TAIWANESE JOURNAL OF MATHEMATICS
Vol. 18, No. 1, pp. 27-37, February 2014
DOI: 10.11650/tjm.18.2014.2747
This paper is available online at http://journal.taiwanmathsoc.org.tw

MEROMORPHIC SOLUTIONS OF DIFFERENCE EQUATION

$$
f(z+1)=R \circ f(z)
$$

Zhang Jie

Abstract

In this paper, we investigate the solutions of difference equation $f(z+1)=R \circ f(z)$ by utilizing Nevanlinna theory, where $R(z)$ is a rational function. And we also research the quantity of zeroes, poles, fixed points, and Borel exceptional values of the solutions.

1. Introduction and Main Results

In this paper, a meromorphic function always means that it is meromorphic in the whole complex plane \mathbb{C}. We assume that the reader is familiar with the standard notations in the Nevanlinna theory. We use the following standard notations in value distribution theory (see[1, 2, 3, 4]):

$$
T(r, f), m(r, f), N(r, f), \bar{N}(r, f), \cdots
$$

And we denote any quantity by $S(r, f)$ satisfying

$$
S(r, f)=o\{T(r, f)\}, \text { as } r \rightarrow \infty,
$$

possibly outside of a set E with finite linear measure, not necessarily the same at each occurrence. We use $\lambda(f)$ and $\lambda\left(\frac{1}{f}\right)$ to denote the exponents of convergence of zeros and poles of $f(z)$ respectively. We also use $\tau(f)$ to denote the exponent of convergence of fixed points of $f(z)$, which is defined as

$$
\tau(f)=\varlimsup_{r \rightarrow \infty} \frac{\log N\left(r, \frac{1}{f-z}\right)}{\log r} .
$$

Yanagihara [5] proved the following theorem with purpose to investigate the solutions of non-linear difference equation $y(x+1)=R(x, y(x))$.

Received December 14, 2012, accepted June 21, 2013.
Communicated by Der-Chen Chang.
2010 Mathematics Subject Classification: 30D35, 34M10.
Key words and phrases: Uniqueness, Difference equation, Order.
The research was supported by the Fundamental Research Funds for the Central Universities (No. 2011QNA25).

Theorem A. [5]. Any nontrivial meromorphic solution $y(z)$ of equation

$$
f(z+1)=R \circ f(z)
$$

is transcendental unless $\operatorname{deg}_{R}=1$.
The author also said that the equation $y(x+1)=R(x, y(x))$ may have rational solutions. E.g.,

$$
y(x+1)=\frac{\left(x^{4}+1\right)\left(-2 y^{3}(x)+y(x)+2 x^{6}+2 x-1\right)}{y^{2}(x)+1}
$$

and

$$
y(x+1)=\frac{\left(y^{3}(x)+2 x^{5}+x^{4}\right)}{x^{4}}
$$

have the solution $y(x)=x^{2}$. This makes natural questions to ask that what can be said to the solutions of equation $f(z+1)=R \circ f(z)$ provided $\operatorname{deg}_{R}=1$, and can any solution be $y(x)=x^{2}$ as in the examples above too? In this paper, we give a negative answer to the questions and obtain the following theorem.

Theorem 1. Let $R(z)$ be a non-constant rational function. For the following difference equation

$$
\begin{equation*}
f(z+1)=R \circ f(z) \tag{1}
\end{equation*}
$$

(1) suppose it admits a non-constant rational solution $f(z)$, then both $R(z)$ and $f(z)$ are fractional linear functions;
(2) suppose it admits a transcendental meromorphic function $f(z)$ of finite order $\sigma(f)$, then $R(z)$ is a fractional linear function, and it is denoted by

$$
R(z)=\frac{a z+b}{c z+d}
$$

where $a d-b c \neq 0$, furthermore:
(2.1) if $b c \neq 0$, then $\lambda(f)=\lambda\left(\frac{1}{f}\right)=\tau(f)=\sigma(f)$;
(2.2) if $R \neq i d$ and $\sigma(f)>0$, then
(2.2.1) $f(z)$ has at most one finite Borel exceptional value provided $(d-a)^{2}+4 b=0$ when $c \neq 0$;
(2.2.2) if $f(z)$ has Borel exceptional value ∞, then $f(z)$ has at most one finite Borel exceptional value $\frac{b}{1-a}$.

