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QUASI-PERIODIC SOLUTIONS OF 1D NONLINEAR SCHRÖDINGER
EQUATION WITH A MULTIPLICATIVE POTENTIAL

Xiufang Ren

Abstract. This paper deals with one-dimensional (1D) nonlinear Schrödinger
equation with a multiplicative potential, subject to Dirichlet boundary conditions.
It is proved that for each prescribed integer b > 1, the equation admits small-
amplitude quasi-periodic solutions, whose b-dimensional frequencies are small
dilation of a given Diophantine vector. The proof is based on a modified infinite-
dimensional KAM theory.

1. INTRODUCTION AND STATEMENT OF THE THEOREM

The aim in the present paper is to prove the existence of quasi-periodic solutions,
whose frequencies are small dilation of a given Diophantine vector ω∗, with dilation
factor λ, i.e.,

(1.1) ω = λω∗, λ ≈ 1, λ ∈ R,

of the one-dimensional (1D) nonlinear Schrödinger equation

(1.2) iut − uxx + V (x)u + |u|2u + f(|u|2)u = 0, t ∈ R, x ∈ [0, π],

subject to Dirichlet boundary conditions

(1.3) u(t, 0) = 0 = u(t, π),

where V (x) is real analytic on [0, π], f is real analytic near u = 0, with f(0) = f ′(0) =
0.
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Before describing our main result in detail, we present some literature on quasi-
periodic solutions for Hamiltonian PDEs.
In the 90’s, the finite-dimensional KAM theory (see for example the works of

Bourgain [5], Eliasson [9], Li-Yi [18], Xu-You [23], You [24]) has been success-
fully extended to infinite dimensions, dealing with certain classes of partial differential
equations carrying a Hamiltonian structure. In particular, the existence problem of
quasi-periodic solutions for Hamiltonian PDEs has received considerable attention in
the last twenty years. The main difficulty is the presence of arbitrarily ‘small divisors’
in the series expansion of the solutions. The first pioneering existence results of quasi-
periodic solutions have been proved by Kuksin [15] and Wayne [26] for 1D analytic
PDEs on an interval with Dirichlet boundary conditions, through suitable extensions of
KAM theory. In this case, the eigenvalues of the Laplacian are simple(see also Kuksin
[16], Kuksin-Pöschel [17], Pöschel [21]).
Later on, many authors developed different versions of infinite-dimensional KAM

theorems, by studying 1D nonlinear Schrödinger or wave equations, with constant,
parameterized or multiplicative potentials, subject to Dirichlet or periodic boundary
conditions. Concretely, they proved the existence of small-amplitude quasi-periodic
solutions or the persistence of lower dimensional invariant tori for these Hamiltonian
PDEs(see the works of Bambusi-Graffi [1], Geng-Yi [14], Liang-You [19], Liu-Yuan
[20], Yuan [25]). In addition, there are also some existence results of quasi-periodic
solutions concerning higher dimensional Schrödinger or wave equations, see Bourgain
[6, 7], Eliasson-Kuksin [10], Geng-You [12], Wang [27, 28].
For finite-dimensional Hamiltonian systems, we quote the results of Bourgain [5]

and Eliasson [9] as follows.
Eliasson [9] addressed a revised finite-dimensional KAM theorem, considering a

real analytic function

h(y, z) = h0(y) + 〈Ω(y), y′〉+ O3(z),

on certain open subset of R
n × R

m, and proved the existence of an invariant n-torus
Γ in a neighborhood of {y = y0, z = 0}, under the non-degenerate conditions

(1.4)
det(Dω(y)) �= 0,

〈l, Ω(y)− ω(y)(Dω(y))−1DΩ(y)〉 �= 0, ∀y ∈ R
n, l ∈ Z

m\0, |l| ≤ 3,

and the Melnikov’s non-resonance conditions

|〈k, ω(y)〉+ 〈l, Ω(y)〉| ≥ K−1(|k|+ |l|)−τ , ∀(k, l) ∈ Z
n × Z

m \ 0, |l| ≤ 3,

where τ > n − 1. Moreover, the tangential frequency vector ω̃ of Γ is of the form

(1.5) ω̃ = tω(y0), ω(y) = Dh0(y), t ∈ R, t ≈ 1.
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In addition, Bourgain [5] used the KAM-method and the Nash-Moser type methods
to show the persistence of the invariant torus T

b ×{0}×{0} in R
2b×R

2r-phase space
for a real analytic Hamiltonian function

H = H(I, θ, y) = H(I1, · · · , Ib, θ1, · · · , θb, y1, · · · , yr)

= 〈λ0, I〉+
r∑

s=1

μs|ys|2 + |I |2 + εH1(I, θ, y),

under the first Melnikov’s non-resonance condition

〈λ0, k〉 − μs �= 0, ∀k ∈ Z
b, s = 1, 2, · · · , r.

Moreover, the perturbed frequency vector λ can be taken of the form

(1.6) λ = tλ0, t ∈ R, t ≈ 1.

At the same time, he raised an open problem that if this result can be generalized to
an infinite-dimensional case in the Nash-Moser setting, only under the first Melnikov’s
non-resonance condition.
It is worth mentioning that, in the last two years, Berti-Biasco [2], Geng-Ren [13]

have extended the above finite-dimensional results to infinite dimensions, dealing with
nonlinear wave equations with constant potentials in the KAM setting. In addition, Ren
[22] has proved the same result for 1D nonlinear Schrödinger equation with a Fourier
multiplier via infinite-dimensional KAM theory. In the present paper, we restrict our
attention to the multiplicative potential case (see (1.2)), and we are aiming to partially
provide a positive answer to the open problem raised by Bourgain [5]. Actually, we
will show the existence of quasi-periodic solutions with tangential frequencies (1.1)
under conditions (1.3) and some non-degenerate conditions in the KAM setting. For a
result concerning higher dimensional Schrödinger equation in the Nash-Moser setting
in this direction, see Berti-Bolle [3].
The main difficulty in this manuscript consists in conducting the measure estimates.

