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