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EXISTENCE, ASYMPTOTICS AND UNIQUENESS OF TRAVELING WAVES
FOR NONLOCAL DIFFUSION SYSTEMS WITH DELAYED NONLOCAL

RESPONSE

Zhixian Yu1 and Rong Yuan2

Abstract. In this paper, we deal with the existence, asymptotic behavior and
uniqueness of travelingwaves for nonlocal diffusion systems with delay and global
response. We first obtain the existence of traveling wave front by using upper-
lower solutions method and Schauder’s fixed point theorem for c > c∗ and using
a limiting argument for c = c∗. Secondly, we find a priori asymptotic behavior of
(monotone or non-monotone) traveling waves with the help of Ikehara’s Theorem
by constructing a Laplace transform representation of a solution. Thirdly, we
show that the traveling wave front for each given wave speed is unique up to
a translation. Last, we apply our results to two models with delayed nonlocal
response.

1. INTRODUCTION

The spatial dispersal of cells, organisms or species is clearly central to ecology, and
the evolution of dispersal itself is consequently of great importance. The Laplacian
reaction-diffusion equation

(1.1)
∂u(t, x)
∂t

= D� u(t, x) + u(t, x)(1− u(t, x))

is well known in population dynamics and was investigated by Fisher [12] to model the
spatial spread of a mutant in an infinite one-dimensional habitat. Since then, traveling
wave fronts for reaction-diffusion systems have attracted much attention in biology,
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chemistry, epidemiology and physics, see [2, 11, 23]. There are many methods to deal
with the existence of traveling wave, for example, the phase space analysis [20] and
the Conley index [23]. Due to the practical background and biological realism, delays
and nonlocal delays are incorporated into reaction-diffusion equations, see [9, 14-15,
20, 23, 26] and the references therein.
Despite the popularity of Laplacian diffusion models, diffusion has some drawbacks.

One important shortcoming for ecological and epidemiological models is that Laplacian
diffusion is a local operator where individuals in the population can only influence
their immediate neighbors. With diffusion models there is some disconnect between
experimentally collected data and a limited number of parameters that are available to
fit that data. One method in overcoming these problems with the Laplacian operator
is to describe these models concerning with the spatial migration by integral equation.
Lee et al. [14] argued that, for processes where the spatial scale for movement is
large in comparison with its temporal scale, non-local models using integro-differential
equations may allow for better estimation of parameters from data and provide more
insight into the biological system. The precise mathematical model is read as

(1.2) ut(t, x) =
∫

R

J(x− y)u(t, y)dy− u(t, x) + f(u(t, x)).

The nonlocal model (1.2) with monostable nonlinearity have been widely investigated
by authors ( see [1, 4, 7, 8, 9, 22]). More recently, authors in [18, 19] showed the
existence of traveling waves for (1.2) with delayed reaction terms satisfying the quasi-
monotonicity and the exponential quasi-monotonicity, respectively. Those results in
[18, 19] were well applied to the Logistic equation with nonlocal diffusion

(1.3) ut(t, x) = d[J ∗ u(t, x)− u(t, x)] + ru(t− τ, x)[1− u(t, x)]

and the Nicholson’s blowflies equation with nonlocal diffusion

(1.4) ut(t, x) = d[J ∗ u(t, x)− u(t, x)]− ru(t, x) + rpu(t− τ, x)e−u(t−τ,x),

where r, p and the delay τ are positive. Authors [26, 28] further investigated two com-
ponentwise nonlocal diffusion systems with the weak (exponential) quasi-monotonicity
and the partial (exponential) quasi-monotonicity, respectively. The model (1.2) is
closely related to traditional reaction-diffusion models. Taking the diffusion kernel

(1.5) J(x) = δ(x) + δ′′(x),

where δ is the Dirac delta, (1.2) reduces to the Laplacian reaction diffusion equation
(1.1), (see, Medlock et al. [17]).
We notice that the drift of some individuals depends on their present position from

all possible positions at previous times. It appears that the first comprehensive attempt
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to address this phenomena was made for the reaction-diffusion equation by Britton
[3]. His idea was that the reaction term with the delay has to involve a weighted
spatial averaging over the whole of the infinite domain (for short, the reaction term
with delayed nonlocal response). Motivated by these, we also incorporate the nonlocal
delayed response into nonlocal diffusion models (1.3) and (1.4), that is,

(1.6) ut(t, x) = d[J ∗ u(t, x)− u(t, x)] + r

∫
R

k(y)u(t− τ, x − y)dy(1− u(t, x))

and

(1.7)
ut(t, x) = d[J ∗ u(t, x)− u(t, x)]

−ru+ rp

∫
R

k(y)u(t− τ, x− y)dye−
∫

R
k(y)u(t−τ, x−y)dy .

To our knowledge, the existence, asymptotic behavior and uniqueness of traveling waves
for nonlocal diffusion systems (1.6) and (1.7) are not reported. In order to address
these results, we first investigate the existence, asymptotic behavior and uniqueness
of traveling waves for more general nonlocal diffusion systems with delayed nonlocal
response

(1.8) ut(t, x) = d[J ∗ u(t, x)− u(t, x)] + f
(
u(t, x),

∫ ∞

−∞
k(y)u(t− τ, x− y)dy

)
where d > 0, τ ≥ 0 are constants,

J ∗ u(t, x) =
∫

R

J(x− y)u(t, y)dy is the standard convolution,

and the functions J , k f satisfy
(H1) J ≥ 0, J(x) = J(−x), ∫

R
J(y)dy = 1, and

∫
R
J(y)e−λydy <∞, ∀λ ≥ 0.

(H2) k ≥ 0, k(x) = k(−x), ∫
R
k(y)dy = 1, and

∫
R
k(y)e−λydy <∞, ∀λ ≥ 0.

(A1) f ∈ C1([0, K]2, R), f(0, 0) = f(K, K) = 0 and f(u, u) > 0 for u ∈ (0, K),
and ∂2f(u, v) ≥ 0 for (u, v) ∈ [0, K]2, where K is a positive constant;

(A2) ∂1f(0, 0)u+ ∂2f(0, 0)v ≥ f(u, v) for any (u, v) ∈ [0, K]2;

(A3) there exist numbers L, κ > 0 and σ1, σ2 ∈ (0, 1] such that

|f(u, v)− ∂1f(0, 0)u− ∂2f(0, 0)v| ≤ L(u1+σ1 + v1+σ2)

for any (u, v) ∈ [0, κ]2.

Remark 1.1. Condition (A1) together with (A2) implies that ∂1f(0, 0)+∂2f(0, 0)
≥ f

(
K
2 ,

K
2

)
2
K > 0.



2166 Zhixian Yu and Rong Yuan

Remark 1.2. Letting k(x) = δ(x), (1.8) can be reduced to the following nonlocal
diffusion system

ut(t, x) = d[J ∗ u(t, x)− u(t, x)] + f(u(t, x), u(t− τ, x)).

A traveling wave of (1.8) is a solution of special form u(t, x) = φ(x+ct), where the
velocity c and the wave profile φ satisfy the following functional differential equation

(1.9) cφ′(ξ) = d[J ∗ φ(ξ)− φ(ξ)] + f
(
φ(ξ),

∫ ∞

−∞
k(y)φ(ξ − cτ − y)dy

)
with asymptotic boundary conditions

(1.10) lim
ξ→−∞

φ(ξ) = 0, lim
ξ→+∞

φ(ξ) = K,

where 0 and K > 0 are two equilibria of (1.9). A traveling wave φ is called the
traveling wave front if φ is monotone.
Now we formulate our main theorems as follows.

Theorem 1.1. [Existence]. Assume that (H1)-(H2) and (A1)-(A3) hold. Then
there exists a positive constant c∗ such that for each c ≥ c∗, equation (1.8) admits a
nondecreasing positive traveling wave front u(t, x) = φ(x+ct) with φ(−∞) = 0 and
φ(+∞) = K. Moreover, if c > c∗, then

(1.11) lim
ξ→−∞

φ(ξ)e−λ1ξ = 1, lim
ξ→−∞

φ′(ξ)e−λ1ξ = λ1,

where λ = λ1 > 0 is the smallest root of the equation

Δ(c, λ)

= cλ− d

[∫
R

e−λyJ(y)dy − 1
]
− ∂1f(0, 0) − ∂2f(0, 0)e−cτλ

∫
R

k(y)e−λydy = 0.

