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JOHN-NIRENBERG INEQUALITIES ON LEBESGUE SPACES WITH
VARIABLE EXPONENTS

Kwok-Pun Ho

Abstract. The John-Nirenberg inequalities on Lebesgue spaces with variable
exponents are obtained.

1. MOTIVATION

The well-known John-Nirenberg inequality

|{x ∈ B : |f − fB | ≥ t}| ≤ C1e
−C2t/‖f‖BMO|B|,

where B ∈ B = {B(x0, R) : x0 ∈ R
n, R > 0} and fB = 1

|B|
∫
B f(x)dx denotes the

mean value of f over B ∈ B, is an inequality for BMO functions in terms of Lebesgue
measure | · |. If we rewrite the above inequality in terms of the L1(Rn) norm, we have

‖χ{x∈B:|f−fB|≥t}‖L1 ≤ C1e
−C2t/‖f‖BMO‖χB‖L1.

The above inequality gives us another point of view for the John-Nirenberg inequality.
That is, the John-Nirenberg inequality is a norm inequality on L1(Rn). Thus, in this
paper, we investigate whether we can replace the norm ‖·‖L1 by the norms of Lebesgue
spaces with variable exponents.

The Lebesgue spaces with variable exponents Lp(·)(Rn) recently gain a lot of
attention for researchers interested in the theory of function spaces, differential equations
and fluid dynamics. An important result in the study of the Lebesgue spaces with
variable exponent is on the boundedness of the Hardy-Littlewood maximal operator M
on Lp(·)(Rn). In particular, we find that whenever the exponent function p(·) is locally
log-Hölder continuous and satisfies the log-Hölder decay condition, then M is bounded
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on Lp(·)(Rn). Notice that there are also some other exponent functions that guarantee
the boundedness of M on Lp(·)(Rn) [3, Chapter 4] and [14, 15, 19, 20].

In this paper, we show that if p(·) is locally log-Hölder continuous and satisfies the
log-Hölder decay condition, then we have the John-Nirenberg inequality on Lp(·)(Rn).
That is,

(1.1) ‖χ{x∈B:|f−fB|≥t}‖Lp(·)(Rn) ≤ C1e
−C2t/‖f‖BMO‖χB‖Lp(·)(Rn).

The John-Nirenberg inequalities are also valid for rearrangement-invariant quasi-
Banach function spaces [11, Proposition 3.2] if its Boyd’s indices locate strictly in
between one and infinity.

In the next section, we give some background materials on Lebesgue spaces with
variable exponents, recall an estimate on the operator norm of the Hardy-Littlewood
maximal operator on Lebesgue spaces with variable exponents and introduce the atom
for the Hardy space H1(Rn) defined in term of Lebesgue spaces with variable expo-
nents. The main result is stated and proved in Section 3.

2. PRELIMINARILY RESULTS

Let p : R
n → [1,∞] be a Lebesgue measurable function. Write

p− = ess infx∈Rnp(x) and p+ = ess supx∈Rnp(x).

The Lebesgue space with the variable exponent p(·) consists of those Lebesgue mea-
surable function f(x) satisfying

‖f‖Lp(·)(Rn) = inf {λ > 0 : ρp(f/λ) ≤ 1} < ∞
where

ρp(f) =
∫

Rn\Ωp(·)
∞

|f(x)|p(x)dx + ess sup
Ω

p(·)
∞

|f(x)|

and Ωp(·)
∞ = {x ∈ R

n : p(x) = ∞}. The Lebesgue space with variable exponent
Lp(·)(Rn) is a Banach function space [7, Theorems 3.2.13] and [8]. We call p(x)
the exponent function of Lp(·)(Rn). The reader is referred to [7, 13] for some basic
properties of Lp(·)(Rn).

The associate space of Lp(·)(Rn) is given by Lp′(·)(Rn) where

1
p(x)

+
1

p′(x)
= 1.

