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MEROMORPHIC SOLUTIONS OF DIFFERENCE EQUATION
f(z + 1) = R ◦ f(z)

Zhang Jie

Abstract. In this paper, we investigate the solutions of difference equation
f(z + 1) = R ◦ f(z) by utilizing Nevanlinna theory, where R(z) is a ratio-
nal function. And we also research the quantity of zeroes, poles, fixed points, and
Borel exceptional values of the solutions.

1. INTRODUCTION AND MAIN RESULTS

In this paper, a meromorphic function always means that it is meromorphic in
the whole complex plane C. We assume that the reader is familiar with the standard
notations in the Nevanlinna theory. We use the following standard notations in value
distribution theory (see[1, 2, 3, 4]):

T (r, f), m(r, f), N (r, f), N(r, f), · · · .
And we denote any quantity by S(r, f) satisfying

S(r, f) = o{T (r, f)}, as r →∞,

possibly outside of a set E with finite linear measure, not necessarily the same at each
occurrence. We use λ(f) and λ( 1

f ) to denote the exponents of convergence of zeros
and poles of f(z) respectively. We also use τ(f) to denote the exponent of convergence
of fixed points of f(z), which is defined as

τ(f) = lim
r→∞

logN (r, 1
f−z )

log r
.

Yanagihara [5] proved the following theorem with purpose to investigate the solutions
of non-linear difference equation y(x + 1) = R(x, y(x)).
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Theorem A. [5]. Any nontrivial meromorphic solution y(z) of equation

f(z + 1) = R ◦ f(z)

is transcendental unless degR = 1.

The author also said that the equation y(x + 1) = R(x, y(x)) may have rational
solutions. E.g.,

y(x + 1) =
(x4 + 1)(−2y3(x) + y(x) + 2x6 + 2x− 1)

y2(x) + 1

and
y(x + 1) =

(y3(x) + 2x5 + x4)
x4

have the solution y(x) = x2. This makes natural questions to ask that what can be
said to the solutions of equation f(z + 1) = R ◦ f(z) provided degR = 1, and can any
solution be y(x) = x2 as in the examples above too? In this paper, we give a negative
answer to the questions and obtain the following theorem.

Theorem 1. Let R(z) be a non-constant rational function. For the following
difference equation

(1) f(z + 1) = R ◦ f(z),

(1) suppose it admits a non-constant rational solution f(z), then both R(z) and f(z)
are fractional linear functions;
(2) suppose it admits a transcendental meromorphic function f(z) of finite order σ(f),
then R(z) is a fractional linear function, and it is denoted by

R(z) =
az + b

cz + d
,

where ad− bc �= 0, furthermore:
(2.1) if bc �= 0, then λ(f) = λ( 1

f ) = τ(f) = σ(f);
(2.2) if R �= id and σ(f) > 0, then
(2.2.1) f(z) has at most one finite Borel exceptional value provided (d−a)2 +4b = 0
when c �= 0;
(2.2.2) if f(z) has Borel exceptional value ∞, then f(z) has at most one finite Borel
exceptional value b

1−a .

Example 1. Equation f(z + 1) = 1
2−z ◦ f(z) admits a fractional linear solution

z−1
z .

Example 1 shows that the fractional linear solution does exist in (1) of Theorem 1.

Example 2. Equation f(z + 1) = (2− z) ◦ f(z) admits a solution eπiz + 1, which
satisfies λ( 1

f ) < σ(f) .
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Example 3. Equation f(z + 1) = −z
z+1 ◦ f(z) admits a solution −2eπiz

eπiz−1
, which

satisfies λ(f) < σ(f) and has two finite Borel exceptional values 0,−2.

Examples 2-3 show that the condition bc �= 0 is necessary in (2.1) of Theorem 1.
Example 3 also shows that the conclusion may be not valid if (d− a)2 + 4b �= 0 when
c �= 0 in (2.2.1) of Theorem 1. And Example 2 shows the case that f(z) has Borel
exceptional value ∞ and b

1−a may happen in (2.2.2) of Theorem 1.
In addition, comparing with many papers [6, 7] researched complex difference

Riccati equation, there is only few paper [8] dealing with the properties of solutions of
complex difference Riccati equation, thus we put our effort on it. Take paper [8] for
example, the authors obtained the following theorem.

Theorem B. [8]. Let δ = ±1 be a constant and A(z) = m(z)
n(z) be an irreducible

non-constant rational function, where m(z) and n(z) are polynomials with deg m(z) =
m and deg n(z) = n. If f(z) is a transcendental finite order meromorphic solution of

f(z + 1) =
A(z) + δf(z)

δ − f(z)
,

then,
(i) if σ(f) > 0, then f has at most one Borel exceptional value;
(ii) λ( 1

f ) = λ(f) = σ(f);
(iii) if A(z) �≡ −z2 − z + 1, then the exponent of convergence of fixed points of f

satisfies τ(f) = σ(f).