Theorem 1.2. [Asymptotics]. Assume that (H1)-(H2), (A1)-(A3) hold, and φ̃(ξ)
is any nonnegative bounded traveling wave of (1.8) with φ̃(−∞) = 0 and φ̃ 	≡ 0. Then
we have the following conclusions

(i) For every c > c∗, lim
ξ→−∞

φ̃(ξ)e−λ1ξ exists.

(ii) For c=c∗, there exists a constant λ∗>0 such that lim
ξ→−∞

φ̃(ξ)ξ−1e−λ∗ξ exists.

(iii) For 0 < c < c∗, there is no nonnegative bounded traveling wave with φ̃(−∞) =
0 and φ̃ 	≡ 0.

Theorem 1.3. [Uniqueness]. Assume that (H1)-(H2) and (A1)-(A3) hold. For
c ≥ c∗, let ϕ, ψ be two travelling wave fronts of (1.9) and (1.10) with wave speed
c. Then φ is a translation of ψ; more precisely, there exists ξ̄ ∈ R such that φ(ξ) =
ψ(ξ + ξ̄).
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This paper is organized as follows. Section 2 is devoted to the existence of traveling
wave front for the nonlocal diffusion systemwith delayed nonlocal response by using the
super-sub solution method and the Schauder’s fixed point theorem for c > c∗ and using
a limiting argument for c = c∗. In Section 3, we find a priori asymptotic behavior of
traveling waves with the help of Ikehara’s Theorem by constructing a Laplace transform
presentation of a solution for a class of the nonlocal diffusion system. In Section 4,
the traveling wave front obtained in Section 1 is unique up to a translation by using
the technique in [5, 6]. Last Section, we apply our results to another version of the
classical Logistic model and the Nicholson’s blowflies model with delayed nonlocal
response.

2. EXISTENCE OF TRAVELING WAVE FRONTS

Let
C[0, K](R, R) = {φ ∈ (R, R) |0 ≤ φ(ξ) ≤ K, ξ ∈ R} .

Define the operator T : C[0,K](R, R) → C[0, K](R, R) by

(2.1) T (φ)(ξ) =
1
c
e−

β
c
ξ

∫ ξ

−∞
e

β
c
yH(φ)(y)dy,

where

(2.2) H [φ](ξ) = dJ∗φ(ξ)+(β−d)φ(ξ)+f
(
φ(ξ),

∫
R

k(y)φ(ξ−cτ−y)dy
)
, ξ ∈ R.

By (H1)-(H2) and (A1), T is well defined. It is easy to see that a fixed point φ of T
or a solution of the equation

(2.3) φ(ξ) = T (φ)(ξ), ξ ∈ R

is a traveling wave solution of (1.8).

Since ∂2f(u, v) ≥ 0 for (u, v) ∈ [0, K]2, it is easy to see that the function f
satisfies the following quasimonotone condition.

Lemma 2.1. Assume that (H2) and (A1) hold. Then there is a positive constant
β > max(u, v)∈[0,K]2 |∂1f(u, v)| + d such that

f
(
φ1(ξ),

∫
R

k(y)φ1(ξ − cτ − y)dy
)
− f

(
φ2(ξ),

∫
R

k(y)φ2(ξ − cτ − y)dy
)

+ (β − d)(φ1(ξ)− φ2(ξ)) ≥ 0

where φ1, φ2 ∈ C(R, R) with 0 ≤ φ2(ξ) ≤ φ1(ξ) ≤ K for ξ ∈ R.
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Now we introduce the concept of upper and lower solutions of the integral equation
(2.3).

Definition 2.1. A continuous bounded function φ is called an upper solution of
(2.3) if

(2.4) T (φ)(ξ) ≤ φ(ξ), for all ξ ∈ R.

A lower solution of (2.3) is defined in a similar way by reversing the inequality in
(2.4).

Define a function

(2.5)
Δ(c, λ)

= cλ−d
[∫

R

e−λyJ(y)dy−1
]
−∂1f(0, 0)−∂2f(0, 0)e−cτλ

∫
R

k(y)e−λydy.

It is easily seen that the following lemma holds.

Lemma 2.2. Assume that (H1)-(H2) and (A1)-(A3) hold. Then there exists a
unique c∗ > 0 such that

(i) if c ≥ c∗, then there exist two positive numbers λ1 and λ2 with λ1 ≤ λ2 such
that

Δ(c, λ1) = Δ(c, λ2) = 0;

(ii) if c < c∗, then Δ(c, λ) < 0 for all λ ≥ 0;

(iii) if c = c∗, then λ1 = λ2 = λ∗, and if c > c∗, then λ1 < λ∗ < λ2 and

Δ(c, .) > 0 in (λ1, λ2)), Δ(c, .) < 0 in R \ [λ1, λ2].

For the above constants c > c∗ and λ1, λ2 given in Lemma 2.2, we define the
following continuous functions:

(2.6) φ(ξ) := min{K, eλ1ξ}, ξ ∈ R,

and

(2.7) φ(ξ) := max{0, eλ1ξ − qeγλ1ξ}, ξ ∈ R,

where γ ∈ (1, min{1 + σ1, 1 + σ2,
λ2
λ1
}). Clearly, for sufficiently large q, we have

0 ≤ φ(ξ) ≤ φ(ξ) ≤ K and φ(ξ) 	≡ 0 for ξ ∈ R.

Lemma 2.3. Assume that (H1)-(H2) and (A1)-(A3) hold. Then for c > c∗, φ(ξ)
and φ(ξ) are an upper solution and a lower solution of (2.3), respectively.
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Proof. Since 0 ≤ φ(ξ) ≤ K for ξ ∈ R, it follows from Lemma 2.1 that

H(φ)(ξ) = d

∫
R

J(y)φ(ξ − y)dy + (β − d)φ(ξ) + f
(
φ(ξ),

∫
R

k(y)φ(ξ − cτ − y)dy
)

≤ dK + (β − d)K + f(K,K) = βK

and

T (φ)(ξ) =
1
c
e−

β
c
ξ

∫ ξ

−∞
e

β
c
yH(φ)(y)dy ≤ 1

c
e−

β
c
ξ

∫ ξ

−∞
e

β
c
yβKdy = K.(2.8)

On the other hand, noting that f(u, v) ≤ ∂1f(0, 0)u + ∂2f(0, 0)v for u, v ∈ [0, K]
and 0 ≤ φ(ξ) ≤ eλ1ξ for ξ ∈ R, it follows from Δ(c, λ1) = 0 and β > max(u, v)∈[0,K]2

|∂1f(u, v)|+ d that

H(φ)(ξ) ≤ d

∫
R

J(y)φ(ξ − y)dy + (β − d)φ(ξ) + ∂1f(0, 0)φ(ξ)

+ ∂2f(0, 0)
∫

R

k(y)φ(ξ − cτ − y)dy

≤ eλ1ξ

[
d

∫
R

J(y)e−λ1ydy + (β − d+ ∂1f(0, 0))

+∂2f(0, 0)
∫

R

k(y)e−λ1(cτ+y)dy

]
= eλ1ξ(cλ1 + β)

and

(2.9)
T (φ)(ξ)

=
1
c
e−

β
c
ξ

∫ ξ

−∞
e

β
c
yH(φ)(y)dy ≤ 1

c
e−

β
c
ξ

∫ ξ

−∞
e

β
c
yeλ1y(cλ1 + β)dy = eλ1ξ.

According to the definition of φ(ξ) and (2.8) and (2.9), it is obvious to see that

T (φ)(ξ) ≤ φ(ξ), for all ξ ∈ R.

Thus, φ(ξ) is an upper solution of (2.3).
Letting ξ0 = − ln q

λ1(γ−1) , then we have

φ(ξ) = 0 for ξ ≥ ξ0 and φ(ξ) = eλ1ξ − qeγλ1ξ for ξ ≤ ξ0.

Obviously, it follows from Lemma 2.1 that

(2.10) T (φ)(ξ) ≥ 0 for ξ ∈ R.
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By (A3), we have

(2.11)
f(u, v)

≥ ∂1f(0, 0)u+ ∂2f(0, 0)v − L(u1+σ1 + v1+σ2) for any(u, v) ∈ [0, κ]2.