We call p′(x) the conjugate exponent function p(x).
We have the following Hölder inequality for Lebesgue spaces with variable expo-

nents [3, Theorem 2.26].
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Proposition 2.1. Let p : R
n → [1,∞] be a Lebesgue measurable function. Then∫

Rn

|f(x)g(x)|dx ≤ Kp(·)‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn).

where

Kp(·) =
( 1
p−

− 1
p+

+ 1
)‖χ

Ω
p(·)
∗

‖L∞ + ‖χ
Ω

p(·)
∞

‖L∞ + ‖χ
Ω

p(·)
1

‖L∞

and

Ωp(·)
∗ = {x ∈ R

n : 1 < p(x) < ∞},
Ωp(·)

1 = {x ∈ R
n : p(x) = 1}.

We now recall the locally log-Hólder continuity condition and the log-Hölder decay
condition for exponent functions [7, Definitions 4.1.1 and 4.1.4].

Definition 2.1. Let p : R
n → [1,∞] be a Lebesgue measurable function. We say

that p is locally log-Hölder continuous if there exists c1 > 0 such that

(2.1)
∣∣∣∣ 1
p(x)

− 1
p(y)

∣∣∣∣ ≤ c1

log(e + |x − y|−1)
, ∀x, y ∈ R

n.

We say that p satisfies the log-Hölder decay condition if there exist c2 > 0 and 1
p∞

such that

(2.2)
∣∣∣∣ 1
p(x)

− 1
p∞

∣∣∣∣ ≤ c2

log(e + |x|) , ∀x ∈ R
n.

We write p ∈ P log if it satisfies (2.1) and (2.2). Moreover, we write clog(p(·)) =
max(c1, c2) and call it the log-Hölder constant of 1

p .
According to Definition 2.1, we have

p ∈ P log ⇔ p′ ∈ P log.

We state another important feature for Lp(·)(Rn) when p ∈ P log.

Proposition 2.2. If p ∈ P log, then

‖χB‖Lp(·)(Rn)‖χB‖Lp′(·)(Rn) ≤ N |B|
for all B ∈ B where N is a constant only depending on clog(p(·)) and n.

Moreover,

(2.3) ‖χB‖Lp(·)(Rn) ≈
{

|B| 1
p(x) , if |B| ≤ 2n and x ∈ B,

|B| 1
p∞ , if |B| ≥ 1.

for every B ∈ B. The implicit constants only depend on clog(p(·)).
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The reader is referred to [7, Theorems 4.4.8, 4.5.7 and Corollary 4.5.9] for the
proofs of the above results. The statement given in [7, Corollary 4.5.9] is for cubes in
R

n. It is easy to see that it is also valid for B ∈ B.
Let Y be a Banach function space. For any 1 ≤ p < ∞, define Y p to be the

p-convexification of Y . More precisely,

Y p = {f ∈ M : |f |p ∈ Y }
whereM is the set of Lebesgue measurable function on R

n. In addition, Y p is endowed
with the norm,

‖f‖Y p = ‖|f |p‖1/p
Y ,

and Y p is a Banach function space with respect to the norm, ‖ ·‖Y p (in this connection,
the reader may consult [16], Volume II, p.53-54).

Let 1 ≤ r < ∞. For the Lebesgue spaces with variable exponents, we have

(Lp(·)(Rn))r = Lrp(·)(Rn).

We also have

clog(rp(·)) =
clog(p(·))

r
(2.4)

Krp(·) ≤ Kp(·).(2.5)

Thus, we can assume that the family of exponent functions rp(·), 1 ≤ r < ∞, satisfies
(2.1) and (2.2) with the same constant clog(p(·)) Furthermore, in view of (2.4), we are
allowed to assume that the constants appeared in Proposition 2.2 are independent of r.

We now state the boundedness result of the Hardy-Littlewood maximal operator on
Lp(·)(Rn).

