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HOMOCLINIC SOLUTIONS FOR A CLASS OF NONLINEAR
SECOND-ORDER DIFFERENTIAL EQUATIONS

WITH TIME-VARYING DELAYS

Yongkun Li* and Li Yang

Abstract. In this paper, by using Mawhin’s continuation theorem of coincidence
degree theory, we obtain some sufficient conditions for the existence of homoclinic
solutions for a class of nonlinear second-order differential equations with time-
varying delays. Moreover, we give an example to illustrate the feasibility of
obtained results. Our results are completely new.

1. INTRODUCTION

In the past few years, there has been increasing interest in studying the existence
of solutions, such as periodic solutions, almost periodic solutions or anti-periodic so-
lutions, of differential equations. Since homoclinic orbits play an important role in
nonlinear dynamical systems, problems of existence of homoclinic solutions are of ut-
most importance in the study of differential equations. Recently, the existence and
multiplicity of homoclinic solutions has become one of the most important problems in
the research of differential systems. And there have been many results on the existence
of homoclinic solutions for first order or second order differential equations (see [1-10]
and references cited therein).
Most existing results on the existence of homoclinic solutions for differential equa-

tions are obtained by using critical point theory (or variation method). For example, in
[11], authors studied the existence of homoclinic orbits for the following second order
Hamiltonian system

q′′(t) + Vq(t, q) = f(t).
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In [12], by using the Mountain Pass theorem, authors discussed the existence of ho-
moclinic solutions for the following second-order Hamiltonian system

x′′(t) − L(t)x(t) + ∇w(t, x(t)) = 0.

And in [13], by means of variation method, author presented an existence result of
homoclinic solutions to the following nonlinear second-order differential equation

x′′ + 2f(t)x′ + β(t)x + g(t, x) = 0, t ∈ R.

Recently, in [14], by using Mawhin’s continuation theorem, authors obtained some
sufficient conditions ensuring the existence of homoclinic solutions for the following
differential equation

u′′(t) + g(u′(t)) + h(x(t)) = f(t).

This equation is important in the applied sciences such as nonlinear vibration of masses,
see [15-17] and the references therein.
However, it is well known that more realistic models should include some of the past

states of these systems, that is, ideally, a real system should be modeled by differential
equations with time delays. Therefore, the research on delay differential equations has
much significance. To the best of our knowledge, few papers have been published on
the existence of homoclinic solutions for differential equations with delays.
Motivated by above mentioned, in this paper, applying the coincidence degree

theory, we study the existence of homoclinic solutions for the following nonlinear
differential equation with time-varying delays

(1.1)
x′′(t) + a(t)g(x′(t))

+
n∑

i=1

bi(t)hi

(
x(t − τ1(t)), x(t− τ2(t)), . . . , x(t− τn(t))

)
= f(t),

where t ∈ R, g, f ∈ C(R, R), hi ∈ C(Rn, R), τi ∈ C(R, (0, +∞)), a, bi ∈
C(R, [0, +∞)) with a− ≤ a ≤ a+, b−i ≤ bi ≤ b+

i , a−, a+, b−i , b+
i are all positive

constants and a(t), bi(t) are all 2T -periodic, T > 0 ia a given constant, i = 1, 2, . . . , n.
In order to investigate the homoclinic solutions of (1.1), firstly, we study the existence
of 2kT -periodic solutions of the following equation for each k ∈ N :

(1.2)
x′′(t) + a(t)g(x′(t))

+
n∑

i=1

bi(t)hi

(
x(t − τ1(t)), x(t− τ2(t)), . . . , x(t− τn(t))

)
= fk(t),

where fk : R → R is a 2kT -periodic function, k ∈ N and

fk(t) =

⎧⎨
⎩

f(t), t ∈ [−kT, kT − ε),

f(kT − ε) + f(−kT )−f(kT−ε)
ε (t − kT + ε), t ∈ [kT − ε, kT ],
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ε ∈ (−T, T ) is a constant independent of k ∈ N . Then a homoclinic solution of (1.1)
is obtained as a limit point of the set {xk(t)}, where {xk(t)} is a 2kT -periodic solution
of (1.2) for each k ∈ N .
Let C2kT = {x ∈ C(R, R)|x(t + 2kT ) = x(t)} with norm ||x||C2kT