It is easily seen that there exists Q1(γ) � 1 such that

eλ1ξ − qeγλ1ξ ≤ κ for q ≥ Q1(γ).

Therefore, 0 ≤ φ(ξ) ≤ κ. Since ξ0 < 0 and 1 + σi > γ, i = 1, 2, it is easy to see that

(2.12) φ(ξ) ≥ φ(ξ) ≥ eλ1ξ − qeγλ1ξ for ξ ∈ R

and

(2.13) [φ(ξ)]1+σi ≤ eγλ1ξ for ξ ∈ R, i = 1, 2.

Thus, according to (2.11)-(2.13), we can obtain[∫
R

k(y)φ(ξ − cτ − y)dy
]1+σ2

=
{∫

R

k(y)
[(
φ(ξ − cτ − y)

)1+σ2
] 1

1+σ2 dy

}1+σ2

≤ eγλ1ξ

[∫
R

k(y)e−
γλ1

1+σ2
(cτ+y)

dy

]1+σ2

and

H(φ)(ξ)

= dJ ∗ φ(ξ) + (β − d)φ(ξ) + f
(
φ(ξ),

∫
R

k(y)φ(ξ − cτ − y)dy
)

≥ dJ ∗ φ(ξ) + (β − d)φ(ξ) + ∂1f(0, 0)φ(ξ) + ∂2f(0, 0)
∫

R

k(y)φ(ξ − cτ − y)dy

− L[φ(ξ)]1+σ1 − L

[∫
R

k(y)φ(ξ − cτ − y)dy
]1+σ2

≥ d

∫
R

J(y)
(
eλ1(ξ−y) − qeγλ1(ξ−y)

)
dy + (β − d+ ∂1f(0, 0))

(
eλ1ξ − qeγλ1ξ

)
+ ∂2f(0, 0)

∫
R

k(y)
(
eλ1(ξ−cτ−y) − qeγλ1(ξ−cτ−y)

)
dy

− Leγλ1ξ − Leγλ1ξ

[∫
R

k(y)e−
γλ1
1+σ2

(cτ+y)
dy

]1+σ2

= (cλ1 + β)eλ1ξ − (cγλ1 + β)qeγλ1ξ

+ eγλ1ξ

{
Δ(c, γλ1)q − L− L

[∫
R

k(y)e−
γλ1
1+σ2

(cτ+y)
dy

]1+σ2
}
.
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Therefore, choosing q ≥ max{Q1(γ), Q2(γ)}, where

Q2(γ) :=
L+ L

[∫
R
k(y)e−

γλ1
1+σ2

(cτ+y)
dy

]1+σ2

Δ(c, γλ1)
,

we have

(2.14) H [φ](ξ) ≥ (cλ1 + β)eλ1ξ − (cγλ1 + β)qeγλ1ξ.

It follows from (2.14) that

(2.15)
T (φ)(ξ)

≥ 1
c
e−

β
c
ξ

∫ ξ

−∞
e

β
c
y
[
(cλ1+β)eλ1y−(cγλ1+β)qeγλ1y

]
dy=eλ1ξ−qeγλ1ξ.

According to (2.10), (2.15) and the definition of φ(ξ), we have

T (φ)(ξ) ≥ φ(ξ), for all ξ ∈ R.

Thus, φ(ξ) is a lower solution of (2.3). This completes the proof.

In the following, we introduce the exponential decay norm. For 0 < λ < λ1, define

Bλ(R, R) = {φ : φ(ξ) ∈ C(R, R) and supξ∈R|φ(ξ)|e−λξ <∞}.

It is easy to check that Bλ(R, R) is a Banach space equipped with the norm ‖ · ‖λ

defined by ‖ φ ‖λ= supξ∈R |φ(ξ)|e−λξ for φ ∈ Bλ(R, R) .
Let φ(ξ) and φ(ξ) be given above and define the set Γ by

Γ :=

{
φ ∈ C[0,K](R, R)

∣∣∣∣∣ (i) φ(ξ) is nondecreasing on R;

(ii) φ(ξ) ≤ φ(ξ) ≤ φ(ξ) for all ξ ∈ R.

}

It is obvious that Γ is nonempty, convex and compact in Bλ(R, R). For the operator
T defined by (2.1), we have the following lemma.

Lemma 2.4. Assume that (H1)-(H2) and (A1)-(A3) hold. Then we have
(1) T (Γ) ⊂ Γ;
(2) T : Γ → Γ is completely continuous with respect to the norm ‖ · ‖Bλ

in Bλ.

Proof. According to Lemma 2.1 and Lemma 2.3, it is easily seen that for any
φ ∈ Γ,

φ(ξ) ≤ T (φ)(ξ) ≤ T (φ)(ξ) ≤ T (φ)(ξ) ≤ φ(ξ),
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and T (φ)(ξ) is nondecreasing on R. Thus, T (Γ) ⊂ Γ.
Since f ∈ C1([0, K]2,R), there exists M > 0 such that |f(u1, v1)− f(u2, v2)| ≤

M(|u1 − u2| + |v1 − v2|) for ui, vi ∈ [0, K], i= 1, 2. Thus, for φ, ψ ∈ Γ, we obtain

|H(φ)(ξ)−H(ψ)(ξ)|
≤ d

∫
R

J(y)|φ(ξ − y)− ψ(ξ − y)|dy + (β − d+M)|φ(ξ)− ψ(ξ)|

+M

∫
R

k(y)|φ(ξ − cτ − y) − ψ(ξ − cτ − y)|dy

≤ eλξ

[
d

∫
R

J(y)e−λydy + β − d+M +M

∫
R

k(y)e−λ(y+cτ )dy

]
‖φ− ψ‖Bλ

.

Thus, we have

‖T (φ)− T (ψ)‖Bλ

= sup
ξ∈R

|T (φ)(ξ)− T (ψ)(ξ)|e−λξ

≤ sup
ξ∈R

e
−(cλ+β)ξ

c
1
c

∫ ξ

−∞
e

(cλ+β)y
c |H(φ)(y)−H(ψ)(y)|e−λydy

≤ 1
cλ+ β

[
d

∫
R

J(y)e−λydy + β − d+M +M

∫
R

k(y)e−λ(y+cτ )dy

]
‖φ− ψ‖Bλ

,

which implies that T : Γ → Γ is continuous. On the other hand, for any φ ∈ Γ, ξ ∈ R,
we have

H(φ)(ξ) ≤ βK

and for ξ1 ≥ ξ2, ξ1, ξ2 ∈ R,

|T (φ)(ξ1)− T (φ)(ξ2)|

≤ β

c
K

[
e−

β
c
ξ1

∫ ξ1

−∞
e

β
c
ydy − e−

β
c
ξ2

∫ ξ2

−∞
e

β
c
ydy

]
≤ β

c
K

[
e−

β
c
ξ1

∫ ξ1

ξ2

e
β
c
ydy +

∣∣∣e−β
c
ξ2 − e−

β
c
ξ1

∣∣∣ ∫ ξ2

−∞
e

β
c
ydy

]
= 2K

[
1 − e−

β
c
(ξ1−ξ2)

]
.

which imply that {T (φ)(ξ) : φ ∈ Γ} is uniformly bounded and equicontinuous in
ξ ∈ R. Thus, by Arzela-Ascoli theorem, for any given sequence {ψn}n∈N+ in T (Γ),
there exist nk → ∞ and ψ ∈ C(R,R) such that lim

k→∞
ψnk

(ξ) = ψ(ξ) uniformly for

ξ in any compact subset of R. Since φ(ξ) ≤ ψnk
(ξ) ≤ φ(ξ) for any ξ ∈ R, we have

φ(ξ) ≤ ψ(ξ) ≤ φ(ξ) for any ξ ∈ R, and therefore ψ(ξ) ∈ Γ. Note that

lim
ξ→±∞

(φ(ξ) − φ(ξ))e−λξ = 0.
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Thus, for any ε > 0, we can find M0 > 0 such that

|ψnk
(ξ)− ψ(ξ)|e−λξ ≤ (φ(ξ) − φ(ξ))e−λξ < ε for any |ξ| > M0.

Since lim
k→∞

(ψnk
(ξ)−ψ(ξ))e−λξ = 0 uniformly for ξ ∈ [−M0,M0], there existsK ′ > 0

such that for k ≥ K ′,

|ψnk
(ξ)− ψ(ξ)|e−λξ < ε for any |ξ| ≤M0.