Theorem 2.3. Let p : R
n → [1,∞] be a Lebesgue measurable function. If p ∈ P log

and p− > 1, then there exits K > 0 only depending on the dimension n and clog(p(·))
such that

‖Mf‖Lp(·)(Rn) ≤ K(p−)′‖f‖Lp(·)(Rn)

for all f ∈ Lp(·)(Rn).

For any r ≥ 1, if M is bounded on Lp(·)(Rn), it is also bounded on Lrp(·)(Rn)
because of (M f)r ≤ M(|f |r). In addition, according to [5, Theorem 8.1], if p− > 1
and p+ < ∞, then M is bounded on Lp(·)(Rn) if and only if M is bounded on
Lp′(·)(Rn).

Therefore, it is legitimate to study the boundedness of M on the family (Lrp(·)(Rn))′,
1 ≤ r < ∞. We are especially interested on the operator norms of M on this family.

In view of (2.4), we find that for any 1 ≤ r < ∞, rp(·) also satisfies (2.1) and (2.2)
with c1 = c2 = clog(p(·)). Therefore, we have a slightly refinement of the above result
on the family of Lebesgue spaces with variable exponents (Lrp(·)(Rn))′, 1 ≤ r < ∞.
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Corollary 2.4. Let 1 ≤ r < ∞ and p : R
n → [1,∞] be a Lebesgue measurable

function. If p ∈ P log and p+ < ∞, then there exits K > 0 only depending on the
dimension n and clog(p(·)) such that

(2.6) ‖M f‖(Lrp(·)(Rn))′ ≤ Krp+‖f‖(Lrp(·)(Rn))′

for all f ∈ (Lrp(·)(Rn))′.

Proof. The conjugate exponent function of rp(x) is given by

q(x) = (rp(x))′ =
rp(x)

rp(x)− 1
.

Therefore,

q− =
rp+

rp+ − 1
> 1 and (q−)′ = rp+.

Hence, our result follows.
We introduce the definition of the atom associated with any given Banach function

space. It plays the same role as the Lp atom for the atomic decomposition on Hardy
spaces. Indeed, in [10, 12], we obtain the atomic decomposition and characterization
of Hardy spaces by using the following atoms.

Definition 2.2. Let X be a Banach function space on R
n. We call a function A(x)

a (1, X)-atom if there exists a B(x0, R) ∈ B, x0 ∈ R
n and R > 0, such that

suppA ⊂ 3B = B(x0, 3R),(2.7) ∫
Rn

A(x)dx = 0,(2.8)

‖A‖X ≤ ‖χB‖X |B|−1.(2.9)

We call B the ball associated with the (1, X)-atom, A(x). We denote the set of
(1, X)-atoms as A1,X .

For the detail studies of atoms on variable Lebesgue spaces and variable Hardy
spaces, the reader is referred to [4, 17].

The following lemma gives an estimate on the H1 norm of the above atom. For
completeness, we recall the definition of the Hardy space H1 [21, Chapter III]. Let
S(Rn) and S ′(Rn) denote the classes of Schwartz functions and tempered distributions,
respectively.

Definition 2.3. Let Φ ∈ S(Rn) with
∫

Rn Φ(x)dx �= 0. The Hardy space H1

consists of all f ∈ S ′(Rn) such that

‖f‖H1 = ‖MΦf‖L1(Rn) < ∞
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where
Mφf(x) = sup

t>0
|(f ∗Φt)(x)|

and Φt(x) = t−nΦ(x/t).

The proof of the following lemma is based on the well-known result from the atomic
decomposition of Hardy space. Since the independence of the constant C on r in (2.10)
is the crucial ingredient of the proof for our main result, therefore, for completeness,
we provide the proof.

Lemma 2.5. Let 1 ≤ r < ∞. If p ∈ P log and p+ < ∞, then, for any
(1, (Lrp(·)(Rn))′)-atom A and ε > 0, we have A ∈ H1(Rn) with

(2.10) ‖A‖H1 ≤ Crp+

for some constant C > 0 independent of A and r.