Example 1. Equation $f(z+1)=\frac{1}{2-z} \circ f(z)$ admits a fractional linear solution $\frac{z-1}{z}$.

Example 1 shows that the fractional linear solution does exist in (1) of Theorem 1.
Example 2. Equation $f(z+1)=(2-z) \circ f(z)$ admits a solution $e^{\pi i z}+1$, which satisfies $\lambda\left(\frac{1}{f}\right)<\sigma(f)$.

Example 3. Equation $f(z+1)=\frac{-z}{z+1} \circ f(z)$ admits a solution $\frac{-2 e^{\pi i z}}{e^{\pi i z}-1}$, which satisfies $\lambda(f)<\sigma(f)$ and has two finite Borel exceptional values $0,-2$.

Examples 2-3 show that the condition $b c \neq 0$ is necessary in (2.1) of Theorem 1. Example 3 also shows that the conclusion may be not valid if $(d-a)^{2}+4 b \neq 0$ when $c \neq 0$ in (2.2.1) of Theorem 1. And Example 2 shows the case that $f(z)$ has Borel exceptional value ∞ and $\frac{b}{1-a}$ may happen in (2.2.2) of Theorem 1.

In addition, comparing with many papers [6, 7] researched complex difference Riccati equation, there is only few paper [8] dealing with the properties of solutions of complex difference Riccati equation, thus we put our effort on it. Take paper [8] for example, the authors obtained the following theorem.

Theorem B. [8]. Let $\delta= \pm 1$ be a constant and $A(z)=\frac{m(z)}{n(z)}$ be an irreducible non-constant rational function, where $m(z)$ and $n(z)$ are polynomials with $\operatorname{deg} m(z)=$ m and $\operatorname{deg} n(z)=n$. If $f(z)$ is a transcendental finite order meromorphic solution of

$$
f(z+1)=\frac{A(z)+\delta f(z)}{\delta-f(z)}
$$

then,
(i) if $\sigma(f)>0$, then f has at most one Borel exceptional value;
(ii) $\lambda\left(\frac{1}{f}\right)=\lambda(f)=\sigma(f)$;
(iii) if $A(z) \not \equiv-z^{2}-z+1$, then the exponent of convergence of fixed points of f satisfies $\tau(f)=\sigma(f)$.

In this paper, we consider the more general case and obtain the following theorem.
Theorem 2. Let $b(z), c(z)$ be two non-constant rational functions. Suppose the following difference equation

$$
\begin{equation*}
f(z+1)=\frac{a f(z)+b(z)}{c(z) f(z)+d} \tag{2}
\end{equation*}
$$

admits a transcendental meromorphic function $f(z)$ of finite order, then
(i) $\lambda(f)=\lambda\left(\frac{1}{f}\right)=\sigma(f)$;
(ii) $\tau(f)=\sigma(f)$ provided $(z c(z)+d)(z+1)-a z-b(z) \not \equiv 0$.

Furthermore, if $\frac{b(z)}{c(z)}$ is not any constant and $\sigma(f)>0$, then $f(z)$ has at most one Borel exceptional value.

2. Some Lemmas

To prove our results, we need some lemmas as follows.

Lemma 1. (see [3]). Let $f(z)$ be a non-constant meromorphic function in the complex plane and

$$
R(f)=\frac{p(f)}{q(f)}
$$

where $p(f)=\sum_{k=0}^{p} a_{k} f^{k}$ and $q(f)=\sum_{j=0}^{q} b_{j} f^{j}$ are two mutually prime polynomials in $f(z)$. If the coefficients a_{k}, b_{j} are small functions of $f(z)$ and $a_{k}(z) \not \equiv 0, b_{j}(z) \not \equiv 0$, then

$$
T(r, R(f))=\max \{p, q\} T(r, f)+S(r, f)
$$

Lemma 2. (see [9]). Let $c_{1}, \ldots c_{n}$ be non-zero constants and suppose that $f(z)$ is a non-rational meromorphic solution of a difference equation of the form

$$
\begin{equation*}
\Pi_{i=1}^{n} f\left(z+c_{i}\right)=\frac{a_{0}(z)+a_{1}(z) f(z)+\cdots+a_{p}(z) f^{p}(z)}{b_{0}(z)+b_{1}(z) f(z)+\cdots+b_{t}(z) f^{t}(z)} \tag{3}
\end{equation*}
$$