In this paper, we consider the more general case and obtain the following theorem.

Theorem 2. Let b(z), c(z) be two non-constant rational functions. Suppose the
following difference equation

(2) f(z + 1) =
af(z) + b(z)
c(z)f(z) + d

admits a transcendental meromorphic function f(z) of finite order, then
(i) λ(f) = λ( 1

f ) = σ(f);
(ii) τ(f) = σ(f) provided (zc(z) + d)(z + 1)− az − b(z) �≡ 0.
Furthermore, if b(z)

c(z) is not any constant and σ(f) > 0, then f(z) has at most one
Borel exceptional value.

2. SOME LEMMAS

To prove our results, we need some lemmas as follows.
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Lemma 1. (see [3]). Let f(z) be a non-constant meromorphic function in the
complex plane and

R(f) =
p(f)
q(f)

,

where p(f) =
∑p

k=0 akf
k and q(f) =

∑q
j=0 bjf

j are two mutually prime polynomials
in f(z). If the coefficients ak, bj are small functions of f(z) and ak(z) �≡ 0, bj(z) �≡ 0,
then

T (r, R(f)) = max{p, q}T (r, f)+ S(r, f).

Lemma 2. (see [9]). Let c1, . . .cn be non-zero constants and suppose that f(z) is
a non-rational meromorphic solution of a difference equation of the form

(3) Πn
i=1f(z + ci) =

a0(z) + a1(z)f(z) + · · ·+ ap(z)fp(z)
b0(z) + b1(z)f(z) + · · ·+ bt(z)f t(z)

with meromorphic coefficients ai(z), bj(z) of growth S(r, f) such that ap(z), bt(z) �≡ 0.
If

max {λ(f), λ(
1
f
)} < σ(f),

then equation (3) is form of

Πn
i=1f(z + ci) = c(z)fk(z),

where c(z) is meromorphic, T (r, c) = S(r, f) and k ∈ Z.

Lemma 3. (see [10]). Let w(z) be a transcendental meromorphic solution of finite
order of difference equation

P (z, w) = 0,

where P (z, w) is a difference polynomial in w(z). If P (z, a) �≡ 0 for a meromorphic
function a ∈ S(r, w), then

m(r,
1

w − a
) = S(r, w).

Lemma 4. (see [10]). Let f(z) be a transcendental meromorphic solution of finite
order ρ of a difference equation of the form

H(z, f)P (z, f) = Q(z, f),

where H(z, f), P (z, f), Q(z, f) are difference polynomials in f(z) such that the total
degree of H(z, f) in f(z) and its shifts is n and that the corresponding total degree
of Q(z, f) is at most n. If H(z, f) just contains one term of maximal total degree,
then for any ε > 0, holds

m(r, P (z, f)) = O(rρ−1+ε) + S(r, f)

possible outside of an exceptional set of finite logarithmic measure.
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Lemma 5. (see [11]). Let f(z) be a meromorphic function with finite order σ and
η be a nonzero complex number, then for each ε > 0, we have

T (r, f(z + η)) = T (r, f) + O(rσ−1+ε) + O(log r).

3. THE PROOFS

3.1. Proof of Theorem 1.

(1) Suppose Equation (1) admits a non-constant rational solution f(z). Then, by
Lemma 1 , we obtain

T (r, f(z + 1)) = degf log r + O(1) = T (r, R ◦ f(z)) = degR degf log r + O(1).

Thus we get degR ≤ 1, and then R(z) is a fractional linear function. We divide the
proof into two distinguish cases as follows.

Case 1.1. c = 0, we assume d = 1 without loss of generality, then Equation (1)
becomes

(4) f(z + 1) = af(z) + b.

We suppose that f(z) has a pole z0, then by Equation (4), we obtain that z0 + 1, z0 +
2, · · · are also poles, which means f(z) is transcendental. Then we obtain a contra-
diction. Thus f(z) is a polynomial. Noting the following fact that

a =
f(z + 1)− b

f(z)
→ 1, as z →∞,

we obtain a = 1, and then Equation (1) becomes

f(z + 1) = f(z) + b, i.e., f ′(z + 1) = f ′(z).

Thus f ′(z) is a constant otherwise it is a non-constant period function, i.e., it is a
transcendental meromorphic function, which is a contradiction that f is a non-constant
rational solution. So we obtain that both f(z) and R are linear functions.

Case 1.2. c �= 0, we assume c = 1 without loss of generality, then Equation (1)
becomes

(5) f(z + 1)− a =
b− ad

f(z) + d
.