=
max

t∈[−kT,kT ]
|x(t)| and C1

2kT = {x ∈ C1(R, R)|x(t+2kT ) = x(t)} with norm ||x||C1
2kT

=

max
{||x||C2kT

, ||x′||C2kT

}
. Then both C2kT and C1

2kT are Banach spaces. For x ∈
C2kT , we denote ||x||p =

( ∫ kT
−kT |x(t)|p) 1

p , where p ∈ (1, +∞). It is obvious that
norms ||x||C2kT

and ||x||p are equivalent. Further, we assume that there is an integer
m0 such that {τi(t) : t ∈ [0, 2T ]} ⊂ [(m0 − 1)T, (m0 + 1)T ], i = 1, 2, . . . , n, denote
θ := max

1≤i≤n
max

t∈[0,2T ]
|τi(t)− m0T |.

Throughout this paper, we assume the following conditions hold

(H1) sup
t∈R

|f(t)| < ∞, ∫R |f(t)|2dt < ∞, ∫ϑ∈Rn |hi(ϑ)|2dϑ < ∞, i = 1, 2, . . . , n;

(H2) there exist positive constants ni and L
(i)
k such that uhi(u, u, . . . , u) ≤ −ni|u|2

and

|hi(u1, u2, . . . , un) − hi(v1, v2, . . . , vn)| ≤ L
(i)
1 |u1 − v1| + L

(i)
2 |u2 − v2|

+ · · ·+ L(i)
n |un − vn|, ∀u, ui, vi ∈ R, i, k = 1, 2, . . . , n;

(H3) |g(u)| ≤ m1|u|, ug(u) ≥ mu2, where m satisfies a−m >
√

2b+Lθ, b+ =

max
1≤i≤n

b+
i and L = max

1≤i≤n

n∑
k=1

L
(i)
k , m1 is a positive constant, ∀u ∈ R.

2. PRELIMINARIES

In this section, we state some preliminary results.
Let X, Y be normed vector spaces, L : DomL ⊂ X→Y be a linear mapping,

and N : X→Y be a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dim Ker L=codim Im L < +∞ and Im L is closed in Y . If L
is a Fredholm mapping of index zero and there exist continuous projectors P : X→X

and Q : Y →Y such that Im P=Ker L, Ker Q=Im L=Im (I − Q), it follows that
mapping L|DomL∩KerP : (I − P )X→Im L is invertible. We denote the inverse of that
mapping by KP . If Ω is an open bounded subset of X , the mapping N will be called
L-compact on Ω if QN (Ω) is bounded and KP (I − Q)N : Ω→X is compact. Since
Im Q is isomorphic to Ker L, there exists an isomorphism J : Im Q→ Ker L.

Lemma 2.1. [18]. Let Ω ⊂ X be an open bounded set and let N : X→Y be a
continuous operator which is L-compact on Ω. Assume

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ DomL, Lx �= λNx;
(b) for each x ∈ ∂Ω ∩ Ker L, QNx �= 0;
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(c) deg(JNQ, Ω ∩ Ker L, 0) �= 0.

Then Lx = Nx has at least one solution in Ω ∩ DomL.

Lemma 2.2. [19]. Let r > 0 and u ∈ W 1,p(R, R). Then for any t ∈ R, the
following inequality holds

|u(t)| ≤ (2r)−
1
q

( ∫ t+r

t−r

|u(s)|qds
) 1

q + r(2r)−
1
p

( ∫ t+r

t−r

|u′(s)|pds
) 1

p
,

where p, q ∈ (1, +∞) are constants.

Lemma 2.3. [20]. Let 0 ≤ α ≤ 2T be a constant and s be 2T -periodic with
max

t∈[0,2T ]
|s(t)| ≤ α. Then for any x ∈ C1

2T , we have

∫ 2T

0

|x(t) − x(t − s(t))|2dt ≤ 2α2

∫ 2T

0

|x′(t)|2dt.