with meromorphic coefficients $a_{i}(z), b_{j}(z)$ of growth $S(r, f)$ such that $a_{p}(z), b_{t}(z) \not \equiv 0$. If

$$
\max \left\{\lambda(f), \lambda\left(\frac{1}{f}\right)\right\}<\sigma(f)
$$

then equation (3) is form of

$$
\Pi_{i=1}^{n} f\left(z+c_{i}\right)=c(z) f^{k}(z)
$$

where $c(z)$ is meromorphic, $T(r, c)=S(r, f)$ and $k \in Z$.
Lemma 3. (see [10]). Let $w(z)$ be a transcendental meromorphic solution of finite order of difference equation

$$
P(z, w)=0
$$

where $P(z, w)$ is a difference polynomial in $w(z)$. If $P(z, a) \not \equiv 0$ for a meromorphic function $a \in S(r, w)$, then

$$
m\left(r, \frac{1}{w-a}\right)=S(r, w)
$$

Lemma 4. (see [10]). Let $f(z)$ be a transcendental meromorphic solution of finite order ρ of a difference equation of the form

$$
H(z, f) P(z, f)=Q(z, f)
$$

where $H(z, f), P(z, f), Q(z, f)$ are difference polynomials in $f(z)$ such that the total degree of $H(z, f)$ in $f(z)$ and its shifts is n and that the corresponding total degree of $Q(z, f)$ is at most n. If $H(z, f)$ just contains one term of maximal total degree, then for any $\varepsilon>0$, holds

$$
m(r, P(z, f))=O\left(r^{\rho-1+\varepsilon}\right)+S(r, f)
$$

possible outside of an exceptional set of finite logarithmic measure.

Lemma 5. (see [11]). Let $f(z)$ be a meromorphic function with finite order σ and η be a nonzero complex number, then for each $\varepsilon>0$, we have

$$
T(r, f(z+\eta))=T(r, f)+O\left(r^{\sigma-1+\varepsilon}\right)+O(\log r)
$$

3. The Proofs

3.1. Proof of Theorem 1.

(1) Suppose Equation (1) admits a non-constant rational solution $f(z)$. Then, by Lemma 1 , we obtain

$$
T(r, f(z+1))=\operatorname{deg}_{f} \log r+O(1)=T(r, R \circ f(z))=\operatorname{deg}_{R} \operatorname{deg}_{f} \log r+O(1)
$$

Thus we get $\operatorname{deg}_{R} \leq 1$, and then $R(z)$ is a fractional linear function. We divide the proof into two distinguish cases as follows.
Case 1.1. $c=0$, we assume $d=1$ without loss of generality, then Equation (1) becomes

$$
\begin{equation*}
f(z+1)=a f(z)+b \tag{4}
\end{equation*}
$$

We suppose that $f(z)$ has a pole z_{0}, then by Equation (4), we obtain that $z_{0}+1, z_{0}+$ $2, \cdots$ are also poles, which means $f(z)$ is transcendental. Then we obtain a contradiction. Thus $f(z)$ is a polynomial. Noting the following fact that

$$
a=\frac{f(z+1)-b}{f(z)} \rightarrow 1, \text { as } z \rightarrow \infty
$$

we obtain $a=1$, and then Equation (1) becomes

$$
f(z+1)=f(z)+b, \text { i.e., } f^{\prime}(z+1)=f^{\prime}(z)
$$

Thus $f^{\prime}(z)$ is a constant otherwise it is a non-constant period function, i.e., it is a transcendental meromorphic function, which is a contradiction that f is a non-constant rational solution. So we obtain that both $f(z)$ and R are linear functions.

Case 1.2. $c \neq 0$, we assume $c=1$ without loss of generality, then Equation (1) becomes

$$
\begin{equation*}
f(z+1)-a=\frac{b-a d}{f(z)+d} \tag{5}
\end{equation*}
$$

Let $A=b-a d,(\neq 0), f(z)=\frac{m(z)}{n(z)}$ and $m=\operatorname{deg}_{m(z)}, n=\operatorname{deg}_{n(z)}$, where $m(z), n(z)$ are two mutually prime polynomials. If $m>n$, then Equation (5) implies

$$
o(1)=\frac{b-a d}{f(z)+d}=f(z+1)-a \rightarrow \infty, \text { as } z \rightarrow \infty
$$

which is impossible. Thus $m \leq n$. Substituting $f(z)=\frac{m(z)}{n(z)}$ into Equation (5), we obtain

$$
\begin{equation*}
(m(z+1)-a n(z+1))(m(z)+d n(z))=A n(z) n(z+1) \tag{6}
\end{equation*}
$$