We avoid constructing a translation transformation in each KAM step adopted in Geng-
Ren [13] and Ren [22], but apply Fubini’s theorem (see Pöschel [21, Lemma 5]) and
some techniques in Berti-Biasco [2] to simplify the estimation process. In addition, the
equation considered in this manuscript is more general than that of Ren [22], since the
Fourier multiplier in Ren [22] is artificial to some extent.
We outline the main steps in this manuscript as follows. Firstly, we deduce the

Birkhoff normal form up to order four. This can be realized by the results of Du-Yuan
[8], Kuksin-Pöschel [17], Yuan [25]. Secondly, we conduct one step of KAM iteration,
which is similar to that of Ren [22]. Thirdly, after operating infinitely many KAM
iterations, we will prove the existence of positive measure Cantor-like parameter set
of b-dimensional amplitude ξ (see Proposition 6.1), by means of Fubini’s theorem.
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Finally, according to the proof process of Proposition 6.1, we obtain the existence
of positive measure Cantor-like 1D parameter set of dilation factor λ(see Proposition
6.2), by means of some techniques in Berti-Biasco [2] and the cut-off procedure in
Berti-Bolle [4].
Now, we are in a position to state our main result.

Theorem. Consider 1D nonlinear Schrödinger equation (1.2) with Dirichlet
boundary conditions (1.3), choose a fixed b-index integer set Jb := {i1, · · · , ib}, b > 1,
satisfying i1 < · · · < ib, and i1 is large enough, then for any τ > 3b + 4, sufficiently
small ε > 0, and ρ∗ ∈ (0, 1), there exists positive-measure Cantor-like subset Õ ⊂
[ε2ρ∗, 2ε2ρ∗]b, such that for each ξ ∈ Õ, (1.2) has a small-amplitude real analytic
quasi-periodic solution

u(t, x) =
b∑

j=1

√
ξje

iωj t(sin ijx − cos ijx

2ij

∫ x

0
V (s) ds + O(

1
i2j

)) + o(|ξ| 12 ),

with Diophantine frequency ω = λω∗, λ ≈ 1, ω∗ ∈ Dε2ρ∗,τ (see Remark 3.4).

Remark 1.1. The assumption that i1 should be large enough is necessary, see
details in Proposition 3.2.

2. RELEVANT NOTATIONS

For given b vectors in Z+, say {i1, · · · , ib} := Jb, denote Z1 = Z+ \ Jb. For
given ρ > 0, let 
ρ be the Banach space of bi-infinite, complex valued sequences z =
(· · · , zn, · · · )n∈Z1(its complex conjugate z̄ = (· · · , z̄n, · · · )n∈Z1 , z̄n ∈ C), endowed
with the finite weighted norm

‖z‖ρ =
∑
n∈Z1

|zn|enρ.

We define the complex neighborhood of T
b × {y = 0} × {z = 0} × {z̄ = 0} in

Tb × Rb × 
ρ × 
ρ as

D(r, s) = {(x, y, z, z̄) : |�x| < r, |y| < s2, ‖z‖ρ < s, ‖z̄‖ρ < s},

where | · | denotes the sup-norm of complex vectors. Let α ≡ (· · · , αn, · · · )n∈Z1 ,
β ≡ (· · · , βn, · · · )n∈Z1 , αn, βn ∈ N, with finitely many non-zero components of
positive integers. The product zαz̄β denotes

∏
n

zαn
n z̄βn

n . For any given real analytic

function
F (x, y, z, z̄) =

∑
α, β

Fαβ(x, y)zαz̄β ,



Quasi-periodic Solutions of 1D Nonlinear Schrödinger Equation with a Multiplicative Potential 2195

which depends on a parameter ξ ∈ O Whitney smoothly, we define its weighted norm
as

‖F‖D(r,s),O ≡ sup
‖z‖ρ<s

‖z̄‖ρ<s

∑
α, β

‖Fαβ‖|zα||zβ |,

Fαβ =
∑

k∈Zb,l∈Nb

Fklαβ(ξ)ylei〈k,x〉,(2.1)

‖Fαβ‖ ≡
∑
k, l

|Fklαβ|Os2|l|e|k|r, |Fklαβ|O = sup
ξ∈O

max
|p|≤1

∣∣∣∂pFklαβ(ξ)
∂ξp

∣∣∣
(〈·, ·〉 being the standard inner product in Cb).
The weighted norm of the Hamiltonian vector field

XF = (Fy,−Fx, {iFzn}n∈Z1, {−iFz̄n}n∈Z1)

associated with F is defined as 1

(2.2)
‖XF‖D(r,s),O ≡ ‖Fy‖D(r,s),O +

1
s2

‖Fx‖D(r,s),O

+
1
s
(
∑
n∈Z1

‖Fzn‖D(r,s),Oenρ +
∑
n∈Z1

‖Fz̄n‖D(r,s),Oenρ).

For any real analytic functions F and G, define the poisson bracket

{F, G} = 〈∂F

∂x
,
∂G

∂y
〉 − 〈∂F

∂y
,
∂G

∂x
〉 + i

∑
n

(
∂F

∂zn

∂G

∂zn
− ∂F

∂zn

∂G

∂zn
).

For given l ∈ Z
∞, define the norms

|l| =
∑
j≥1

|lj|, 〈l〉 = max{1, |
∑
j≥1

j lj|}.

3. NORMAL FORMS

The aim of this section is to investigate the following equation

iut + Lu + |u|2u + f(|u|2)u = 0, L = − d2

dx2
+ V (x), t ∈ R, x ∈ [0, π],

with Dirichlet boundary conditions (1.3).We can rewrite it as the Hamiltonian equation

ut = 2i
∂H

∂u
,

1The norm ‖ · ‖D(r,s),O for scalar functions is defined in (2.1). The vector function G : D(r, s)×O →
C

m, (m < ∞) is similarly defined as ‖G‖D(r,s),O =
∑m

i=1 ‖Gi‖D(r,s),O .
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where

H =
1
2

∫ π

0
(|ux|2 + V (x)|u|2) dx +

1
4

∫ π

0
|u|4 dx +

1
2

∫ π

0
g(|u|2) dx

and g =
∫
0 fdz. As is well known that

μj = j2 +
1
π

∫ π

0
V (x) dx + O(

1
j2

)

are the eigenvalues of the associated Sturm-Liouville operator L on the interval [0, π],
and the eigenfunctions are

(3.1) φj(x) = κ−1
j

(
sin jx− cos jx

2j

∫ x

0

V (s) ds + O(
1
j2

)
)
, j ∈ Z

+, ∀x ∈ [0, π],

with ||φj(x)||L2
[0,π]

= 1.