Let A = b−ad, ( �= 0), f(z) = m(z)
n(z)

and m = degm(z), n = degn(z), where m(z), n(z)
are two mutually prime polynomials. If m > n, then Equation (5) implies

o(1) =
b− ad

f(z) + d
= f(z + 1)− a→∞, as z →∞,
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which is impossible. Thus m ≤ n. Substituting f(z) = m(z)
n(z) into Equation (5), we

obtain

(6) (m(z + 1)− an(z + 1))(m(z) + dn(z)) = An(z)n(z + 1).

Since m(z), n(z) are two mutually prime polynomials, we obtain that m(z)+dn(z), n(z)
are two mutually prime polynomials. In the similar way, we obtain that m(z+1), n(z+
1) are two mutually prime polynomials, and then m(z + 1)− an(z + 1), n(z + 1) are
two mutually prime polynomials. Thus by Equation (6), we obtain

n(z)|m(z + 1)− an(z + 1) and n(z + 1)|m(z) + dn(z).

Noting m ≤ n, then ∃ a constant C such that

(7) m(z + 1)− an(z + 1) = Cn(z) and C(m(z) + dn(z)) = An(z + 1).

It is obvious that C �= 0. By eliminating m(z) in Equation (7), we obtain that

(8) C2n(z) + (aC + Cd)n(z + 1) = An(z + 2).

Rewriting Equation (8) as the following form

C2 + (aC + Cd)← C2 +
(aC + Cd)n(z + 1)

n(z)
=

An(z + 2)
n(z)

→ A, as z →∞,

we obtain A = C2 + aC + Cd. Then Equation (8) becomes

(9) C2(n(z + 2)− n(z)) + (aC + Cd)(n(z + 2)− n(z + 1)) = 0.

Set g(z) = n(z + 1)− n(z), then Equation (9) becomes

(10) C2(g(z + 1) + g(z)) + (aC + Cd)g(z + 1) = 0.

From Equation (10), we obtain 2C2 + (aC + Cd) = 0 via a similar method. Thus
Equation (10) becomes g(z + 1) = g(z), then g(z) = n(z + 1) − n(z) is a constant,
i.e., n(z) is a linear function. Noting m ≤ n once again, we obtain that f(z) is a
fractional linear function.

(2) Suppose Equation (1) admits a transcendental meromorphic function f(z) of finite
order. Then, by Lemma 5, we obtain that

T (r, f(z + 1)) = T (r, f) + O(rσ−1+ε) + O(log r) = degR T (r, f) + S(r, f).

Thus we get degR ≤ 1, then R(z) is a fractional linear function.
(2.1) We assume c = 1 without loss of generality, and rewrite Equation (1) as the
following form

(11) f(z)f(z + 1) = af(z) + b− df(z + 1).
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By Equation (11) and Lemma 4, we obtain

m(r, f) = S(r, f).

Thus
N (r, f) = T (r, f) + S(r, f),

and then λ( 1
f ) = σ(f). Noting b �= 0, by Equation (11) and Lemma 3, we obtain

m(r,
1
f

) = S(r, f).

Thus
N (r,

1
f

) = T (r, f) + S(r, f),

and then λ(f) = σ(f). Setting f(z) = y(z) + z and substituting it into Equation (11),
we obtain

T (r, f) = T (r, y) + O(log r)

and

(12) P (z, y) : = y(z)y(z + 1) + y(z)(z + 1− a) + y(z + 1)(z + d)
+ (z + 1)(z + d)− az − b = 0.

Since P (z, 0) = (z + 1)(z + d)− az − b �≡ 0, from Equation (12) and Lemma 3, we
obtain

m(r,
1
y
) = S(r, y).

Thus
N (r,

1
y
) = T (r, y) + S(r, y) = T (r, f) + S(r, f),

and then τ(f) = σ(f).

(2.2.1.) Suppose that f(z) has two finite Borel exception values A, B, (A �= B). Set

(13) g(z) =
f(z)−A

f(z)−B
.

Then T (r, f) = T (r, g)+ O(1) and

λ(g) = λ(f −A) < σ(g), λ(
1
g
) = λ(f −B) < σ(g).

From Equation (13), we get

(14) f(z) =
A−Bg(z)
1− g(z)

.
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We consider two cases as follows.
Case 2.2.1.1. c = 0, we assume d = 1 without loss of generality again. Substituting
Equation(14) into Equation (4), we obtain

(15) g(z + 1) =
A − aA− b + (aB − A + b)g(z)
B − aA− b + (aB + b− B)g(z)

.