Since $m(z), n(z)$ are two mutually prime polynomials, we obtain that $m(z)+d n(z), n(z)$ are two mutually prime polynomials. In the similar way, we obtain that $m(z+1), n(z+$ 1) are two mutually prime polynomials, and then $m(z+1)-a n(z+1), n(z+1)$ are two mutually prime polynomials. Thus by Equation (6), we obtain

$$
n(z) \mid m(z+1)-a n(z+1) \text { and } n(z+1) \mid m(z)+d n(z)
$$

Noting $m \leq n$, then \exists a constant C such that

$$
\begin{equation*}
m(z+1)-a n(z+1)=C n(z) \text { and } C(m(z)+d n(z))=A n(z+1) \tag{7}
\end{equation*}
$$

It is obvious that $C \neq 0$. By eliminating $m(z)$ in Equation (7), we obtain that

$$
\begin{equation*}
C^{2} n(z)+(a C+C d) n(z+1)=A n(z+2) \tag{8}
\end{equation*}
$$

Rewriting Equation (8) as the following form

$$
C^{2}+(a C+C d) \leftarrow C^{2}+\frac{(a C+C d) n(z+1)}{n(z)}=\frac{A n(z+2)}{n(z)} \rightarrow A, \text { as } z \rightarrow \infty
$$

we obtain $A=C^{2}+a C+C d$. Then Equation (8) becomes

$$
\begin{equation*}
C^{2}(n(z+2)-n(z))+(a C+C d)(n(z+2)-n(z+1))=0 . \tag{9}
\end{equation*}
$$

Set $g(z)=n(z+1)-n(z)$, then Equation (9) becomes

$$
\begin{equation*}
C^{2}(g(z+1)+g(z))+(a C+C d) g(z+1)=0 \tag{10}
\end{equation*}
$$

From Equation (10), we obtain $2 C^{2}+(a C+C d)=0$ via a similar method. Thus Equation (10) becomes $g(z+1)=g(z)$, then $g(z)=n(z+1)-n(z)$ is a constant, i.e., $n(z)$ is a linear function. Noting $m \leq n$ once again, we obtain that $f(z)$ is a fractional linear function.
(2) Suppose Equation (1) admits a transcendental meromorphic function $f(z)$ of finite order. Then, by Lemma 5, we obtain that

$$
T(r, f(z+1))=T(r, f)+O\left(r^{\sigma-1+\varepsilon}\right)+O(\log r)=\operatorname{deg}_{R} T(r, f)+S(r, f)
$$

Thus we get $\operatorname{deg}_{R} \leq 1$, then $R(z)$ is a fractional linear function.
(2.1) We assume $c=1$ without loss of generality, and rewrite Equation (1) as the following form

$$
\begin{equation*}
f(z) f(z+1)=a f(z)+b-d f(z+1) \tag{11}
\end{equation*}
$$

By Equation (11) and Lemma 4, we obtain

$$
m(r, f)=S(r, f)
$$

Thus

$$
N(r, f)=T(r, f)+S(r, f),
$$

and then $\lambda\left(\frac{1}{f}\right)=\sigma(f)$. Noting $b \neq 0$, by Equation (11) and Lemma 3, we obtain

$$
m\left(r, \frac{1}{f}\right)=S(r, f) .
$$

Thus

$$
N\left(r, \frac{1}{f}\right)=T(r, f)+S(r, f),
$$

and then $\lambda(f)=\sigma(f)$. Setting $f(z)=y(z)+z$ and substituting it into Equation (11), we obtain

$$
T(r, f)=T(r, y)+O(\log r)
$$

and

$$
\begin{align*}
P(z, y): & =y(z) y(z+1)+y(z)(z+1-a)+y(z+1)(z+d) \tag{12}\\
& +(z+1)(z+d)-a z-b=0 .
\end{align*}
$$