Proposition 3.1. κ2
j = π

2 + O( 1
j2 ), and

κ2
i κ

2
j

∫ π

0
φ2

i (x)φ2
j(x) dx =

{
κ2

i
2 + O( 1

j2 ) + O( 1
ij|i−j|), i �= j,

κ2
i
2 + π

8 + O( 1
i2

), i = j.

The details can be found in Yuan [25, Lemma 3.2].
Let u(t, x)=

∑
j∈Z+

qj(t)φj(x), then associated with the symplectic structure i
2

∑
j≥1

dqj∧
dqj, we obtain the equations

q̇j = 2i
∂H

∂qj

, j ≥ 1,

and the corresponding Hamiltonian is

H = Λ + G + Q =
1
2

∑
j∈Z+

μj |qj|2 +
1
4

∫ π

0
|u|4 dx +

1
2

∫ π

0
g(|u|2) dx,

Λ =
1
2

∑
j∈Z+

μj |qj|2, Q =
1
2

∫ π

0

g(|u|2) dx,

G =
1
4

∫ π

0
|u|4 dx =

1
4

∑
i,j,k,l

Gijklqiqjqkql,(3.2)

Gijkl =
∫ π

0
φi(x)φj(x)φk(x)φl(x) dx.

Let q = (q̃, q̂) ∈ 
p, where q̃ = (qj)j∈Jb
, q̂ = (qj)j∈Z1, then we have the following
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Lemma 3.1. The gradient (G + Q)q is a real analytic map from a neighborhood
of the origin of 
ρ into 
ρ, with

‖(G + Q)q‖ρ = O(‖q‖3
ρ).

Lemma 3.2. There exists a real analytic symplectic change of coordinates Γ in a
neighborhood of the origin in 
ρ which takes the Hamiltonian H = Λ + G + Q into
its partial Birkhoff normal form up to order four, that is

H ◦ Γ = Λ + G + Ĝ + K,

such that XG , XK are real analytic in a neighborhood of the origin in 
ρ, where

G =
1
2

∑
one of{i,j}∈Jb

Gij|qi|2|qj|2, |Ĝ| = O(||q̂||4ρ), |K| = O(‖q‖6
ρ),

Gij =
4 − δij

4π
+ O(

1
i2

) + O(
1
j2

) + O(
1

ij|i− j|), i, j ∈ Jb,(3.3)

Gij =
1
π

+ O(
1
i2

) + O(
1

ij|i− j|) , i ∈ Jb, j ∈ Z1.

The above two lemmata can be proved by means of Proposition 3.1, see details in
Du-Yuan [8], Kuksin-Pöschel [17].
By the same argument as that of Ren [22], we can introduce a transformation{

q̃j =
√

2(ξj + yj)e−ixj , j ∈ Jb,

q̂j =
√

2zj, j ∈ Z1,

where ξ ∈ [ρ∗, 2ρ∗]b, ρ∗ ∈ (0, 1)(will appear in Section 4) to obtain the new symplectic
structure

∑
j∈Jb

dxj∧dyj+i
∑

j∈Z1

dzj∧dzj = i
2

∑
j≥1

dqj∧dqj.Meanwhile, the Hamiltonian

is transformed into the following

H = Λ + G + Ĝ + K = 〈ω(ξ), y〉+
∑
j∈Z1

Ωj(ξ)zjzj +
1
2
〈Ay, y〉+ 〈By, Z〉 + R̂,

with R̂ = Ĝ + K, ω(ξ) = α + Aξ, Ω(ξ) = β + Bξ, where

α = (μi1, · · · , μib), β = (μj)j∈Z1,

A = (Gij)i,j∈Jb
, B = (Gji)j∈Jb,i∈Z1,

|R̂| = O(|ξ|3) + O(|y|3) + O(|ξ|2|y|) + O(|ξ||y|2) + O(‖z‖4
ρ)(3.4)

+O(|ξ| 12‖z‖5
ρ) + O(|ξ|‖z‖4

ρ) + O(|y|‖z‖4
ρ) + O(|ξ| 32‖z‖3

ρ)

+O(|ξ|2‖z‖2
ρ) + O(|y|2‖z‖2

ρ) + O(|ξ||y|‖z‖2
ρ) + O(|ξ| 52‖z‖ρ).
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Setting Z = (|zn1 |2, |zn2|2, ...), nj ∈ Z1, j ≥ 1, and conducting the same rescaling
process as that of Ren [22], we obtain the Hamiltonian

H̃(x, y, z, z, ξ) = ε−5H(x, ε3y, ε
3
2 z, ε

3
2 z, ε2ξ)

= 〈ε−2α + Aξ, y〉+ 〈ε−2β + Bξ, zz〉 +
ε

2
〈Ay, y〉+

ε

2
〈By, Z〉

+εO(|ξ|3) + ε4O(|y|3) + ε2O(|ξ|2|y|) + ε3O(|ξ||y|2)
+εO(||z||4ρ) + ε

7
2 O(|ξ| 12 ‖z‖5

ρ) + ε3O(|ξ|‖z‖4
ρ)(3.5)

+ε4O(|y|‖z‖4
ρ) + ε

5
2 O(|ξ| 32 ‖z‖3

ρ) + ε2O(|ξ|2‖z‖2
ρ)

+ε4O(|y|2‖z‖2
ρ) + ε3O(|ξ||y|‖z‖2

ρ) + ε
3
2 O(|ξ| 52‖z‖ρ

:= 〈ω̃(ξ), y〉+ 〈Ω̃(ξ), zz〉+ P̃ := Ñ + P̃ ,

which serves as our new starting point, and depends on one real parameter ξ varying
in a compact set O ⊂ Rb(O will be specified in Section 4), where ω̃(ξ) = ε−2α +
Aξ, Ω̃(ξ) = ε−2β + Bξ. For simplicity, we still denote H̃ by H , ω̃ by ω, Ω̃ by Ω, Ñ
by N , P̃ by P.

Remark 3.1. (3.5) is almost the same as Ren [22, (7)], however, the term 〈By, Z〉
can not be eliminated in this context, which will add to the hardship of the measure
estimates.

To proceed we formulate the essential properties of the new Hamiltonian, which
are relevant for our argument.

(A1) Regularity of the perturbation: The perturbation P is regular in the sense that
‖XP‖D(r,s),O < ∞.

(A2) Non-degeneracy of tangential frequencies: ω : ξ �→ ω(ξ) is non-degenerate in
the sense that det(Dω(ξ)) �= 0, ∀ξ ∈ O.