It follows that ‖ψnk
− ψ‖Bλ

→ 0 as k → ∞. Thus, we can see that T : Γ → Γ is
compact with respect to the norm ‖ · ‖Bλ

in Bλ. This completes the proof.

Proof of Theorem 1.1. For c > c∗, it follows from Lemma 3.3 and the Schauder’s
fixed point theorem that T has a fixed point φ(ξ) in Γ. Since φ(ξ) is nondecreasing
and bounded, l =: limξ→∞ φ(ξ) > 0 exists. By L. Hopital’s rule and (A1), we can
obtain l = K. Since max{0, eλ1ξ − qeγλ1ξ} ≤ φ(ξ) ≤ min{K, eλ1ξ}, ξ ∈ R, it
follows that limξ→−∞ φ(ξ) = 0 and

lim
ξ→−∞

|φ(ξ)e−λ1ξ − 1| ≤ lim
ξ→−∞

qe(γ−1)λ1ξ = 0

which implies that

(2.16) lim
ξ→−∞

φ(ξ)e−λ1ξ = 1.

According to (2.11), (2.16) and limξ→−∞ φ(ξ) = 0, it is easily seen that

lim
ξ→−∞

∣∣∣f(
φ(ξ),

∫
R

k(y)φ(ξ − cτ − y)dy
)
− ∂1f(0, 0)φ(ξ)

− ∂2f(0, 0)
∫

R

k(y)φ(ξ − cτ − y)dy
∣∣∣e−λ1ξ

≤ lim
ξ→−∞

L
{
[φ(ξ)]1+σ1 +

(∫
R

k(y)φ(ξ − cτ − y)dy
)1+σ2

}
e−λ1ξ = 0

and
lim

ξ→−∞
e−λ1ξ

∫
R

φ(ξ − y)J(y)dy =
∫

R

e−λ1yJ(y)dy.

Therefore,

lim
ξ→−∞

φ′(ξ)e−λ1ξ

=
1
c

lim
ξ→−∞

{
d[J ∗ φ(ξ) − φ(ξ)] + f

(
φ(ξ),

∫
R

k(y)φ(ξ − cτ − y)dy
)}

e−λ1ξ

=
1
c

{
d

[∫
R

e−λ1yJ(y)dy − 1
]

+ ∂1f(0, 0) + ∂2f(0, 0)
∫

R

k(y)e−(cτ+y)λ1dy

}
= λ1.
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For c = c∗, it could be obtained by a limiting argument similar to that of [24, 29].
We omit the details.
For c ≥ c∗, we can obtain φ(ξ) > 0 for ξ ∈ R. Indeed, note that 0 ≤ φ(ξ) ≤ K

for ξ ∈ R. If φ(ξ0) = 0, φ(ξ) = 0 for ξ < ξ0 since φ(ξ) is nondecreasing. By (1.9),
for ξ < ξ0, we have cφ′(ξ) = dJ ∗ φ(ξ) > 0, which is a contradiction. This completes
the proof of Theorem 1.1.

3. ASYMPTOTIC BEHAVIOR OF TRAVELING WAVES

In this section, we will find a priori estimate and asymptotic behavior of any
nonnegative traveling wave solution with the help of Ikehara’s Theorem.

We recall a version of Ikehara’s Theorem.

Lemma 3.1. ([4], Proposition 2.3). Let l(λ) =
∫ +∞
0 u(x)e−λxdx, with u being a

positive decreasing function. Assume that l(λ) has the representation

l(λ) =
h(λ)

(λ+ α)k+1
,

where k > −1 and h is analytic in the strip −α ≤ �λ < 0. Then

lim
x→∞

u(x)
xke−αx

=
h(−α)

Γ(α + 1)
.

In what follows, we assume that φ̃(x + ct) is any nonnegative bounded traveling
wave of (1.8) with φ̃(−∞) = 0 and φ̃ 	≡ 0. Then we can obtain the following results.

Lemma 3.2. Assume that (H1)-(H2) and (A1) hold. Then the function φ̃(ξ) is
strictly positive for ξ ∈ R.

Proof. Suppose on the contrary that there exists ξ1 ∈ R such that φ̃(ξ1) = 0.
Since φ̃ is a nonnegative bounded traveling wave with φ̃(−∞) = 0 and φ̃ 	≡ 0,
ξ0 := sup{ξ ∈ R | φ̃(ξ) = 0} is well defined and φ̃(ξ0) = φ̃′(ξ0) = 0. Thus,

0 = cφ̃′(ξ0) = d[J ∗ φ̃(ξ0) − φ̃(ξ0)] + f
(
φ̃(ξ0),

∫
R

k(y)φ̃(ξ0 − cτ − y)dy
)

= d

∫
R

J(y)φ̃(ξ0 − y)dy + f
(
0,

∫
R

k(y)φ̃(ξ0 − cτ − y)dy
)

≥ d

∫
R

J(y)φ̃(ξ0 − y)dy + f(0, 0) = d

∫
R

J(y)φ̃(ξ0 − y)dy.

which implies that φ̃(ξ0 − y) = 0 a.e. on R. This contradict the definition of ξ0. This
completes the proof.
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Lemma 3.3. Assume that (H1)-(H2) and (A1)-(A3) hold. Then
∫ ξ
−∞ φ̃(θ)dθ < ∞

for any ξ ∈ R.

Proof. Let �1 = ∂1f(0, 0) + ∂2f(0, 0) > 0 and �2 = ∂2f(0, 0) − ∂1f(0, 0).
Since lim

ξ→−∞
φ̃(ξ) = 0, there exists ξ′ < 0 such that for any ξ < ξ′,

�1

4

(
φ̃(ξ) +

∫
R

k(y)φ̃(ξ − cτ − y)dy
)

> L

(
[φ̃(ξ)]1+σ1 +

[ ∫
R

k(y)φ̃(ξ − cτ − y)dy
]1+σ2

)
.

Then for any ξ < ξ′, we have

(3.1)

cφ̃′(ξ)

= d(J ∗ φ̃(ξ) − φ̃(ξ)) + f
(
φ̃(ξ),

∫
R

k(y)φ̃(ξ − cτ − y)dy
)

≥ d(J ∗ φ̃(ξ)−φ̃(ξ))+∂1f(0, 0)φ̃(ξ)+∂2f(0, 0)
∫

R

k(y)φ̃(ξ−cτ−y)dy

−L[φ̃(ξ)]1+σ1 − L

[∫
R

k(y)φ̃(ξ − cτ − y)dy
]1+σ2

= d(J ∗ φ̃(ξ) − φ̃(ξ))− L

(
[φ̃(ξ)]1+σ1 +

[ ∫
R

k(y)φ̃(ξ − cτ − y)dy
]1+σ2

)
+
�1

4
φ̃(ξ) +

�2

2

(∫
R

k(y)φ̃(ξ − cτ − y)dy − φ̃(ξ)
)

+
�1

4

∫
R

k(y)φ̃(ξ − cτ − y)dy +
�1

4

(∫
R

k(y)φ̃(ξ − cτ − y)dy + φ̃(ξ)
)

≥ d(J ∗ φ̃(ξ) − φ̃(ξ)) +
�1

4
φ̃(ξ) +

�2

2

(∫
R

k(y)φ̃(ξ − cτ − y)dy − φ̃(ξ)
)

+
�1

4

∫
R

k(y)φ̃(ξ − cτ − y)dy.