Proof. Without loss of generality, we assume that suppA ⊆ B = B(0, 3h), h > 0.
Let Φ ∈ S(Rn) satisfy suppΦ ∈ B(0, 1) and

∫
Rn Φ(x)dx �= 0. For any locally

integrable function, f , we consider the mapping

MΦ(f) = sup
t>0

|f ∗ Φt|,

where Φt(x) = t−nΦ(x/t), t > 0. As p ∈ P log we have p+ < ∞ and MΦ(f) <
CM(f) for some constant C > 0. By applying Corollary 2.4, there exists a constant
C > 0 independent of f and r such that

(2.11) ‖MΦ(f)‖(Lrp(·)(Rn))′ ≤ Crp+‖f‖(Lrp(·)(Rn))′, ∀f ∈ (Lrp(·)(Rn))′.

We consider

‖A‖H1(Rn) = ‖MΦ(A)‖L1 ≤ 2(‖χ2BMΦ(A)‖L1 + ‖(1 − χ2B)MΦ(A)‖L1)

= I + II.

We use (2.1) to Lrp(·)(Rn) to estimate I . By using (2.5), we find that

I ≤ Krp(·)‖MΦ(A)‖(Lrp(·)(Rn))′‖χ2B‖Lrp(·)(Rn)

≤ Kp(·)‖MΦ(A)‖(Lrp(·)(Rn))′‖χ2B‖Lrp(·)(Rn).

Proposition 2.2, Definition (2.2) and inequality (2.11) ensure that

(2.12)
I ≤ Crp+‖A‖(Lrp(·)(Rn))′‖χB‖Lrp(·)(Rn)

≤ Crp+‖χB‖(Lrp(·)(Rn))′‖χB‖Lrp(·)(Rn)|B|−1 ≤ Crp+
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for some C > 0 independent of r and A because the constants in Proposition 2.2 are
independent of r.

We now consider II . As x �∈ 2B, Φ ∈ S(Rn) and suppΦ ∈ B(0, 1), we use the
vanishing moment condition for A, and find that, for any N > 0,

|(A ∗ Φt)(x)| =
∣∣∣∣
∫

3B
A(y)(Φt(x − y) − Φt(x))dy

∣∣∣∣
≤ t−n

∫
3B

|A(y)| CN |y/t|
(1 + |x/t|)N

dy

≤ CN t−(1+n)

(1 + t−1|x|)N

∫
3B

|A(y)||y|dy,

where CN depends on n and N only.
As the center of B is the origin, we have |y| ≤ C|B|1/n, ∀y ∈ 3B, for some

C > 0. Thus, using the Hölder inequality on Lrp(·)(Rn), Proposition 2.2 asserts that

|(A ∗Φt)(x)|≤ CN t−(1+n)|B|1/n

(1 + t−1|x|)N
‖A‖(Lrp(·)(Rn))′‖χB‖Lrp(·)(Rn)

≤ CN
t−(1+n)|B|1/n

(1 + t−1|x|)N
.

By taking N > 1 + n, we have

(2.13) sup
t>0

|(A ∗ Φt)(x)| ≤ CN
|B|1/n

|x|2(1+n)
.

Let h = 2a where a ∈ Z. Applying L1 norm on both sides of (2.13), we find that

(2.14) II ≤ C2a

⎛
⎝ ∞∑

j=a

2jn

2j(1+n)

⎞
⎠ ≤ C

for some constant C > 0 independent of A and r. Thus, (2.12) and (2.14) prove
(2.10).

3. MAIN RESULTS

We first have a supporting lemma for our main result. In fact, it is a special case of
a more general result on the characterization of BMO by r.-i. Banach function spaces.
The reader is referred to [10, 11, 12] for further details.