(A3) Asymptotic condition of normal frequencies: ∀j ∈ Z1, Ωj(ξ) = Ω̄j + Ω̃j, where

Ω̄j = ε−2(j2 +
1
π

∫ π

0
V (x) dx + O(

1
j2

)) + O(ρb
∗), |Ω̃j|O = O(ε).

(A4) Melnikov’s non-resonance conditions: For fixed τ > 3b+4, and for γ > 0 small
enough, we assume that (ω, Ω) ∈ DC(γ), i.e.,

|〈k, ω(ξ)〉+ 〈l, Ω(ξ)〉| ≥ γ〈l〉
|k|τ , ∀(k, l) ∈ Z

b × Z
∞, k �= 0,

where ξ ∈ O, |k| ≤ K, |∑n∈Z1
(αn − βn)n| ≤ K, 0 ≤ |l| ≤ 2.

Remark 3.2. ρ∗ in (A3) and γ, K in (A4) will be specified in Section 4.



Quasi-periodic Solutions of 1D Nonlinear Schrödinger Equation with a Multiplicative Potential 2199

Remark 3.3. We say that N ∈ NF (r, s, M)
⋂

DC(γ), if N = 〈ω, y〉 + 〈Ω, zz〉
is defined on D(r, s)×O, (ω, Ω) ∈ DC(γ), and for some M := (M1, M2) ∈ (R+)2,
for all ξ ∈ O, we have the following estimates

(3.6)
(C1) |ω|O = sup |ω(ξ)|O ≤ M1 < ∞;

(C2) |(Dω)−1|O = sup |(Dω(ξ))−1|O ≤ M2 < ∞.

See details in Ren [22, Definition 2.1].

Remark 3.4. For τ > 3b + 4, we define the set of Diophantine vectors

Dγ,τ =
{
ω ∈ R

b : |〈k, ω〉| ≥ γ

|k|τ , ∀k ∈ Z
b \ 0

}
.

Proposition 3.2. For A = (Gij)i,j∈Jb
, we have det A �= 0.

Outline of the proof. For i, j ∈ Jb, let aij = Gij − 4 − δij
4π , due to (3.3), there

exists a constant c̃ > 0, such that |aij| ≤ c̃
i21

, which can be small enough if i1 is

large enough. Notice that 4πA = 4X − I + Ã, where I is the identity matrix and all
elements of X are 1, Ã = (aij)i,j∈Jb

, since det(4X−I) �= 0, we know that there exists
an elementary transformation T, such that T (4X − I) = diag(σ1, · · · , σb). Putting
the same transformation T on 4X − I + Ã and letting TÃ = ˙̃A = (ȧij), we can

choose i1 large enough to make sure that |σj| >
b∑

i=1
|ȧij|, for any 1 ≤ j ≤ b. Hence,

det(4X − I + Ã) �= 0, that is det A �= 0.
See details in Du-Yuan [8, Lemma 6.1].

Proposition 3.3. If ‖XF‖D(r,s) < ε′, ‖XG‖D(r,s) < ε′′, then

‖X{F,G}‖D(r−ρ,ηs) < cρ−1η−2ε′ε′′, ρ > 0, η � 1.

For the proof, see Geng-You [11, Lemma 7.3].

Remark 3.5. In what follows, we denote the above ε by ε∗. From (3.4), (3.5)
and Proposition 3.2, we know that there exist M∗

1 > 0, M∗
2 > 0, such that the

frequencies mapping ξ �→ ω(ξ) satisfies conditions (C1) and (C2) with respect to
M∗ := (M∗

1 , M∗
2 ) on [ρ∗, 2ρ∗]b(ρ∗ will appear in Section 4).

4. KAM STEP

At first, we fix r, s, ε∗ > 0, ι ≥ 4, τ > 3b + 4. Initially, we set ω0 = ω∗, Ω0 =

Ω∗, P 0 = P, r0 = r, s0 = s, γ0 = γ∗ = ε
1
20∗ , ρ∗ = ε

1
25∗ , M0 = M∗, K0 = ε

− 1
12(2τ+1)

∗ ,
and restrict (3.5) to D(r, s), restrict ξ to [ρ∗, 2ρ∗]b, such that

H0 = N0 + P 0, N0 = 〈ω0, y〉+ 〈Ω0, zz〉 ∈ NF (r0, s0, M
0)

⋂
DC(γ0),
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where ω∗ = ω(ξ) = ε−2∗ α + Aξ ∈ Dιγ∗ ,τ , Ω∗ = Ω(ξ) = ε−2∗ β + Bξ, ξ ∈ O0,

O0 =
{

ξ ∈ [ρ∗, 2ρ∗]b : |〈k, ω0〉 + 〈l, Ω0〉| ≥ γ0〈l〉
|k|τ , 0 < |k| ≤ K0,

|
∑
n∈Z1

(αn − βn)n| ≤ K0, 0 ≤ |l| ≤ 2
} ⋂

ω−1
∗ (Dιγ∗,τ ).

Notice that, there exists a positive constant c∗, such that

(4.1) ‖XP 0‖D(r0,s0),O0
≤ c∗ε∗ := ε0.

Suppose that after νth KAM step, we arrive at a Hamiltonian

(4.2) H = Hν = N + P (x, y, z, z, ξ, ε),

N = Nν = 〈ω, y〉+ 〈Ω, zz〉 ∈ NF (r, s, M)
⋂

DC(γ), P = P ν ,

which is real analytic on D = Dν = D(rν, sν), for some r = rν ≤ r0, s = sν ≤ s0,

and depends on ξ ∈ Oν Whitney smoothly, where ω = ων(ξ), Ω = Ων(ξ), M =
Mν := (Mν

1 , Mν
2 ), γ = γν, Kν = 2νK0,

Oν =
{
ξ ∈ Oν−1 : |〈k, ων〉 + 〈l, Ων〉| ≥ γν〈l〉

|k|τ , 0 < |k| ≤ Kν ,

|
∑
n∈Z1

(αn − βn)n| ≤ Kν, 0 ≤ |l| ≤ 2
}⋂

ω−1
∗ (Dιγ∗,τ ).

Suppose also that for some 0 < ε = εν ≤ ε0,

(4.3) ‖XP‖D,O ≤ ε.