Lemma 2.4. [14]. Let (H1) hold. Then ||fk||C2kT
and ||fk||p are constants inde-

pendent of k ∈ N , where p > 1 is a constant.

3. MAIN RESULTS

In this section, we will state and prove the existence of homoclinic solutions for
(1.1).

Theorem 3.1. Let (H1), (H2) and (H3) hold. Then (1.2) has at least one 2kT -
periodic solution for each k ∈ N .

Proof. Set X = C2kT and Y = C1
2kT . Let

L : Dom L ∩ X → Y, Lx = x′′, x ∈ X,

where DomL = {x ∈ C2(R, R)|x(t + 2kT ) = x(t)}. Clearly, Ker L = R and Im
L =

{
y ∈ Y | ∫ kT

−kT y(s)ds = 0
}
. Thus L is a Fredholm operator with index zero. Set

P : X → Ker L, Px =
1

2kT

∫ 2kT

0

x(s)ds, x ∈ X

and

Q : Y → Y/Im L, Qy =
1

2kT

∫ 2kT

0
y(s)ds, y ∈ Y.

We can obtain that the inverse KP : Im L → Ker P∩ Dom L of LP exists and is
given by

KP (y) =
∫ 2kT

0
G(t, s)y(s)ds,
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where

G(t, s) =

⎧⎪⎨
⎪⎩

s(2kT − t)
2kT

, 0 ≤ s < t ≤ 2kT,

t(2kT − s)
2kT

, 0 ≤ t < s ≤ 2kT.

Define N : X → Y as follows

N (x) = −a(t)g(x′(t))−
n∑

i=1

bi(t)hi

(
x(t−τ1(t)), x(t−τ2(t)), . . . , x(t−τn(t))

)
+fk(t).

For any open bounded set Ω ⊂ X , it is easy to verify that N is L-compact on Ω̄. Now,
we are in the position of searching for an appropriate open, bounded subset Ω for the
application of the continuation theorem. Corresponding to the operator equation

Lx = λNx, λ ∈ (0, 1),
we have

(3.1)
x′′(t) + λa(t)g(x′(t))

+λ

n∑
i=1

bi(t)hi

(
x(t − τ1(t)), x(t− τ2(t)), . . . , x(t− τn(t))

)
= λfk(t).

Suppose that x(t) ∈ X is a solution of system (3.1) for a certain λ ∈ (0, 1). Multiplying
both sides of (3.1) by x′(t) and integrating on the interval [−kT, kT ], we have that∫ kT

−kT
x′(t)fk(t)dt

=
∫ kT

−kT

a(t)x′(t)g(x′(t))dt

+
∫ kT

−kT
x′(t)

n∑
i=1

bi(t)hi

(
x(t − τ1(t)), x(t− τ2(t)), . . . , x(t− τn(t))

)
dt.

Hence, in view of (H1) and (H3), we obtain

(3.2)

a−m

∫ kT

−kT
(x′(t))2dt

≤
∣∣∣
∫ kT

−kT
x′(t)

n∑
i=1

bi(t)hi

(
x(t − τ1(t)), x(t− τ2(t)), . . . , x(t − τn(t))

)
dt

∣∣∣
+

∣∣∣
∫ kT

−kT

x′(t)fk(t)dt
∣∣∣

≤
n∑

i=1

b+
i

(∫ kT

−kT
|x′(t)||hi

(
x(t), x(t), . . . , x(t)

)

−hi

(
x(t − τ1(t)), x(t− τ2(t)), . . . , x(t − τn(t))

)|dt

+
∫ kT

−kT
|x′(t)||hi

(
x(t), x(t), . . . , x(t)

)|dt
)

+
∣∣∣
∫ kT

−kT
x′(t)fk(t)dt

∣∣∣.
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Using Lemma 2.3, for i = 1, 2, . . . , n, we have∫ kT

−kT

|x′(t)||hi

(
x(t), x(t), . . . , x(t)

)