Since $P(z, 0)=(z+1)(z+d)-a z-b \not \equiv 0$, from Equation (12) and Lemma 3, we obtain

$$
m\left(r, \frac{1}{y}\right)=S(r, y) .
$$

Thus

$$
N\left(r, \frac{1}{y}\right)=T(r, y)+S(r, y)=T(r, f)+S(r, f),
$$

and then $\tau(f)=\sigma(f)$.
(2.2.1.) Suppose that $f(z)$ has two finite Borel exception values $A, B,(A \neq B)$. Set

$$
\begin{equation*}
g(z)=\frac{f(z)-A}{f(z)-B} . \tag{13}
\end{equation*}
$$

Then $T(r, f)=T(r, g)+O(1)$ and

$$
\lambda(g)=\lambda(f-A)<\sigma(g), \quad \lambda\left(\frac{1}{g}\right)=\lambda(f-B)<\sigma(g) .
$$

From Equation (13), we get

$$
\begin{equation*}
f(z)=\frac{A-B g(z)}{1-g(z)} . \tag{14}
\end{equation*}
$$

We consider two cases as follows.
Case 2.2.1.1. $c=0$, we assume $d=1$ without loss of generality again. Substituting Equation(14) into Equation (4), we obtain

$$
\begin{equation*}
g(z+1)=\frac{A-a A-b+(a B-A+b) g(z)}{B-a A-b+(a B+b-B) g(z)} . \tag{15}
\end{equation*}
$$

It is obvious that $B-a A-b, a B+b-B$ can not be zero synchronously. From Lemma 2, we obtain

$$
\begin{equation*}
g(z+1)=c(z) g^{k}(z), \tag{16}
\end{equation*}
$$

where $c(z)$ is meromorphic, $T(r, c)=S(r, g)$ and $k \in Z$. From Lemma 5, we obtain $k=1$. And substituting $g(z+1)=c(z) g(z)$ into Equation (15), we get

$$
c(z) g^{2}(a B+b-B)=A-a A-b+(a B-A+b-c(z)(B-a A-b)) g .
$$

Thus we get

$$
a B+b-B=A-a A-b=0 .
$$

It implies that $A=B=\frac{b}{1-a}$ or $R=i d$, which is a contradiction.
Case 2.2.1.2. $c \neq 0$, we assume $c=1$. Substituting Equation(14) into Equation (5) and using the similar method in Case 2.2.1.1, we get

$$
g(z+1)=\frac{A^{2}+A d-A a-b-(A B+A d-B a-b) g(z)}{A B+B d-A a-b-\left(B^{2}+B d-B a-b\right) g(z)}
$$

and

$$
\begin{equation*}
B^{2}+B d-B a-b=A^{2}+A d-A a-b=0 . \tag{17}
\end{equation*}
$$

But Equation(17) implies that $A=B$ provided $(d-a)^{2}+4 b=0$, which is a contraction.
(2.2.2.) For the case, $f(z)$ has Borel exceptional value ∞ and one finite Borel exceptional value A, we set $g(z)=f(z)-A$, then $T(r, g)=T(r, f)+O(1)$ and $\lambda(g)<\sigma(g), \lambda\left(\frac{1}{g}\right)<\sigma(g)$. We consider two following cases.
Case 2.2.2.1. $c \neq 0$, we assume $c=1$. Using the similar method in Case 2.2.1.1, we get

$$
g(z+1)=\frac{A a-A d-A^{2}+b+(a-A) g(z)}{A+d+g(z)}=c(z) g(z),
$$

where $c(z)$ is meromorphic such that $T(r, c)=S(r, g)$. It is impossible obviously.
Case 2.2.2.2. $c=0$, we assume $d=1$. Using the similar method in Case 2.2.1.1, we get

$$
g(z+1)=a g(z)+A a-A+b=c(z) g(z),
$$

where $c(z)$ is meromorphic such that $T(r, c)=S(r, g)$. Thus $A a-A+b=0$, which means $A=\frac{b}{1-a}$ provided $R \neq i d$. The proof of Theorem 1 is completed.