According to Fubini’s theorem and Lebesgue’s dominated convergent theorem, we have∫ ξ

η
(J ∗ φ̃(θ) − φ̃(θ))dθ =

∫ ξ

η

(∫
R

J(θ)(φ̃(θ − ϑ)− φ̃(ϑ))dθ
)
dϑ

= −
∫ ξ

η

(∫
R

J(θ)θ
∫ 1

0

φ̃′(ϑ− tθ)dtdϑ
)
dθ(3.2)

= −
∫

R

J(θ)θ
∫ 1

0
(φ̃(ξ − tθ) − φ̃(η − tθ))dtdθ

→ −
∫

R

J(θ)θ
∫ 1

0
φ̃(ξ − tθ)dtdθ
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as η → −∞, and∫ ξ

η

(∫
R

k(y)φ̃(θ − cτ − y)dy − φ̃(θ)
)
dθ

=
∫ ξ

η

(∫
R

k(y)[φ̃(θ − cτ − y) − φ̃(θ)]dy
)
dθ

= −
∫ ξ

η

(∫
R

k(y)(cτ + y)
∫ 1

0
φ̃′(θ − (cτ + y)t)dtdy

)
dθ(3.3)

= −
∫

R

k(y)(cτ + y)
(∫ 1

0
[φ̃(ξ − (cτ + y)t) − φ̃(η − (cτ + y)t)]dt

)
dy

→ −
∫

R

(
k(y)(cτ + y)

∫ 1

0
φ̃(ξ − (cτ + y)t)dt

)
dy

η → −∞. Integrating (3.1) from −∞ to ξ, according to (3.2) and (3.3), then for any
ξ < ξ′,

cφ̃(ξ)+
ω2

2

∫
R

(
k(y)(cτ + y)

∫ 1

0
φ̃(ξ−(cτ+y)t)dt

)
dy+d

∫
R

J(θ)θ
∫ 1

0
φ̃(ξ−tθ)dtdθ

≥ �1

4

∫ ξ

−∞
φ̃(θ)dθ +

�1

4

∫ ξ

−∞

(∫
R

k(y)φ̃(θ − cτ − y)dy
)
dθ

≥ �1

4

∫ ξ

−∞
φ̃(θ)dθ.

Thus, we can obtain that
∫ ξ
−∞ φ̃(θ)dθ<∞ for any ξ∈R. This completes the proof.

Lemma 3.4. Assume that (H1)-(H2) and (A1)-(A3) hold. Then there exists a posi-
tive constant � such that φ̃(ξ) = O(e	ξ) as ξ→−∞. Moreover, supξ∈R φ̃(ξ)e−	ξ<∞.

Proof. Letting V (ξ) =
∫ ξ
−∞ φ̃(θ)dθ, it is easily seen that V (ξ) > 0 is nondecreas-

ing and lim
ξ→−∞

V (ξ)=0. First, we claim that
∫ ξ
−∞ V (θ)dθ < +∞ for any ξ ∈ R.

If ω2 ≥ 0, for any ξ < ξ′, ξ′ given in Lemma 3.3, integrating (3.1) from −∞ to ξ,
we have

(3.4)
cφ̃(ξ) ≥ d(J ∗ V (ξ)− V (ξ)) +

�1

4
V (ξ)

+
�2

2
(k ∗ V (ξ − cτ)− V (ξ)) +

�1

4
k ∗ V (ξ − cτ).

Integrating (3.4) from −∞ to ξ, it follows that
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(3.5)
cV (ξ) ≥ d

∫ ξ

−∞
(J ∗ V (θ) − V (θ))dθ +

�1

4

∫ ξ

−∞
V (θ)dθ

+
�2

2

∫ ξ

−∞
(k ∗ V (θ−cτ)− V (θ))dθ+

�1

4

∫ ξ

−∞
k ∗ V (θ−cτ)dθ.

Letting Q(ξ) =
∫ ξ
−∞ J(θ)dθ, it is easily seen that Q(−ξ) = 1 −Q(ξ). Since V (ξ) is

nondecreasing, it follows that∫ ξ

−∞
J ∗ V (θ) =

∫ ξ

−∞
V (θ + ξ)Q(θ)dθ

and ∫ +∞

0
V (ξ + θ)Q(θ)dθ ≥

∫ +∞

0
V (ξ − θ)Q(θ)dθ

=
∫ 0

−∞
V (ξ + θ)Q(−θ)dθ

=
∫ 0

−∞
V (ξ + θ)(1−Q(θ))dθ

which implies that∫ ξ

−∞
V (θ + ξ)Q(θ)dθ ≥

∫ 0

−∞
V (ξ + θ)dθ =

∫ ξ

−∞
V (θ)dθ.

Thus, we have ∫ ξ

−∞
[J ∗ V (θ) − V (θ)]dθ ≥ 0.(3.6)

Similarly, we can also obtain∫ ξ

−∞
[k ∗ V (θ − cτ)− V (θ − cτ)]dθ ≥ 0.(3.7)

By (3.5)-(3.7), we obtain

cV (ξ) ≥ �1

4

∫ ξ

−∞
V (θ)dθ +

�2

2

∫ ξ

−∞
[V (θ − cτ) − V (θ)]dθ

=
�1

4

∫ ξ

−∞
V (θ)dθ − �2cτ

2

∫ 1

0
V (ξ − cτt)dt,(3.8)

which implies that

(3.9) cV (ξ) ≥ �1

4

∫ ξ

−∞
V (θ)dθ − �2cτ

2
V (ξ)
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since V (ξ) is nondecreasing. By (3.9), V (ξ) is integrable on (−∞, ξ′]. Thus, if
�2 ≥ 0, then

∫ ξ
−∞ V (θ)dθ < +∞ for any ξ ∈ R.

If ω2 < 0, then ∂1f(0, 0) > ∂2f(0, 0) ≥ 0. Then for any ξ ≤ ξ′ (sufficiently large
−ξ′ > 0), we have

cφ̃′(ξ) = d(J ∗ φ̃(ξ) − φ̃(ξ)) + f
(
φ̃(ξ),

∫
R

k(y)φ̃(ξ − cτ − y)dy
)

≥ d(J ∗ φ̃(ξ) − φ̃(ξ)) + f(φ̃(ξ), 0)(3.10)

≥ d(J ∗ φ̃(ξ) − φ̃(ξ)) +
1
2
∂1f(0, 0)φ̃(ξ).

Thus, it follow from (3.10) that

cφ̃(ξ) ≥ d(J ∗ V (ξ)− V (ξ)) +
1
2
∂1f(0, 0)V (ξ).(3.11)

Integrating(3.11) from −∞ to ξ, we obtain

cV (ξ) ≥ d

∫ ξ

−∞
[J ∗ V (θ) − V (θ)]dθ +

1
2
∂1f(0, 0)

∫ ξ

−∞
V (θ)dθ

≥ 1
2
∂1f(0, 0)

∫ ξ

−∞
V (θ)dθ.(3.12)

Therefore, if �2 < 0, then
∫ ξ
−∞ V (θ)dθ < +∞ also holds for any ξ ∈ R.

Furthermore, we can verify that V (ξ) = O(e	ξ) as ξ → −∞.
In fact, for any r > 2
2cτ+4c


1
> 0 and �2 ≥ 0, it is clear that

(�2cτ

2
+ c

)
V (ξ) ≥ �1

4

∫ ξ

ξ−r
V (θ)dθ− ≥ r�1

4
V (ξ − r).

For any r > (2+cτ )c

1

> 0 and �2 < 0, we can obtain

cV (ξ) ≥ 1
2
∂1f(0, 0)

∫ ξ

ξ−r
V (θ)dθ ≥ r∂1f(0, 0)

2
V (ξ − r).

Thus, there exists r0 > 0 and some ρ with 0 < ρ < 1 such that

V (ξ − r0) ≤ ρV (ξ).

Let g(ξ) = V (ξ)e−	ξ , where � = 1
r0

ln 1
ρ < μ. Then

(3.13) g(ξ − r0) = V (ξ − r0)e−	(ξ−r0) =
1
ρ
V (ξ − r0)e−	ξ ≤ V (ξ)e−	ξ = g(ξ).
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Noting that g(ξ) is bounded for all ξ ∈ [ξ′ − r0, ξ
′], then (3.13) implies that g(ξ) is

bounded for all ξ ≤ ξ′, that is, V (ξ) = O(e	ξ) as ξ → −∞.
Since V (ξ) = O(e	ξ) as ξ → −∞, by (H1)-(H2), then ∫

R
J(θ)V (ξ − θ)dθ =

O(e	ξ) as ξ → −∞ and
∫

R
k(θ)V (ξ − θ − cτ)dθ = O(e	ξ) as ξ → −∞. Integrating

the first equality of (3.4) from −∞ to ξ and by lim
ξ→−∞

φ̃(ξ) = 0, it follows that

cφ̃(ξ) = d

∫
R

J(θ)V (ξ − θ)dθ − dV (ξ) +
∫ ξ

−∞
f
(
φ̃(θ),

∫
R

k(θ)V (ξ − θ − cτ)dθ
)
dθ

≤ d

∫
R

J(θ)V (ξ − θ)dθ − dV (ξ)

+
∫ ξ

−∞

[
(∂1f(0, 0)φ̃(θ) + ∂2f(0, 0)

∫
R

k(ϑ)φ̃(θ − ϑ− cτ)dϑ
]
dθ

= d

∫
R

J(θ)V (ξ − θ)dθ − dV (ξ)

+ ∂1f(0, 0)V (ξ) + ∂2f(0, 0)
∫

R

k(ϑ)V (ξ − ϑ− cτ)dϑ

which implies that φ̃(ξ) = O(e	ξ) as ξ → −∞. Since both φ̃(ξ) and e−	ξ are bounded
if ξ > ξ′, then supξ∈R φ̃(ξ)e−	ξ <∞. This completes the proof.