−hi

(
x(t − τ1(t)), x(t− τ2(t)), . . . , x(t− τn(t))

)|dt

≤
∫ kT

−kT
|x′(t)|(L(i)

1 |x(t)− x(t − τ1(t))|+ L
(i)
2 |x(t)− x(t − τ2(t))|+ · · ·

+L(i)
n |x(t)− x(t − τn(t))|)dt

≤ L
(i)
1

(∫ kT

−kT
|x′(t)|2dt

) 1
2
(∫ kT

−kT
|x(t)− x(t − τ1(t))|2dt

) 1
2 +L

(i)
2

(∫ kT

−kT
|x′(t)|2dt

) 1
2

×
( ∫ kT

−kT
|x(t)− x(t − τ2(t))|2dt

) 1
2 + · · ·+ L(i)

n

(∫ kT

−kT
|x′(t)|2dt

) 1
2

×
( ∫ kT

−kT
|x(t)− x(t − τn(t))|2dt

) 1
2

≤ ||x′||2
n∑

i=1

Li

(
2θ2

∫ kT

−kT
|x′(t)|2dt

) 1
2

=
√

2
n∑

k=1

L
(i)
k θ||x′||22.

Thus, from (3.2), we have

a−m||x′||22 ≤
√

2b+Lθ||x′||22 + b+H ||x′||2 + ||fk||2||x′||2,
where H = max

1≤i≤n
||hi||2. It follows that

||x′||2 ≤ b+H + ||fk||2
a−m −√

2b+Lθ
:= α1.

Since ||x′||2 and ||x′||C2kT
are equivalent, there exist a constant c1 > 0 such that

||x′||C2kT
≤ c1||x′||2 = c1α1.

Multiplying both sides of (3.1) by x(t) and integrating on the interval [−kT, kT ],
we have that

λ

∫ kT

−kT
x(t)fk(t)dt

=
∫ kT

−kT
x(t)x′′(t)dt + λ

∫ kT

−kT
a(t)x(t)g(x′(t))dt

+λ

∫ kT

−kT
x(t)

n∑
i=1

bi(t)hi

(
x(t − τ1(t)), x(t− τ2(t)), . . . , x(t − τn(t))

)
dt.
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Hence, we obtain
∫ kT

−kT

(
x′(t)

)2dt

= λ

∫ kT

−kT

a(t)x(t)g(x′(t))dt − λ

∫ kT

−kT

x(t)fk(t)dt

+λ

∫ kT

−kT

x(t)
n∑

i=1

bi(t)hi

(
x(t − τ1(t)), x(t− τ2(t)), . . . , x(t − τn(t))

)
dt.

Define Fk(t) =
∫ t
0 fk(s)ds, then − ∫ kT

−kT x(t)fk(t)dt =
∫ kT
−kT x′(t)Fk(t)dt. Therefore,

we have

(3.3)

∫ kT

−kT

(
x′(t)

)2dt

= λ

∫ kT

−kT

x(t)
n∑

i=1

bi(t)hi

(
x(t − τ1(t)), x(t− τ2(t)), . . . , x(t− τn(t))

)
dt

+λ

∫ kT

−kT
a(t)x(t)g(x′(t))dt + λ

∫ kT

−kT
x′(t)Fk(t)dt

= λ

∫ kT

−kT
x(t)

n∑
i=1

bi(t)hi

(
x(t), x(t), . . . , x(t)

)
dt

+λ

∫ kT

−kT
x(t)

n∑
i=1

bi(t)
[
hi

(
x(t − τ1(t)), x(t− τ2(t)), . . . , x(t− τn(t))

)

−hi

(
x(t), x(t), . . . , x(t)

)]
dt + λ

∫ kT

−kT
a(t)x(t)g(x′(t))dt

+λ

∫ kT

−kT
x′(t)Fk(t)dt.