Lemma 3.1. Let 1 ≤ r < ∞ and p ∈ P log. We have
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(3.1)
‖(f − fB)χB‖Lrp(·)(Rn)

‖χB‖1/r

Lp(·)(Rn)

≤ Crp+‖f‖BMO, ∀f ∈ BMO

where C > 0 is independent of f and r.

Proof. For any f ∈ BMO and B ∈ B, by [3, Theorem 2.34] we have a h ∈
(Lrp(·)(Rn))′ satisfying ‖h‖(Lrp(·)(Rn))′ ≤ 1, supph ⊆ B and

‖(f − fB)χB‖Lrp(·)(Rn) ≤
1

krp(·)

∣∣∣∣
∫

B
h(x)(f(x)− fB)dx

∣∣∣∣
where

1
krp(·)

= ‖χ
Ω

rp(·)
∗

‖L∞ + ‖χ
Ω

rp(·)
∞

‖L∞ + ‖χ
Ω

rp(·)
1

‖L∞.

It is obvious that there exists a B̃ ∈ B such that |B| = |B̃|, B∩B̃ = ∅ and dist(B, B̃) =
0. Define A by

A(x) =

⎧⎪⎨
⎪⎩

h(x), x ∈ B;

− 1
|B|

∫
B

h(y)dy, x ∈ B̃.

Thus, A fulfills conditions (2.7) and (2.8). Recall that 3B = B(xB , 3RB) where xB

and RB denote the center and the radius of B, respectively. Obviously, B, B̃ ⊂ 3B.
Let a ∈ B ∩ 3B and b ∈ B̃ ∩ 3B.

When |B| ≤ 2n, in view of (2.3) and the fact that 1 ≤ (rp(a))′, (rp(b))′ ≤ ∞, we
have

(3.2)
‖χB‖(Lrp(·)(Rn))′ ≈ |B|

1
(rp(a))′ ≈ |3B|

1
(rp(a))′ ≈ |3B|

1
(rp(b))′ ≈ |B̃|

1
(rp(b))′

≈ ‖χB̃‖(Lrp(·)(Rn))′ .

Similarly, when |B| > 2n, we have

‖χB‖(Lrp(·)(Rn))′ ≈ |B|
1

(rp∞)′ ≈ ‖χB̃‖(Lrp(·)(Rn))′ .(3.3)

Similar to the constants given in (2.3), the implicit constants in the above estimates
are independent of r.

Moreover, by Proposition 2.2, we obtain

‖A‖(Lrp(·)(Rn))′

≤ ‖h‖(Lrp(·)(Rn))′ +
∣∣∣∣ 1
|B|

∫
B

h(y)dy

∣∣∣∣ ‖χB̃‖(Lrp(·)(Rn))′

≤ ‖h‖(Lrp(·)(Rn))′ + C
1
|B| ‖h‖(Lrp(·)(Rn))′‖χB‖Lrp(·)(Rn)‖χB̃‖(Lrp(·)(Rn))′

≤ C‖h‖(Lrp(·)(Rn))′ ≤ C
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in view of (3.2) and (3.3). Thus, A is a constant multiple of a (1, (Lrp(·)(Rn))′)-atom.
According to Lemma 2.5, we assure that A belongs to H1(Rn) with

‖A‖H1 ≤ Crp+ |B|
‖χB‖(Lrp(·)(Rn))′

≤ Crp+‖χB‖1/r

Lp(·)(Rn)

for some constant C > 0 independent of A and r.
As the dual space of H1(Rn) is BMO, we find that

‖(f − fB)χB‖Lrp(·)(Rn)

‖χB‖1/r

Lp(·)(Rn)

≤ C

‖χB‖1/r

Lp(·)(Rn)

∣∣∣∣
∫

B
h(x)(f(x)− fB)dx

∣∣∣∣

=
C

‖χB‖1/r

Lp(·)(Rn)

∣∣∣∣
∫

Rn

A(x)(f(x)− fB)χB(x)dx

∣∣∣∣

≤ 2‖A‖H1‖f‖BMO

‖χB‖1/r

Lp(·)(Rn)

≤ Crp+‖f‖BMO.