3.2. Proof of Theorem 2.

We rewrite Equation (2) as the following form

$$
\begin{equation*}
c(z) f(z) f(z+1)=a f(z)+b(z)-d f(z+1) \tag{18}
\end{equation*}
$$

From Equation (18) and Lemma 4, noting $c(z) \not \equiv 0$, we obtain

$$
m(r, f)=S(r, f) .
$$

Thus

$$
N(r, f)=T(r, f)+S(r, f),
$$

and then $\lambda\left(\frac{1}{f}\right)=\sigma(f)$. Noting $b(z) \not \equiv 0$, From Equation (18) and Lemma 3, we obtain

$$
m\left(r, \frac{1}{f}\right)=S(r, f) .
$$

Thus

$$
N\left(r, \frac{1}{f}\right)=T(r, f)+S(r, f),
$$

and then $\lambda\left(\frac{1}{f}\right)=\sigma(f)$. Setting $f(z)=y(z)+z$ and substituting it into Equation (18), we obtain

$$
T(r, f)=T(r, y)+O(\log r)
$$

and

$$
\begin{align*}
P(z, y):= & c(z) y(z) y(z+1)+y(z)(z c(z)+c(z)-a)+y(z+1)(z c(z)+d) \tag{19}\\
& +(z c(z)+d)(z+1)-a z-b(z)=0 .
\end{align*}
$$

Since $P(z, 0)=(z c(z)+d)(z+1)-a z-b(z) \not \equiv 0$, From Equation (19) and Lemma 3, we obtain

$$
m\left(r, \frac{1}{y}\right)=S(r, y) .
$$

Thus

$$
N\left(r, \frac{1}{y}\right)=T(r, y)+S(r, y)=T(r, f)+S(r, f)
$$

and then $\tau(f)=\sigma(f)$. Suppose $f(z)$ has two finite Borel exception values $A, B,(A \neq$ $B)$. Set

$$
g(z)=\frac{f(z)-A}{f(z)-B} \text {, i.e., } f(z)=\frac{A-B g(z)}{1-g(z)},
$$

and substitute it into Equation (2), we obtain

$$
\lambda(g)=\lambda(f(z)-A)<\sigma(g), \lambda\left(\frac{1}{g}\right)=\lambda(f(z)-B)<\sigma(g)
$$

and

$$
\begin{equation*}
g(z+1)=\frac{A^{2} c(z)+A d-A a-b(z)-(A B c(z)+A d-B a-b(z)) g(z)}{A B c(z)+B d-A a-b(z)-\left(B^{2} c(z)+B d-B a-b(z)\right) g(z)} . \tag{20}
\end{equation*}
$$

From Equation (20) and Lemma 2, we obtain $B^{2} c(z)-b(z)=0, A^{2} c(z)-b(z)=0$ in the similar way, which contradict our condition that $\frac{b(z)}{c(z)}$ is not any constant. If $f(z)$ has one finite Borel exception value A and ∞, then set $g(z)=f(z)-A$ and substitute it into Equation (2), we obtain

$$
\begin{equation*}
g(z+1)=\frac{A a+b(z)-A^{2} c(z)-A d+(a-A c(z)) g(z)}{A c(z)+d+c(z) g(z)} . \tag{21}
\end{equation*}
$$

From Equation (21) and Lemma 2, we obtain $c(z)=0$ in the similar way, which is also a contradiction. The proof of Theorem 2 is completed.

Acknowledgment

The author would like to thank the referee for his/her comments and suggestions.

References

1. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
2. I. Laine, Nevanlinna Theory and Complex Differential Equations, Studies in Math, de Gruyter, Berlin, 1993, p. 15.
3. C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, Second Printed in 2006.
4. L. Yang, Value Distribution Theory, Springer-Verlag \& Science Press, Berlin, 1993.
5. Niro Yanagihara, Meromorphic solutions of some difference equations, Funkcialaj. Ekvacioj., 23 (1980), 309-326.
6. J. H. Zheng, A note on the Riccati equation, J. Math. Anal. Appl, 190 (1995), 285-193.
7. Z. X. Chen, On the hyper-order of solutions of some second order linear differential equations, Acta Mathematica Sinica, English series, 18(1) (2002), 79-88.
8. Z. X. Chen and K. H. Shon, Some Results on Difference Riccati Equations, Acta Mathematica Sinica, English series, 27(6) (2011), 1091-1100.
9. J. Heittokangas, R. Korhonen and I. Laine, Complex difference eqaution of Malmquist type, Comput. Methods Funct. Theory, 1 (2001), 27-39.
10. I. Laine and C. C. Yang, Clunie theorem for difference and q-difference polynomials, J. London Math. Soc., 76(3) (2007), 556-566.
11. Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujian J., 16 (2008), 105-129.

Zhang Jie
College of Science
China University of Mining and Technology
Xuzhou 221116
P. R. China

E-mail:zhangjie1981@cumt.edu.cn