In view of (H2) and Lemma 2.3, for i = 1, 2, . . . , n, we have

(3.4)

∫ kT

−kT
|x(t)||hi

(
x(t), x(t), . . . , x(t)

)

−hi

(
x(t − τ1(t)), x(t− τ2(t)), . . . , x(t− τn(t))

)|dt

≤
∫ kT

−kT
|x(t)|(L(i)

1 |x(t) − x(t − τ1(t))|+ L
(i)
2 |x(t) − x(t − τ2(t))|+ · · ·

+L(i)
n |x(t)− x(t − τn(t))|)dt

≤ L
(i)
1

( ∫ kT

−kT

|x(t)|2dt
) 1

2
( ∫ kT

−kT

|x(t)− x(t − τ1(t))|2dt
) 1

2
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+L
(i)
2

(∫ kT

−kT
|x(t)|2dt

) 1
2

×
( ∫ kT

−kT
|x(t)− x(t − τ2(t))|2dt

) 1
2 + · · ·+ L(i)

n

(∫ kT

−kT
|x(t)|2dt

) 1
2

×
( ∫ kT

−kT
|x(t)− x(t − τn(t))|2dt

) 1
2

≤ ||x||2
n∑

k=1

L
(i)
k

(
2θ2

∫ kT

−kT
|x′(t)|2dt

) 1
2

=
√

2θ
n∑

k=1

L
(i)
k ||x||2||x′||2

and

(3.5)

λ
∫ kT
−kT a(t)x(t)g(x′(t))dt ≤ a+

∫ kT

−kT
|x(t)||g(x′(t))|dt

≤ a+m1

∫ kT

−kT
|x(t)||x′(t)|dt

≤ a+m1

(∫ kT

−kT
|x(t)|2dt

) 1
2
( ∫ kT

−kT
|x′(t)|2dt

) 1
2

= a+m1||x||2||x′||2.
Moreover, we also have

λ

∫ kT

−kT
x′(t)Fk(t)dt ≤ ||Fk||2||x′||2.(3.6)

Here in view of Lemma 2.4, we have that ||Fk||2 is independent of k ∈ N . From (3.3),
we have that

−λ

∫ kT

−kT

x(t)
n∑

i=1

bi(t)hi

(
x(t), x(t), . . . , x(t)

)
dt

≤ λ

∫ kT

−kT
x(t)

n∑
i=1

bi(t)
[
hi

(
x(t − τ1(t)), x(t− τ2(t)), . . . , x(t− τn(t))

)

−hi

(
x(t), x(t), . . . , x(t)

)]
dt + λ

∫ kT

−kT
a(t)x(t)g(x′(t))dt

+λ

∫ kT

−kT
x′(t)Fk(t)dt.

Combining with (H3), (3.4), (3.5) and (3.6), we have that

b−l

∫ kT

−kT
|x|2dt ≤

√
2b+Lθ||x||2||x′||2 + a+m1||x||2||x′||2 + ||Fk||2||x′||2

≤
√

2b+Lθ||x||2α1 + a+m1||x||2α1 + ||Fk||2α1,
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where b− = min
1≤i≤n

b−i and l = min
1≤i≤n

ni. It follows that

b−l||x||22 − (
√

2b+Lθ + a+m1)α1||x||2 − ||Fk||2α1 ≤ 0,

that is,

||x||2 ≤
√

2b+Lθ + a+m1 +
√

(
√

2b+Lθ + a+m1)2α2
1 + 4b−l||Fk||2α1

2b−l
:= α2.

Since ||x||2 and ||x||C2kT
are equivalent, there exist a constant c2 > 0 such that

||x||C2kT
≤ c2||x||2 = c2α2. From what has been discussed above, we finally derive

that ||x||C1
2kT

≤ M1, where

M1 = max{c1α1, c2α2}.
Clearly, M1 is independent of λ and k. Denote M = M1 + M0, here M0 is taken
sufficiently large such that x∗ satisfies ‖x∗‖ < M , where x∗ is the solution of the
following system

āg(0) +
n∑

i=1

b̄ihi(x, x, . . . , x) = f̄k,

where

ā=
1

2kT

∫ kT

−kT
a(t)dt, b̄i=

1
2kT

∫ kT

−kT
bi(t)dt, f̄k =

1
2kT

∫ kT

−kT
fk(t)dt, i=1, 2, . . . , n.