Remark 3.1. Lemma 3.4 implies that
∫

R
φ̃(θ)e−λθdθ <∞ for any 0 < �λ < �.

Proof of Theorem 1.2. For any λ with 0 < �λ < � and using Remark 3.1, we can
now define a two-sided Laplace transform of φ̃ by

L(λ) ≡
∫

R

e−λθφ̃(θ)dθ.

Note that ∫
R

e−λθJ ∗ φ̃(θ)dθ

=
∫

R

e−λϑJ(ϑ)
∫

R

φ̃(θ − ϑ)e−λ(θ−ϑ)dθdϑ = L(λ)
∫

R

e−λϑJ(ϑ)dϑ

and ∫
R

e−λθk ∗ φ̃(θ − cτ)dθ = L(λ)e−cτλ

∫
R

e−λϑk(ϑ)dϑ

Since the first equality of (3.1) can be written as
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(3.14)

d(J ∗ φ̃(ξ) − φ̃(ξ))− cφ̃′(ξ) + ∂1f(0, 0)φ̃(ξ)

+∂2f(0, 0)
∫

R

k(y)φ̃(ξ − cτ − y)dy

= ∂1f(0, 0)φ̃(ξ) + ∂2f(0, 0)
∫

R

k(y)φ̃(ξ − cτ − y)dy

−f
(
φ̃(ξ),

∫
R

k(y)φ̃(ξ − cτ − y)dy
)

=: R(φ̃)(ξ),

we have

(3.15) Δ(λ, c)L(λ) =
∫ ∞

−∞
e−λθR(φ̃)(θ)dθ.

It is easily seen that the left-hand side of (3.15) is analytic for �λ ∈ (0, �). According
to (A3), for any u > 0, there exists L > 0 such that

f(u, v) ≥ ∂1f(0, 0)u+ ∂2f(0, 0)v − L
(
u1+σ1 + v1+σ2

)
, ∀u, v ∈ [0, u],

where

L =: max
{
L, δ−(1+min{σ1,σ2}) max

u,v∈[0,u]
{∂1f(0, 0)u+ ∂2f(0, 0)v − f(u, v)}

}
.

Thus,

−L
(

[φ̃(ξ)]1+σ1 +
[ ∫

R

k(y)φ̃(ξ − cτ − y)dy
]1+σ2

)
≤ R(φ̃)(ξ) ≤ 0.

Choosing ν > 0 such that ν < min{σ1, σ2}�. Then for any λ ∈ (0, �+ ν), we have∫ ∞

−∞
e−λθ[φ̃(θ)]1+σ1dθ =

∫
R

e−(λ−ν)θφ̃(θ)
(
φ̃(θ)e−

νθ
σ1

)σ1

dθ

≤L(λ− ν)
(

sup
ξ∈R

φ̃(ξ)e−
νξ
σ1

)σ1

< +∞

and ∫ ∞

−∞
e−λθ

[ ∫
R

k(y)φ̃(θ − cτ − y)dy
]1+σ2

dθ

=
∫ ∞

−∞
e−(λ−ν)(θ−cτ )

∫
R

k(y)φ̃(θ − cτ − y)dye−λcτe−ν(θ−cτ )

[ ∫
R

k(y)φ̃(θ − cτ − y)dy
]σ2

dθ

=
∫ ∞

−∞

{
e−(λ−ν)(θ−cτ )

∫
R

k(y)φ̃(θ − cτ − y)dye−λcτ
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×
[ ∫

R

k(y)e−
ν
σ2

(θ−cτ−y)
φ̃(θ − cτ − y)e−

ν
σ2

y
dy

]σ2
}
dθ

≤
[ ∫

R

k(y)e−
ν

σ2
y
dy

]σ2
(

sup
ξ∈R

φ̃(ξ)e−
νξ
σ2

)σ2
∫ ∞

−∞
e−(λ−ν)(θ−cτ )

∫
R

k(y)φ̃(θ − cτ − y)dye−λcτdθ

= e−λcτ
[ ∫

R

k(y)e−
ν

σ2
y
dy

]σ2
(

sup
ξ∈R

φ̃(ξ)e−
νξ
σ2

)σ2

×
∫

R

k(y)
(∫ ∞

−∞
e−(λ−ν)(θ−cτ−y)φ̃(θ − cτ − y)e−(λ−ν)ydy

)
dθ

= L(λ− ν)e−λcτ
[ ∫

R

k(y)e−
ν

σ2
y
dy

]σ2
(

sup
ξ∈R

φ̃(ξ)e−
νξ
σ2

)σ2
∫

R

k(y)e−(λ−ν)ydy < +∞.

Therefore, we obtain∣∣∣∣∫ ∞

−∞
e−λθR(φ̃)(θ)dθ

∣∣∣∣
≤L

∫ ∞

−∞
e−λθ

∣∣∣∣[φ̃(θ)]1+σ1 +
[ ∫

R

k(y)φ̃(θ − cτ − y)dy
]1+σ2

∣∣∣∣dθ < +∞

We now use a property of Laplace transform ([25], p. 58). Since φ̃(ξ) > 0, there
exists a real κ such that L(λ) is analytic for 0 < �λ < κ and L(λ) has a singularity at
λ = κ. Hence, c ≥ c∗, L(λ) is analytic for 0 < �λ < λ1 and L(λ) has a singularity
at λ = λ1.
We first prove (iii) of Theorem 1.2. We argue by contradiction, that is, for 0 <

c < c∗, there is a nonnegative bounded traveling wave with φ̃(−∞) = 0 and φ̃ 	≡ 0.
Since Δ(c, λ) has no real zeros, L(λ) is analytic for all λ with �λ > 0. Using (3.15),
it follows that ∫ ∞

−∞
e−λθ[Δ(λ, c)φ̃(θ) − R(φ̃)(θ)]dθ = 0

which implies a contradiction since Δ(λ, c) → +∞ as λ → +∞.

Next we prove (i) and (ii) of Theorem 1.2. From now on, we study the case c ≥ c∗.
In order to apply Lemma 3.1, we rewrite (3.15) as

∫ 0

−∞
e−λθφ̃(θ)dθ =

∫ ∞
−∞ e−λθR(φ̃)(θ)dθ

Δ(λ, c)
−

∫ ∞

0
e−λθφ̃(θ)dθ.(3.16)

Note that
∫ ∞
0 φ̃(θ)e−λθdθ is analytic for �λ > 0. Also, Δ(λ, c) = 0 does not have any

zero with �λ = λ1 other than λ = λ1. In fact, letting λ = λ1 + iβ, then Δ(λ, c) = 0
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implies that

(3.17)
cλ1 = d

[∫
R

e−λ1yJ(y) cosβydy − 1
]

+ ∂1f(0, 0)

+∂2f(0, 0)
∫

R

e−λ1(y+cτ )k(y) cosβ(cτ + y)dy

and

(3.18) cβ=d
∫

R

e−λy sinβyJ(y)dy + ∂2f(0, 0)
∫

R

e−λ1(y+cτ )k(y) sinβ(cτ+y)dy.

According to (3.17) and Δ(λ1, c) = 0, we can obtain

(3.19) d

∫
R

e−λy sin2 βy

2
J(y)dy+∂2f(0, 0)

∫
R

e−λ(y+cτ ) sin2 β(cτ + y)
2

k(y)dy=0.

If ∂2f(0, 0) = 0, (3.19) can imply sin βy
2 = 0 and it is easily seen that β = 0 by (3.18).