It is obvious that B−aA−b, aB+b−B can not be zero synchronously. From Lemma
2, we obtain

(16) g(z + 1) = c(z)gk(z),

where c(z) is meromorphic, T (r, c) = S(r, g) and k ∈ Z. From Lemma 5, we obtain
k = 1. And substituting g(z + 1) = c(z)g(z) into Equation (15), we get

c(z)g2(aB + b− B) = A− aA − b + (aB −A + b− c(z)(B− aA− b))g.

Thus we get
aB + b− B = A− aA− b = 0.

It implies that A = B = b
1−a or R = id, which is a contradiction.

Case 2.2.1.2. c �= 0, we assume c = 1. Substituting Equation(14) into Equation (5)
and using the similar method in Case 2.2.1.1, we get

g(z + 1) =
A2 + Ad− Aa− b− (AB + Ad−Ba − b)g(z)
AB + Bd− Aa− b− (B2 + Bd −Ba − b)g(z)

and

(17) B2 + Bd− Ba − b = A2 + Ad− Aa− b = 0.

But Equation(17) implies that A = B provided (d− a)2 + 4b = 0, which is a contrac-
tion.
(2.2.2.) For the case, f(z) has Borel exceptional value ∞ and one finite Borel ex-
ceptional value A, we set g(z) = f(z) − A, then T (r, g) = T (r, f) + O(1) and
λ(g) < σ(g), λ( 1

g) < σ(g). We consider two following cases.
Case 2.2.2.1. c �= 0, we assume c = 1. Using the similar method in Case 2.2.1.1, we
get

g(z + 1) =
Aa−Ad−A2 + b + (a−A)g(z)

A + d + g(z)
= c(z)g(z),

where c(z) is meromorphic such that T (r, c) = S(r, g). It is impossible obviously.
Case 2.2.2.2. c = 0, we assume d = 1. Using the similar method in Case 2.2.1.1, we
get

g(z + 1) = ag(z) + Aa− A + b = c(z)g(z),
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where c(z) is meromorphic such that T (r, c) = S(r, g). Thus Aa−A + b = 0, which
means A = b

1−a provided R �= id. The proof of Theorem 1 is completed.

3.2. Proof of Theorem 2.

We rewrite Equation (2) as the following form

(18) c(z)f(z)f(z + 1) = af(z) + b(z)− df(z + 1).

From Equation (18) and Lemma 4, noting c(z) �≡ 0, we obtain

m(r, f) = S(r, f).

Thus
N (r, f) = T (r, f) + S(r, f),

and then λ( 1
f ) = σ(f). Noting b(z) �≡ 0, From Equation (18) and Lemma 3, we obtain

m(r,
1
f

) = S(r, f).

Thus
N (r,

1
f

) = T (r, f) + S(r, f),

and then λ( 1
f ) = σ(f). Setting f(z) = y(z)+ z and substituting it into Equation (18),

we obtain
T (r, f) = T (r, y) + O(log r)

and

(19)
P (z, y) : = c(z)y(z)y(z+1)+y(z)(zc(z)+c(z)−a)+y(z+1)(zc(z)+d)

+(zc(z)+d)(z+1)−az−b(z)=0.

Since P (z, 0) = (zc(z)+ d)(z + 1)− az− b(z) �≡ 0, From Equation (19) and Lemma
3, we obtain

m(r,
1
y
) = S(r, y).

Thus
N (r,

1
y
) = T (r, y) + S(r, y) = T (r, f) + S(r, f),

and then τ(f) = σ(f). Suppose f(z) has two finite Borel exception values A, B, (A �=
B). Set

g(z) =
f(z)− A

f(z)−B
, i.e., f(z) =

A− Bg(z)
1− g(z)

,



36 Zhang Jie

and substitute it into Equation (2), we obtain

λ(g) = λ(f(z)−A) < σ(g), λ(
1
g
) = λ(f(z)−B) < σ(g)

and

(20) g(z + 1) =
A2c(z) + Ad− Aa− b(z)− (ABc(z) + Ad− Ba − b(z))g(z)
ABc(z) + Bd− Aa− b(z)− (B2c(z) + Bd− Ba − b(z))g(z)

.

From Equation (20) and Lemma 2, we obtain B2c(z)− b(z) = 0, A2c(z)− b(z) = 0
in the similar way, which contradict our condition that b(z)

c(z) is not any constant. If f(z)
has one finite Borel exception value A and∞, then set g(z) = f(z)−A and substitute
it into Equation (2), we obtain

(21) g(z + 1) =
Aa + b(z)− A2c(z)−Ad + (a− Ac(z))g(z)

Ac(z) + d + c(z)g(z)
.

From Equation (21) and Lemma 2, we obtain c(z) = 0 in the similar way, which is
also a contradiction. The proof of Theorem 2 is completed.
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