Now, we take Ω = {x ∈ C1
2kT : ‖x‖C1

2kT
< M}. Thus, the condition (a) of Lemma

2.1 is satisfied. When x ∈ ∂Ω ∩ Ker L = ∂Ω ∩ R, x is a constant function in R with
|x| = M . Then we can derive

QNx = − 1
2kT

∫ kT

−kT

(
a(t)g(0) +

n∑
i=1

bi(t)hi(x, x, . . . , x)− fk(t)
)
dt �= 0,

which implies that the condition (b) of Lemma 2.1 is satisfied. Furthermore, take
J : Im Q→ kerL such that J(x) = x for x ∈ X . Let H(x, μ) = μx + (1− μ)JQNx,
∀x ∈ Ω ∩ Ker L. We have that

deg{JQN, Ω ∩ ker L, 0} = deg{I, Ω∩ kerL, 0} = 1 �= 0,

where I is the identity operator. Therefore, the condition (c) of Lemma 2.1 is satisfied.
Hence, Lx = Nx has at least one solution in DomL∩ Ω̄. Therefore, (1.2) has at least
one 2kT -periodic solution xk ∈ Ω̄. This completes the proof.

To prove the existence of homoclinic solutions of (1.1), we introduce the following
lemma
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Lemma 3.1. [19]. Let xk ∈ C1
2kT with ||xk||C2kT

≤ M , ||x′
k||C2kT

≤ M , ||xk||2 ≤
α2 and ||x′

k||l+1 ≤ α1 for all k ∈ N . Then there exists a function x0 ∈ C1(R, R) such
that for each [a, b] ⊂ R, there is a subsequence {xkj} of {xk}k∈N with x′

kj
(t) → x′

0(t)
uniformly on [a, b].

Theorem 3.2. Let (H1), (H2) and (H3) hold. Then (1.1) has at least one homo-
clinic solution.

Proof. By Theorem 3.1, (1.2) has at least one 2kT -periodic solution xk ∈ Ω̄, that
is, for each k ∈ N , ||xk||C2kT

≤ M , ||x′
k||C2kT

≤ M , ||xk||2 ≤ α2 and ||x′
k||l+1 ≤ α1.

It follows from Lemma 3.1 that there exists a function x0 ∈ C1(R, R) such that for each
[a, b] ⊂ R, there is a subsequence {xkj} of {xk}k∈N with x′

kj
(t) → x′

0(t) uniformly
on [a, b]. In the following, we will show that x0(t) is just the unique homoclinic
solution of (1.1). Firstly, we show that x0(t) is a solution of (1.1). Since xkj (t) is a
2kjT -periodic solution of (1.2), we have

(3.7)
x′′

kj
(t) + a(t)g(x′

kj
(t))

+
n∑

i=1

bi(t)hi

(
xkj(t − τ1(t)), xkj(t − τ2(t)), . . . , xkj(t − τn(t))

)
= fkj (t),

where t ∈ [−kjT, kjT ], j ∈ N. Hence, there exists j0 ∈ N such that for j > j0 and
t ∈ [a, b], we have

(3.8)
x′′

kj
(t) + a(t)g(x′

kj
(t))

+
n∑

i=1

bi(t)hi

(
xkj(t − τ1(t)), xkj(t − τ2(t)), . . . , xkj(t − τn(t))

)
= f(t).

Integrating (3.8) from a to t ∈ [a, b], we obtain

(3.9)
x′

kj
(t) − x′

kj
(a) =

∫ t

a

(
− a(s)g(x′

kj
(s)) −

n∑
i=1

bi(s)hi

(
xkj (s − τ1(s)),

xkj (s − τ2(s)), . . . , xkj(s − τn(s))
)
+ f(s)

)
ds.