If ∂2f(0, 0) > 0, according to (3.19), then we have sin βy
2 = 0 and sin β(cτ+y)

2 = 0
which imply that β = 0 by (3.18).
Assume that φ̃(ξ) is increasing for large −ξ > 0, then we can choose a translation

of φ̃ that is increasing for ξ < 0. Letting u(ξ) = φ̃(−ξ) and

T(u)(ξ) = ∂1f(0, 0)u(ξ) + ∂2f(0, 0)
∫

R

k(y)u(ξ + cτ + y)dy

−f
(
u(ξ),

∫
R

k(y)u(ξ + cτ + y)dy
)
,

it is clear that u(ξ) is decreasing ξ > 0 and∫ +∞

0

eλθu(θ)dθ =

∫ ∞
−∞ eλθT(u)(θ)dθ

Δ(λ, c)
−

∫ ∞

0

e−λθφ̃(θ)dθ

=:
h(λ)

(λ− λ1)i+1
,

where i = 0 for c > c∗, and i = 1 for c = c∗, and

h(λ) =
(λ− λ1)i+1

∫ ∞
−∞ eλθT(u)(θ)dθ

Δ(λ, c)
− (λ− λ1)i+1

∫ ∞

0

e−λθφ̃(θ)dθ.

By Lemma 2.2, limλ→λ1 h(λ) exists. Therefore, h(λ) is analytic for all 0 < �λ ≤ λ1.
Then Lemma 3.1 implies that

lim
ξ→+∞

u(ξ)
ξke−λ1ξ

exists, i.e., lim
ξ→−∞

φ̃(ξ)
|ξ|keλ1ξ

exists,
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that is,

lim
ξ→−∞

φ̃(ξ)
eλ1ξ

exists for c > c∗, lim
ξ→−∞

φ̃(ξ)
|ξ|eλ∗ξ

exists for c = c∗.

Now we assume that φ̃(ξ) is not monotone for large −ξ > 0. letting

p =
1 +M + d

c
and U(ξ) = φ̃(ξ)epξ,

where M = max
(u,v)∈[0,K]2

{|∂1f(u, v)|}, then for large enough −ξ > 0, we have

cU
′(ξ) = dJ ∗ φ̃(ξ)epξ + [(1 +M)φ̃(ξ) + f

(
φ̃(ξ),

∫
R

k(y)φ̃(ξ− cτ − y)dy
)
]epξ > 0.

Then we can choose a translation of U which is increasing for ξ < 0. Letting ū(ξ) =
U(−ξ), it is clear that ū(ξ) is decreasing ξ > 0. Let L(λ) =

∫
R
e−λξU(ξ)dξ. Noting

that L(λ) = L(λ− p) and repeating the above argument, we have

lim
ξ→+∞

U(ξ)
ξie−(p+λ1)ξ

= lim
ξ→−∞

φ̃(ξ)
|ξ|ieλ1ξ

exists.

Thus, it follows that

lim
ξ→−∞

φ̃(ξ)
eλ1ξ

exists for c > c∗, lim
ξ→−∞

φ̃(ξ)
|ξ|eλ∗ξ

exists for c = c∗.

This completes the proof of Theorem 1.2.

4. UNIQUENESS OF THE TRAVELING WAVE FRONT

In this section, we will prove that the traveling wave front obtained in Theorem
1.1 is unique up to a translation by using the technique in [5, 6].

Lemma 4.1. Assume that (H1)-(H2) and (A1)-(A3) hold. Then there exists ρ0 ∈
(0, K) such that for any solution (c, φ) of (1.9) and (1.10) and any ρ ∈ (0, ρ0),

f((1 + ρ)φ(ξ), (1+ ρ)k ∗ φ(ξ − cτ))− (1 + ρ)f(φ(ξ), k ∗ φ(ξ − cτ)) < 0

for all ξ satisfying φ(ξ) > K − ρ0.

Proof. Since φ(+∞) = K, there exist ρ0 ∈ (0, K) and large enough M0 > 0
such that φ(ξ) > K − ρ0 for ξ > M0. On the other hand, when ξ → +∞, it follows
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from the Taylor expansion that

f(φ(ξ), k ∗ φ(ξ − cτ)) = (φ(ξ)−K)∂1f(K,K) + (k ∗ φ(ξ − cτ) −K)∂2f(K,K)

+ o(|φ(ξ)−K|) + o(|k ∗ φ(ξ − cτ) −K|),
∂1f(φ(ξ), k ∗ φ(ξ − cτ)) = ∂1f(K,K) +O(|φ(ξ)−K|) +O(|k ∗ φ(ξ − cτ)−K|),
∂2f(φ(ξ), k ∗ φ(ξ − cτ)) = ∂2f(K,K) +O(|φ(ξ)−K|) +O(|k ∗ φ(ξ − cτ)−K|).
Thus, we have

d

dρ
[f((1 + ρ)φ(ξ), (1 + ρ)k ∗ φ(ξ − cτ)) − (1 + ρ)f(φ(ξ), k ∗ φ(ξ − cτ))]

∣∣∣
ρ=0

=φ(ξ)∂1f(φ(ξ), k ∗ φ(ξ − cτ)) + k ∗ φ(ξ − cτ)∂2f(φ(ξ), k ∗ φ(ξ − cτ))

− f(φ(ξ), k ∗ φ(ξ − cτ))

= ∂1f(K,K) + ∂2f(K,K) +O(|φ(ξ)−K|) +O(|k ∗ φ(ξ − cτ)−K|).
Since ∂1f(K,K) + ∂2f(K,K) < 0, we may choose ρ0 > 0 small enough such that

d

dρ
[f((1 + ρ)φ(ξ), (1+ ρ)k ∗ φ(ξ − cτ))− (1 + ρ)f(φ(ξ), k ∗ φ(ξ − cτ))]

∣∣∣
ρ=0

< 0

for all ξ satisfying φ(ξ) > K − ρ0. This completes the proof.

For any fixed solution (c, φ) of (1.9) and (1.10), we define

κ = κ(φ) := sup
{
φ(ξ)
φ′(ξ)

∣∣∣φ(ξ) ≤ K − ρ0

}
.

Then 0 < κ < +∞ since lim
ξ→−∞

φ′(ξ)
φ(ξ) = λ1.

Lemma 4.2. Assume that (H1)-(H2) and (A1)-(A) hold. Let (c, φ1) and (c, φ2) be
two solutions of (1.9) and (1.10), there exists ρ ∈ (0, ρ0] such that (1+ρ)φ1(ξ−κρ) ≥
φ2(ξ) for ξ ∈ R. Then φ1(ξ) ≥ φ2(ξ) for ξ ∈ R.

Proof. Let w(ρ, ξ) := (1 + ρ)φ1(ξ − κρ)− φ2(ξ) and

ρ∗ := inf{ρ > 0|w(ρ, ·) ≥ 0 on R}.
By the continuity, w(ρ∗, ·) ≥ 0 on R. Next we prove that ρ∗ = 0. Suppose on the
contrary that q∗ ∈ (0, ρ0]. By the definition of κ, we have

d

dρ
w(ρ, ξ) = φ1(ξ − κρ)− (1 + ρ)κφ′1(ξ − κρ) < 0(4.1)
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for all ξ satisfying φ(ξ) ≤ K − ρ0. According to the definition of ρ∗ and w(ρ∗, ·) ≥ 0
on R, (4.1) implies that there exists ξ0 satisfying φ1(ξ0 − κρ∗) > K − ρ0 such that
w(ρ∗, ξ0) = wξ(ρ∗, ξ0) = 0, J ∗φ2(ξ0) ≤ J ∗φ1(ξ∗0) and k ∗φ2(ξ0−cτ) ≤ (1+ρ∗)k ∗
φ1(ξ∗0 − cτ), where ξ∗0 = ξ0 − κρ∗. Then, it follows that

0 = cφ′2(ξ0) − d(J ∗ φ2(ξ0) − φ2(ξ0))− f(φ2(ξ0), k ∗ φ2(ξ0 − cτ))
≥ (1 + ρ∗)[cφ′1(ξ

∗
0) − d(J ∗ φ1(ξ∗0) − φ1(ξ∗0))]

− f((1 + ρ∗)φ1(ξ∗0), (1 + ρ∗)k ∗ φ1(ξ∗0 − cτ))
= (1 + ρ∗)f(φ1(ξ∗0), k ∗ φ1(ξ∗0−cτ))−f((1 + ρ∗)φ1(ξ∗0), (1 + ρ∗)k ∗ φ1(ξ∗0 − cτ))

which contradicts Lemma 4.1. Hence ρ∗ = 0 and φ1(ξ) ≥ φ2(ξ) for ξ ∈ R. This
completes the proof.