We now ready to state and prove our main result, the John-Nirenberg inequality on
Lebesgue spaces with variable exponents.

Theorem 3.2. Let p ∈ P log and p+ < ∞. There exist constants C1, C2 > 0 such
that for any f ∈ BMO, for any B ∈ B and any t > 0,

‖χ{x∈B:|f(x)−fB|≥t}‖Lp(·)(Rn) ≤ C1e
− C2t

‖f‖BMO ‖χB‖Lp(·)(Rn).

Proof. Lemma 3.1 gives

‖|f − fB |rχB‖1/r

Lp(·)(Rn)

‖χB‖1/r

Lp(·)(Rn)

≤ C1rp
+‖f‖BMO

when r ≥ 1 and C1 is independent of r and f . That is,

‖|f − fB |rχB‖Lp(·)(Rn) ≤ (C0r)r‖χB‖Lp(·)(Rn)

where C0 = C1p
+‖f‖BMO.

Using Chebysheff’s inequality, we assert that

‖χ{x∈B:|f(x)−fB|≥t}‖Lp(·)(Rn) ≤ (C0r)rt−r‖χB‖Lp(·)(Rn).
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When t ≥ 2C0, we take r = t/2C0 ≥ 1 and find that

‖χ{x∈B:|f(x)−fB|≥t}‖Lp(·)(Rn) ≤ (
1
2
)r‖χB‖Lp(·)(Rn) = e−C2t/‖f‖BMO‖χB‖Lp(·)(Rn)

where C2 = (2C1p
+)−1 ln 2.

Finally, when t ≤ 2C0, we have e−C2t/‖f‖BMO ≥ 1/4 and, hence,

‖χ{x∈B:|f(x)−fB|≥t}‖Lp(·)(Rn) ≤ 4e−C2t/‖f‖BMO‖χB‖Lp(·)(Rn).

We have an application of the above result.

Corollary 3.3. Let p ∈ P log and p+ < ∞. For any f ∈ BMO and 0 < μ <
C2/‖f‖BMO, we obtain

(3.4) sup
B∈B

‖eμ|f−fB |χB‖Lp(·)(Rn)

‖χB‖Lp(·)(Rn)

< ∞.

The proof of the above corollary is a simple modification of the well known result
for the BMO function in the exponential class [21, p.146]

(3.5)
1
|B|

∫
B

eμ|f−fB |dx ≤ C.

For brevity, we skip the details.
Applying the Hölder inequality on Lp(·)(Rn), we find that∫

B
eμ|f−fB |dx ≤ C‖eμ|f−fB |χB‖Lp(·)(Rn)‖χB‖(Lp(·)(Rn))′

≤ C
|B|‖eμ|f−fB|χB‖Lp(·)(Rn)

‖χB‖Lp(·)(Rn)

.

Hence, (3.5) can be derived by (3.4). Therefore, Corollary 3.3 is a generalization of
(3.5).

Roughly speaking, the proof of Theorem 3.2 shows that the validity of the John-
Nirenberg inequality on Lebesgue spaces with variable exponents relies on the results
from (2.3) and (2.6). Therefore, the John-Nirenberg inequality on Lebesgue spaces
with variable exponents can be further extended to some exponent functions that does
not satisfy (2.1) and (2.2), for instance, the example from Nekvinda [18, 20]. As
mentioned in [7, Remarks 4.2.8 and 4.3.10], the inequality (2.6) is also valid for the
exponent function given in [18]. Moreover, there are replacement for the estimates in
(2.3) in terms of the harmonic mean of p(·), see [7, Theorem 4.5.7]. For brevity, we
leave the details to the reader.
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