Since xkj(t) → x0(t) and x′
kj

(t) → x′
0(t) uniformly on [a, b] as j → ∞. Let j → ∞

in (3.9), for t ∈ [a, b], we obtain that

x′
0(t) − x′

0(a)

=
∫ t

a

(
− a(s)g(x′

0(s))

−
n∑

i=1

bi(s)hi

(
x0(s − τ1(s)), x0(s − τ2(s)), . . . , x0(s − τn(s))

)
+ f(s)

)
ds.
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In view of [a, b] is arbitrary, we have that x0(t) is a solution of (1.1).
Next, we will show that x0(t) → 0 as t → ±∞. It is obvious that

(3.10)

∫ +∞

−∞

(
|x0(t)|2+|x′

0(t)|2
)
dt = lim

k→+∞

∫ kT

−kT

(
|x0(t)|2 + |x′

0(t)|2
)
dt

= lim
k→+∞

lim
j→+∞

∫ kjT

−kjT

(
|x0(t)|2+|x′

0(t)|2
)
dt

≤ α2
2 + α2

1.

Hence, we have ∫
|t|≥δ

(
|x0(t)|2 + |x′

0(t)|2
)
dt → 0, δ → +∞.

It follows that∫
|t|≥δ

|x0(t)|2dt → 0,

∫
|t|≥δ

|x′
0(t)|2dt → 0, δ → +∞.

By Lemma 2.2, as t → ±∞, we have that

|x0(t)| ≤ (2r)−
1
2

( ∫ t+r

t−r
|x0(s)|2dt

) 1
2 + r(2r)−

1
2

( ∫ t+r

t−r
|x′

0(s)|2dt
) 1

2 → 0,

that is, x0(t) → 0 as t → ±∞.
Finally, we will show that x′

0(t) → 0 as t → ±∞. By Theorem 3.1, we have
|x0(t)| ≤ M, |x′

0(t)| ≤ M, ∀t ∈ R.

It follows from (1.1) that

||x′′
0||C2kT

≤ a+gM + b+hM + sup
t∈R

|f(t)|,

where gM = max
|x|≤M

|g(x)| and hM = max
1≤i≤n

max
|x|≤M

|hi(x, x, . . . , x)|. By way of contra-
diction, assume that x′

0(t) � 0 as t → ±∞. Then there exist a 0 < ε0 < 1
2 and a

sequence {tk} such that
|t1| < |t2| < · · · < |tk| < |tk+1 < · · · , k ∈ N

and

|x′
0(tk)| ≥ 2ε0, k ∈ N.

Then, for t ∈ [tk, tk + ε0
1+M ], we have

|x′
0(t)| =

∣∣x′
0(tk) +

∫ t0

tk

x′′
0(s)ds

∣∣ ≥ |x′
0(tk)| −

∫ t0

tk

|x′′
0(s)|ds ≥ ε0.
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Therefore, we have
∫ +∞

−∞
|x′

0(t)|2dt ≥
∞∑

k=1

∫ tk+
ε0

1+M

tk

|x′
0(t)|2dt = ∞,

which contradicts to (3.10). Hence x′
0(t)→0 as t→±∞. This completes the proof.

4. AN EXAMPLE

Example 4.1. Consider the following differential equation

(4.1)

x′′(t) − 19(2− cos t)x′(t)(2 + sinx′(t))

−3
2
(1− 1

2
sin t)

[
x
(
t − 3

4
sin 2t

)
+ x

(
t − cos 2t

)]

−5
2
(1− 2

3
sin t)

[
x
(
t − 3

4
sin 2t

)
+ x

(
t − cos 2t

)]
=

e
t
3

e−t + et
, t ∈ R.

It is obvious that a(t) = 2 − cos t, g(u) = 19u(2 + sinu), b1(t) = 1 − 1
2 sin t,

b2(t) = 1 − 2
3 sin t, h1(u, v) = −3

2 (u + v), h2(u, v) = −5
2 (u + v), τ1(t) = 3

4 sin 2t,

τ2(t) = cos 2t and f(t) = e
t
3

e−t+et . We have that L = 3 and we can take m = 17.
Then it is easy to verify that all conditions in Theorem 3.2 are satisfied. Therefore,
(4.1) has at least one homoclinic solution.
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