Lemma 4.3. Assume that (H1)-(H2) and (A1)-(A3) hold. Let (c, φ1) and (c, φ2)
be two solutions of (1.9) and (1.10) satisfying φ2 ≤ φ1. Then either φ2 ≡ φ1 or
φ2 < φ1 on R.

Proof. Suppose that there exists ξ0 such that φ1(ξ0) = φ2(ξ0). Since φ1 and φ2 are
the solutions of (1.9) and (1.10), we have T (φ1)(ξ0) = φ1(ξ0) and T (φ2)(ξ0) = φ2(ξ0).
Thus

0 = φ1(ξ0)− φ2(ξ0) =
1
c
e−

β
c
ξ0

∫ ξ0

−∞
e

β
c
y[H(φ1)(y)−H(φ2)(y)]dy.(4.2)

According to Lemma 2.1, it follows that H(φ1)(ξ) ≥ H(φ2)(ξ) for all ξ ∈ R. There-
fore, (4.2) implies that H(φ1)(y) = H(φ2)(y) for all y ≤ ξ0, i.e.,

dJ ∗ φ1(y) + (β − d)φ1(y) + f
(
φ1(y),

∫
R

k(s)φ1(y − cτ − s)dy
)

= dJ ∗ φ2(y) + (β − d)φ2(y) + f
(
φ2(y),

∫
R

k(s)φ2(y − cτ − s)dy
)
,

which implies that

0 ≥ d

∫
R

J(s)[φ1(y − s) − φ2(y − s)]ds

by Lemma 2.1. Hence φ1(ξ) = φ2(ξ) for all ξ ∈ R. This completes the proof.

Proof of Theorem 1.3. Let (c, φ1) and (c, φ2) be two solutions of (1.9) and (1.10).
By translation, we may assume that φ1(0) = φ2(0) = K

2 . By Theorem 1.2, lim
ξ→−∞

φ2(ξ)
φ1(ξ)

exists. Hence we may assume that lim
ξ→−∞

φ2(ξ)
φ1(ξ)

≤ 1 (otherwise, we may consider

lim
ξ→−∞

φ1(ξ)
φ2(ξ)

). Then lim
ξ→−∞

φ2(ξ−z)
φ1(ξ)

< 1 for all z > 0.
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For any fixed number z > 0, there exists ξ1 > 0 such that φ1(ξ) > φ2(ξ − z) on
(−∞,−ξ1]. Thus, there exists large enough z0 > 0 such that (1 + ρ0)φ1(ξ − κρ0) ≥
φ2(ξ − z0) for all ξ ∈ R. Applying Lemma 4.2, we have φ1(ξ) ≥ φ2(ξ − z0) for all
ξ ∈ R. We may define

z∗ := inf{z > 0|φ1(ξ) ≥ φ2(ξ − z), for all ξ ∈ R}.

We claim that z∗ = 0. Indeed, suppose on the contradiction that z∗ > 0. According to
lim

ξ→−∞
φ2(ξ−z∗)

φ1(ξ− z∗
2

)
< 1, there exists ξ2 such that

φ1(ξ − z∗

2
) ≥ φ2(ξ − z∗) for all ξ ∈ (−∞,−ξ2].(4.3)

According to φ1(+∞) = K and φ′1(+∞) = 0, there exists ξ3 � 1 such that

d

dρ
[(1 + ρ)φ1(ξ − 2κρ)] = φ1 − 2κ(1 + ρ)φ′1 > 0

for all ρ ∈ [0, 1] and ξ ∈ (−∞,−ξ3]. Thus, for all ρ ∈ [0, 1] and ξ ∈ (−∞,−ξ3], we
have

(1 + ρ)φ1(ξ − 2κρ) ≥ φ(ξ) ≥ φ2(ξ − z∗).(4.4)

Now we consider ξ ∈ [−ξ2, ξ3]. Since φ1(·) ≥ φ2(· − z∗) in R and φ1(z∗) >
φ2(0), by Lemma 4.3, we have φ1(·) > φ2(· − z∗) in R. Thus, we can choose
0 < ε < min{ρ0,

z∗
4κ} such that

φ1(· − 2κε) ≥ φ2(· − z∗) on [−ξ2, ξ3].(4.5)

Combining (4.3), (4.4) and (4.5), it follows that (1 + ε)φ1(· − 2κε) ≥ φ2(· − z∗) in R.
According to Lemma 4.2, we have

φ1(ξ − κε) ≥ φ2(ξ − z∗), ∀ ξ ∈ R.

which contradicts the definition of z∗. Therefore, z∗ = 0. Since φ1(0) = φ2(0) = K
2 ,

by Lemma 4.3, φ1 ≡ φ2 on R. This completes the proof of Theorem 3.

5. APPLICATIONS

We first investigate the existence, asymptotics and uniqueness of traveling waves
for (1.6). Since f(u, v) = r(1− u)v satisfies assumptions (A1)-(A3), we can obtain
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Theorem 5.1. Assume that (H1)-(H2) hold. Then there exists a positive constant
c∗ such that for each c ≥ c∗, (1.6) admits a unique (up to translation) nondecreasing
positive traveling wave front u(t, x) = φ(x + ct) connecting 0 and 1. Moreover, if
c > c∗, then

lim
ξ→−∞

φ(ξ)e−λ1ξ = 1, lim
ξ→−∞

φ′(ξ)e−λ1ξ = λ1,

where λ1 > 0 is the smallest root of the equation

Δ(c, λ) = cλ− d

[∫
R

e−λyJ(y)dy − 1
]
− re−cτλ

∫
R

e−λyk(y)dy = 0.

Theorem 5.2. Assume that (H1)-(H2) hold and φ̃(ξ) is a nonnegative bounded
traveling wave of (1.6) with φ̃(−∞) = 0 and φ̃ 	≡ 0. Then we have the following
conclusions

(i) For every c > c∗, lim
ξ→−∞

φ̃(ξ)e−λ1ξ exists.

(ii) For c=c∗, there exists a constant λ∗>0 such that lim
ξ→−∞

φ̃(ξ)ξ−1e−λ∗ξ exists.

(iii) For 0 < c < c∗, there is no nonnegative bounded traveling wave with φ̃(−∞) =
0 and φ̃ 	≡ 0.

Next, consider the following diffusive Nicholson’s blowflies equation (1.7), where
r > 0 and τ ≥ 0. When 1 < p ≤ e, f(u, v) = −ru+ rpve−v satisfies (A1) and (A2).
Therefore, we have the following results.

Theorem 5.3. Assume that (H1)-(H2) hold. Then there exists a positive constant
c∗ such that for each c ≥ c∗, (1.7) admits a unique (up to translation) nondecreasing
positive traveling wave front u(t, x) = φ(x+ ct) connecting 0 and lnp. Moreover, if
c > c∗, then

lim
ξ→−∞

φ(ξ)e−λ1ξ = 1, lim
ξ→−∞

φ′(ξ)e−λ1ξ = λ1,

where λ1 > 0 is the smallest root of the equation

Δ(c, λ) = cλ− d

[∫
R

e−λyJ(y)dy − 1
]

+ r − rpe−cτλ

∫
R

e−λyk(y)dy = 0.

Theorem 5.4. Assume that (H1)-(H2) hold and φ̃(ξ) is a nonnegative bounded
traveling wave of (1.7) with φ̃(−∞) = 0 and φ̃ 	≡ 0. Then we have the following
conclusions

(i) For every c > c∗, lim
ξ→−∞

φ̃(ξ)e−λ1ξ exists.

(ii) For c=c∗, there exists a constant λ∗ > 0 such that lim
ξ→−∞

φ̃(ξ)ξ−1e−λ∗ξ exists.
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(iii) For 0 < c < c∗, there is no nonnegative bounded traveling wave with φ̃(−∞) =
0 and φ̃ 	≡ 0.

Remark 5.3. Letting k(x) = δ(x), (1.6) and (1.7) can be reduced to nonlocal
diffusion systems (1.3) and (1.4). Thus, our results improve and complement the
previous works.
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