Next, we will look for F ν := F, defined on D+ = D(r+, s+) ⊂ D, such that the
time one map Φ1

F := Φ of the Hamiltonian vector field XF defines a map D+ → D

and transforms H into H+, where Φt
F is the hamiltonian flow of F . Moreover, the

new Hamiltonian H+ := H ◦Φ = N+ + P+ satisfies (A1)− (A4) again with respect
to r+, s+, ε+, M+ := (M+

1 , M+
2 ), γ+, and N+ ∈ NF (r+, s+, M+)

⋂
DC(γ+). In

addition, (4.3) still holds for P+, D+,O+, ε+.

4.1. Solving the homological equations.

Let R = P0 +P1 +P2, which is the truncation of the Taylor-Fourier series of P up
to order 2, let P̃ = P −R, we wish to construct a function F = F0 +F1 +F2, [F ] = 0,
such that

(4.4) {F, N} = R − [R].
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Lemma 4.1. Consider equation (4.4), let Dj = D(rj, sj) = D(rν+1 + j
4(rν −

rν+1),
j
4sν), 0 < j ≤ 4, then

‖XF‖D3,O < ·γ−2
ν (rν − rν+1)−(2τ+2)‖XP‖D4,O.

Proof. The proof follows from standard arguments using Cauchy estimate, see
Ren [22, Proposition 3.1] and Geng-You [12, Lemma 4.2].

Now, we define ε+ = cγ−2(r−r+)−(2τ+3)ε
4
3 , s+ = 1

8ηs, η = ε
1
3 , D+ = D(r+, s+),

Dν
jη = Djη = D(r+ + jρ, j

4ηs), where ρ = 1
4 (r − r+), 0 < j ≤ 4, c is a constant

that does not depend on the KAM step. It is clear that D+ ⊂ Djη ⊂ Dj ⊂ D, and
|P0100|O+ = O(ε), |P0011|O+ = O(ε). For the definitions of P0100, P0011, see Ren
[22, Definition 2.1].

4.2. Defining the new Hamiltonian H+.

Due to (4.4) and the second order Taylor formula, we have

H+ = H ◦ Φ1
F = N+ + P+,

N+ = N + [R0] + [R2],(4.5)

P+ =
∫ 1

0
{tR + (1− t)[R], F} ◦ Φt

F dt + P̃ ◦ Φ1
F .

More precisely, after (ν + 1)th KAM step, we obtain the new Hamiltonian

Hν+1 = H ◦ Φ0 ◦ · · · ◦ Φν = Nν+1 + P ν+1,

Nν+1 = 〈ων+1, y〉+ 〈Ων+1, zz〉,
ων+1 = ων + P ν

0100 = ε−2
∗ α + Aξ + P 0

0100 + · · ·+ P ν
0100,(4.6)

Ων+1 = Ων + P ν
0011 = ε−2

∗ β + Bξ + P 0
0011 + · · ·+ P ν

0011,

where P 0
0100 = ε2∗O(|ξ|2|y|), P 0

0011 = ε2∗O(|ξ|2‖z‖2
ρ) (see (3.5)).

4.3. Estimating the new normal form N+.

LetDω= dω
dξ

, concerningω+, we haveN+∈NF (r+, s+, M+), M+≡( 3
2M0

1 , M0
2 ).

In fact,

|ω+|O+ ≤ 3
2
|ω∗|[ρ∗,2ρ∗]b ≤

3
2
M0

1 , |(Dω+)−1|O+ = |A−1| = |(Dω∗)−1|[ρ∗,2ρ∗]b ≤ M0
2 .

4.4. Estimating the symplectic transformation Φ.

Lemma 4.2. If

(4.7) ε � (γ2(r − r+)2τ+3)3,
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then we have
Φ1

F : D1η ×O+ → D, −1 ≤ t ≤ 1,

and for all ν ≥ 1, we also have ‖DΦ1
F − Id‖D1η,O+ < ε

1
2 .

Proof. Lemma 4.1 implies that ‖XF‖D3,O+ < ·γ−2(r−r+)−(2τ+2)ε := β. Assume
that β � η2ρ (being equivalent to (4.7)), by the proof of Ren [22, Proposition 3.2], we
can get Φt

F : D2η → D3η,−1 ≤ t ≤ 1, thus, Φ = Φ1
F : D+×O+ → D is well defined,

and an immediate consequence is ‖DΦ1
F − Id‖D1η,O+ ≤ 2‖D2F‖D2,O+ < ·β < ε

1
2 .

This completes the proof.

4.5. Estimating the new perturbation P+.

Since

P+ =
∫ 1

0
{G(t), F} ◦ Φt

F dt + P̃ ◦Φ1
F ,

where G(t) = tR + (1− t)[R], we have

XP+ =
∫ 1

0
(Φt

F )∗X{G(t),F} dt + (Φ1
F )∗X

P̃
.

It follows from Proposition 3.3 that

‖X{G(t),F}‖D2η ,O+ ≤ ·ρ−1η−2‖XR‖D3,O+‖XF‖D3,O+ ≤ c1γ
−2ρ−(2τ+3)η−2ε2,

‖XP̃‖D2η ,O+ ≤ c2η‖XP‖D,O+ ≤ c2ηε.

Recall that ρ = 1
4 (r − r+), η = ε

1
3 , ε+ = cγ−2(r − r+)−(2τ+3)ε

4
3 , if (4.7)

holds, we have ‖XP+‖D+,O+ ≤ cγ−2(r − r+)−(2τ+3)ε
4
3 = ε+ � ε, where c =

2 max{16c1, c2} > 0. At this time, ε+ = εκ, for some 1 < κ < 4
3 , thus, εν < ·εκν

∗ .
This completes one step of KAM iterations.

5. ITERATION AND CONVERGENCE

5.1. Iterative lemma.

For any given r, s, c∗, ε∗, ι ≥ 4, τ > 3b+4, we define, for all ν ≥ 1, the following
sequences

rν =
r0

2
(1 + 2−ν), r0 = r,

sν =
1
8
ην−1sν−1 = 2−3ν(

ν−1∏
j=0

εj)
1
3 s0, s0 = s,

εν = cγ−2
ν−1(rν−1 − rν)−(2τ+3)ε

4
3
ν−1, ε0 = c∗ε∗,
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Mν = (Mν
1 , Mν

2 ) ≡ (
3
2
M0

1 , M0
2 ), M0 = M ∗,

γν =
γ0

2
(1 + 2−ν), γ0 = γ∗ = ε

1
20∗ ,

ρ∗ = ε
1
25∗ = γ

4
5∗ ,

Kν = 2νK0, K0 = ε
− 1

12(2τ+1)
∗ ,

Dν−1 = D(rν−1, sν−1),

D̃j
ν−1 = D(rν +

j

4
(rν−1 − rν), 2jsν), j = 2, 3,

Oν =
{
ξ ∈ Oν−1 : |〈k, ων〉+ 〈l, Ων〉| ≥ γν〈l〉

|k|τ , 0 < |k| ≤ Kν,

|
∑
n∈Z1

(αn − βn)n| ≤ Kν , 0 ≤ |l| ≤ 2
} ⋂

ω−1
∗ (Dιγ∗ ,τ ).

Remark 5.1. Due to the definitions of εν, γν, rν, we can easily verify that (4.7)
holds for all ν = 0, 1, 2, · · · .

Lemma 5.1. Suppose that for all ν ≥ 0, Hν = Nν + P ν is given on Dν × Oν,

which is real analytic in (x, y, z, z) ∈ Dν, and Whitney smooth in ξ ∈ O ⊂ [ρ∗, 2ρ∗]b,
where

(5.1)

Nν = 〈ων(ξ), y〉+
∑
j∈Z1

Ων
j (ξ)zjzj ∈ NF (rν, sν, M

ν) ∩ DC(γν),

ω∗ = ω(ξ) = ε−2
∗ α + Aξ, Ω∗ = Ω(ξ) = ε−2

∗ β + Bξ, ξ ∈ O0,

|ω∗|[ρ∗,2ρ∗]b ≤ M0
1 , ων+1 = ων + P ν

0100, Ων+1 = Ων + P ν
0011,

α = (i21 +
1
π

∫ π

0

V (x) dx + O(
1
i21

), · · · , i2b +
1
π

∫ π

0

V (x) dx + O(
1
i2b

)),

β = (j2 +
1
π

∫ π

0
V (x) dx + O(

1
j2

))j∈Z1,

A =
(4 − δij

4π
+ O(

1
i2

) + O(
1
j2

) + O(
1

ij|i− j|)
)

i,j∈Jb

,

B =
( 1

π
+ O(

1
j2

) + O(
1

ij|i− j|)
)

j∈Z1,i∈Jb

,

and the real analytic functions P ν satisfy

‖XPν‖Dν ,Oν ≤ εν , ν ≥ 0.(5.2)

Then there exists a symplectic diffeomorphism Φν : D̃2
ν → D̃3

ν , such that Hν+1 =
(Nν + P ν) ◦ Φν = Nν+1 + P ν+1, which is defined on Dν+1 × Oν+1, and the same
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properties as (5.1) and (5.2) are satisfied with ν + 1 in place of ν, where Oν+1 =
Oν \⋃

kl

Rν+1
kl ,

Rν+1
kl =

{
ξ ∈ Oν : |〈k, ων+1〉 + 〈l, Ων+1〉| <

γν+1〈l〉
|k|τ , 0 < |k| ≤ Kν+1,

|
∑
n∈Z1

(αn − βn)n| ≤ Kν+1, 0 ≤ |l| ≤ 2
}
.

Moreover, for all ν ≥ 0, there exists 1 < κ < 4
3 , such that

‖DΦν+1 − Id‖Dν+1,Oν+1 < ·ε
1
2
κν

∗ .

5.2. Convergence.

Inductively, we have Ψν(ξ) := Φ0◦···◦Φν−1 : Dν×Oν → D0, whereΨ0(ξ) = id,

such that for all ν ≥ 1, Hν = H0 ◦ Ψν(ξ) = Nν + P ν , where

Nν = 〈ων , y〉+
∑
j∈Z1

Ων
j zjzj ∈ NF (rν, sν, M

ν)
⋂

DC(γν).

Let O∞ =
⋂

ν≥0
Oν. Then we can use Lemma 5.1 and the argument similar to that of

Pöschel [21] to verify that ων , Ων
j , P

ν , Ψν, DΨν converge uniformly on D(r0
2 , 0)×O∞

to ω∞, Ω∞
j , P∞, Ψ∞, DΨ∞, respectively. Let ω∞(ξ) = λω∗(ξ), for each ξ ∈ O∞,

we have λ ∈ Λ� ⊂ [
1
2
,
3
2
], where Λ� is a one-dimensional Cantor-like parameter space,

whose measure has the same order of magnitude as that of ω∞(O∞)
⋂

ω∗R+. At this
time,

N∞ = 〈λω∗, y〉+
∑
j∈Z1

Ω∞
j zjzj ∈ NF (

r0

2
, 0, M∞)

⋂
DC(

1
2
ε

1
20∗ ),

where M∞ = ( 3
2M0

1 , M0
2 ). Let φt

H0
be the flow of XH0, since on D(r0

2 , 0) × O∞,
H0 ◦ Ψν = Hν, we have

(5.3) φt
H0

◦Ψν = Ψν ◦ φt
Hν

.

Then, we can pass the limit on both sides of (5.3) to arrive at

(5.4) φt
H0

◦ Ψ∞ = Ψ∞ ◦ φt
H∞, Ψ∞ : D(

r0

2
, 0)×O∞ → D(r, s).

Since εν < ·εκν

∗ , 1 < κ < 4
3 , we have ‖XP∞‖D(

r0
2

,0)×O∞ ≡ 0. As a result, on
D(r0

2 , 0), for every choice of ξ ∈ O∞, and for all λ ∈ Λ�, we obtain

φt
H0

◦ Ψ∞(Tb × {λ}) = Ψ∞ ◦ φt
N∞(Tb × {λ}) = Ψ∞(Tb × {λ}).
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Hence, Ψ∞(Tb × {λ}) is an embedded invariant torus of the original perturbed
Hamiltonian system at λ ∈ Λ�. In the following, we will show that the relative Lebesgue
measure of Λ� in [

1
2
,
3
2
] is positive, and will prove Theorem in Section 1.

6. MEASURE ESTIMATES

In Sections 4.2 and 4.3, we have

ω0(ξ) = ε−2
∗ α + Aξ = ω∗, ων+1(ξ) = ε−2

∗ α + Aξ + P 0
0100 + · · ·+ P ν

0100,(6.1)

Ω0(ξ) = ε−2
∗ β + Bξ = Ω∗, Ων+1(ξ) = ε−2

∗ β + Bξ + P 0
0011 + · · ·+ P ν

0011,(6.2)

and have verified that the mapping ξ �→ ων+1(ξ) satisfy conditions (C1) and (C2)
with respect to Mν+1. Now, we are in a position to prove Theorem in Section 1 by
the following two propositions.

Proposition 6.1. There exists ι ≥ 4, such that for every vector ω∗ ∈ Dιγ∗ ,τ , we
have

meas([ρ∗, 2ρ∗]b \ O∞) < γ
1
2∗ meas([ρ∗, 2ρ∗]b),

where

O∞ =
⋂
ν≥0

Oν , Oν =
{
ξ ∈ Oν−1 : |〈k, ων(ξ)〉+ 〈l, Ων(ξ)〉| ≥ γν〈l〉

|k|τ ,

0 < |k| ≤ Kν, |
∑
n∈Z1

(αn − βn)n| ≤ Kν, 0 ≤ |l| ≤ 2
}⋂

ω−1
∗ (Dιγ∗,τ ).(6.3)

Proposition 6.2. If 0 /∈ ω∗([ρ∗, 2ρ∗]b), we have

meas(ω∞([ρ∗, 2ρ∗]b \ O∞)
⋂

ω∗R+) < ε
2+ 1

24∗ meas([
1
2
,
3
2
]).

Since ω∞(ξ) = λω∗(ξ), for each ξ ∈ O∞ ⊂ [ρ∗, 2ρ∗]b, λ ∈ Λ� ⊂ [
1
2
,
3
2
], from

(6.1) and (6.2), we have

〈k, ω∞(ξ) + 〈l, Ω∞(ξ)〉
= λ〈k + A−1BT l, ω∗〉+ ε−2

∗ 〈l, β − BA−1α〉
+〈l,−BA−1(P 0

0100 + · · ·+ P∞
0100) + P 0

0011 + · · ·+ P∞
0011〉,

= λ〈k + A−1BT l, ω∗〉+ ε−2
∗ 〈l, β − BA−1α〉 + o(ε∗) := hkl(λ).

We can follow Berti-Biasco [2, Remark 8.1] and the cut-off procedure in Berti-Bolle
[4] to prove the above propositions. Specifically, we need to consider the following
resonance sets:

(6.4) Rν+1
kl = {ξ∈Oν : |〈k, ων+1(ξ)〉+〈l, Ων+1(ξ)〉|< γν+1〈l〉

|k|τ , 0 < |k|≤Kν+1},
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(6.5) R̃kl = {λ ∈ [
1
2
,
3
2
] : |hkl(λ)| < 2γ∗〈l〉

|k|τ , k �= 0}.

Lemma 6.1. For ξ ∈ Rν+1
kl , λ ∈ R̃kl, we have

(6.6) 〈l〉 ≤ 3ε2
∗|k|(|ω∗| + 1) := c0|k|.

Proof. Obviously, (6.6) holds for l = 0. It is worth pointing out that for 1 ≤ |l| ≤ 2,

we have |l| ≤ 2〈l〉, 〈l〉 ≤ 2|〈l, β〉|. In fact, we only need to consider the following case

|l| = 2, l = ±(ei − ej), i > j, i, j ∈ Z1,

where the unit vector ej := (· · · , 0, 1, 0, · · ·) with zero components except the jth one.
Hence |〈l, β〉| = i2 − j2 > 2(i − j) > 1

2 〈l〉. Thus, for each ξ ∈ Rν+1
kl , λ ∈ R̃kl, we

have

|k||ων+1(ξ)| ≥ ε−2
∗ |〈l, β〉| − |l| · |Ων+1(ξ)− ε−2

∗ β| − γ∗〈l〉,
|k||ω∞(ξ)| ≥ ε−2

∗ |〈l, β〉| − |l| · |Ω∞(ξ)− ε−2
∗ β| − 2γ∗〈l〉.

Consequently,

(6.7) |k|(|ω∗|+ 1) >
1
2
ε−2
∗ 〈l〉 − ·(|B|ρb

∗ + o(ε∗) + γ∗)〈l〉 ≥ 1
3
ε−2
∗ 〈l〉.

This completes the proof.

Lemma 6.2. If 0 < |k| ≤ Kν , then Rν+1
kl = ∅.

Proof. Due to the definitions of εν , Kν, γν, for all ν ≥ 0, we have ενKτ+1
ν <

ενK
2τ+1
ν < ε

9
10
ν � ε

1
20∗

2ν+2 = γν − γν+1, since |l| ≤ 2〈l〉, ∀|l| ≤ 2, we have

|〈k, ων+1〉 + 〈l, Ων+1〉| ≥ |〈k, ων〉 + 〈l, Ων〉| − |k||ων+1 − ων| − |l||Ων+1 − Ων|
≥ |〈k, ων〉 + 〈l, Ων〉| − ·|k|〈l〉|XPν|D(rν,sν ),Oν

≥ γν〈l〉
|k|τ − ·ενKν〈l〉 ≥ γν+1〈l〉

|k|τ .

The proof is finished.

Lemma 6.3. If Rν+1
kl �= ∅, we have

meas(Rν+1
kl ) < ·ρ

b−1∗ γ∗
|k|τ .
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Proof. Lemma 6.2 implies that |k| > Kν, let

R̂ν+1
kl = ων+1(Rν+1

kl )

= {ζ ∈ Ô = ων+1([ρ∗, 2ρ∗]b) : 〈k, ζ〉+ 〈l, Ων+1(ω−1
ν+1(ζ))〉| <

γν+1〈l〉
|k|τ },

where ζ = sv + w, w⊥v, s ∈ R, v ∈ {−1, 1}b, 〈k, v〉 = |k|. Consider the set

R̂ν+1
kl = {ζ = sv + w ∈ Ô : |fkl(s)| <

γν+1〈l〉
|k|τ },

where
fkl(s) = s|k| + 〈l, Ων+1(ω−1

ν+1(sv + w))〉.
For s2 > s1, since |k| > Kν, we have

fkl(s2) − fkl(s1) ≥ |k|(s2 − s1) − |l||DΩν+1| · |(Dων+1)−1|(s2 − s1)

≥ |k|(s2 − s1) − ·|B|M0
2 (s2 − s1) ≥ 1

2
|k|(s2 − s1).

By Fubini’s theorem, we get

(6.8) R̂ν+1
kl ≤ 2

|k|
γν+1〈l〉
|k|τ (diamÔ)b−1.

Notice that diam(Ô) ≤ |Dων+1|diam([ρ∗, 2ρ∗]b) < ·diam([ρ∗, 2ρ∗]b), and that
1
2γ∗ < γν < γ∗, γν ↘ 1

2γ∗ (as ν → ∞), by Lemma 6.1, we immediately have

meas(Rν+1
kl ) < ·ρ

b−1∗ γ∗
|k|τ .

Therefore, Lemma 6.3 follows.

Lemma 6.4.
card

{
l : 〈l〉 ≤ c0|k|

}
< ·|k|2.

Proof. The result follows by a simple calculation.

With the help of Lemmata 6.2, 6.3, 6.4 and γ∗ = ε
1
20∗ , τ > 3b + 4, we have

(6.9)

meas([ρ∗, 2ρ∗]b \ O∞) =
∑

Kν<|k|≤Kν+1,|l|≤2,〈l〉≤c0|k|,ν≥0

meas(Rν+1
kl )

< ·ρb−1
∗

∑
|k|>Kν ,ν≥0

|k|2γ∗
|k|τ

< ·ρb−1
∗

∑
ν≥0

ε
τ−b−1

12(2τ+1)
∗ γ∗
2ν(τ−b−1)

< ·ρb−1
∗ ε

1
40∗ γ∗ = ·ρb−1

∗ γ
3
2∗ .
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Since ρ∗ = γ
4
5∗ , we have

meas([ρ∗, 2ρ∗]b \ O∞)
meas([ρ∗, 2ρ∗]b)

< ·ρ
b−1∗ γ

3
2∗

ρb∗
< γ

1
2∗ .

This finishes Proposition 6.1.

Lemma 6.5. There exists a constant δ∗ > 0, such that

(6.10) |〈l, β − BA−1α〉| > δ∗ > 0, ∀1 ≤ |l| ≤ 2.

Proof. Due to the proof of Du-Yuan [8, Lemma 6.1], ∀(k, l) ∈ Z
b × Z

∞, 1 ≤
|l| ≤ 2, we have

(6.11) 〈α, k〉+ 〈β, l〉 �= 0 or Ak + BT l �= 0.

Suppose Ak + BT l = 0, then (6.11) implies that

〈α, k〉+ 〈β, l〉 = 〈α,−A−1BT l〉+ 〈β, l〉 = −αT A−1BT l + βT l

= −αT (A−1)TBT l + βT l = −(BA−1α)T l + βT l

= (β − BA−1α)T l = 〈β − BA−1α, l〉 �= 0.

This finishes the proof.

Lemma 6.6. R̃k0 = ∅. For γ∗ small enough, k ∈ Zb \ 0, |l| ≤ 2, we have

meas(R̃kl) < ·ε
2∗γ∗
|k|τ .

Proof. It suffices to consider the two cases (a) and (b) as follows.
(a) l = 0. Since ω∗ ∈ Dιγ∗ ,τ , ι ≥ 4, 〈l〉 = 1, we have

|hk0(λ)| = |λ〈k, ω∗〉| ≥
1
2ιγ∗
|k|τ ≥ 2γ∗〈l〉

|k|τ .

(b) l �= 0. If |〈k + A−1BT l, ω∗〉| < 1
3ε−2∗ δ∗, we have

|hkl(λ)| ≥ ε−2
∗ δ∗ − 1

2
ε−2
∗ δ∗ − O(ε∗) � 2γ∗〈l〉

|k|τ .

If |〈k + A−1BT l, ω∗〉| ≥ 1
3ε−2∗ δ∗, for λ1 < λ2, we have

|hkl(λ2)− hkl(λ1)| ≥
[
|〈k + A−1BT l, ω∗〉|+ O(ε∗)

]
|λ2 − λ1| ≥ 1

4
ε−2
∗ δ∗|λ2 − λ1|.
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This completes the proof.

In view of Lemma 6.4 and Lemma 6.6, we have

meas(ω∞([ρ∗, 2ρ∗]b \ O∞)
⋂

ω∗R+) ≤ meas(
⋃

k∈Zb\0,|l|≤2,〈l〉≤c0|k|
R̃kl)

< ·
∑

|k|≥ 〈l〉
c0

ε2∗|k|2γ∗
|k|τ

< ε
2+ 1

24∗ meas([
1
2
,
3
2
]),(6.12)

where we have used that τ > 3b + 4. This finishes Proposition 6.2.

Remark 6.1. Proposition 6.1 implies that (A4) in Section 3 can still be fulfilled
through the KAM process. Moreover, there exist positive-measure Cantor-like parame-
ter subsetsO∞ ⊂ [ρ∗, 2ρ∗]b and Λ� ⊂ [

1
2
,
3
2
], such thatΨ∞(Tb×{(ξ, λ)}) is an embed-

ded invariant torus of the original perturbed Hamiltonian system at (ξ, λ) ∈ O∞ ×Λ�.

Denote

ξ̂ = ε2
∗ξ ∈ Õ := ε2

∗O∞ ⊂ [ε2
∗ρ∗, 2ε2

∗ρ∗]
b, ω̂∗ = ε2

∗ω∗ = α + Aξ̂ := ω̂(ξ̂),

then the tangential frequencies mapping ξ̂ → ω̂(ξ̂) satisfies conditions (C1) and (C2)
with respect to (M̂∗

1 , M̂∗
2 ) := (ε2∗M∗

1 , M∗
2 ). Let

(6.13) ω� = ω�([ε2
∗ρ∗, 2ε2

∗ρ∗]
b) = λω̂∗ = ε2

∗λω∗.

For any fixed ι ≥ 4, since ρ∗ = γ
4
5∗ > ιγ∗, we can choose ω∗ ∈ Dρ∗,τ , thus ω̂∗ ∈

Dε2∗ρ∗,τ , such that 0 /∈ ω∗([ρ∗, 2ρ∗]b), from (6.13), we also have 0 /∈ ω�([ε2∗ρ∗, 2ε2∗ρ∗]b).
Since (6.12) is equivalent to

meas([−1
2
,
1
2
] \ {Λ� − {1}}) < ε

2+ 1
24∗ meas([−1

2
,
1
2
]),

where Λ�−{1} = {λ−1 : λ ∈ Λ�}, we can guarantee that the segment [1−ε
2+ 1

24∗ , 1+

ε
2+ 1

24∗ ]ω̂∗ belong to ω�([ε2∗ρ∗, 2ε2∗ρ∗]b). Finally, for ω̂∗, we can apply Proposition 6.1
and Proposition 6.2 to obtain Theorem in Section 1.
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