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RELATIVE ATTACHED PRIMES AND COREGULAR SEQUENCES

J. R. Garcı́a-Rozas, Inmaculada López and Luis Oyonarte*

Abstract. We extend the existing concepts of secondary representation of a
module, coregular sequence and attached prime ideals to the more general setting
of any hereditary torsion theory. We prove that any τ -artinian module is τ -
representable and that such a representation has some sort of unicity in terms
of the set of τ -attached prime ideals associated to it. Then we use τ -coregular
sequences to find a nice way to compute the relative width of a module. Finally
we give some connections with the relative local homology.

1. INTRODUCTION

Since 1950’s authors like Auslander, Buchsbaum, Serre and Kaplansky used regular
sequences to find homological characterizations of some interesting rings in Algebraic
Geometry.
Coregular sequences, as well as the width of an artinian module, were introduced

by Matlis ([6]) in 1960, and later, in 1976 Ooishi ([9]) gave the concept of the cograde
of a module.
Recently, a characterization of the width of a module by means of local homology

modules has been given ([8]), and these local homology modules have been proved to
be very close to left derived functors of the I-adic completion ([2]).
In this paper we use a torsion theory to extend the concept of a coregular sequence,

attached prime ideal to a module and the width of a module. We first study conditions
for a module to admit a (relative) secondary representation (in the sense of [5]) and
prove that, if this is the case, the set of prime ideals associated to a secondary decom-
position of the module is unique and coincides with the set of attached prime ideals to
the module and to the set of attached prime ideals to any of its coprime quotients.
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Then, we study the existing relation between coregular sequences and the torsion
of some Tor modules. From this relation we deduce a nice way to compute the width
of a module in terms of the torsion of TorR

n . This also makes possible to find a relation
between the width of the three modules of a short exact sequence.
Finally we introduce a functor τHI

i for any i ≥ 0 that, over any moduleM , acts as
lim← Qτ

(
TorRi (M, R/In)

)
. The previous results suggest that these modules τH

I
i (M)

should be related is some sense with the existence of (relative) coregular sequences. We
show that this is indeed the case and that actually, using these τHI

i (M), τ -WidthI(M)
can be computed as the projective or injective dimension of a module can be computed
using Ext.
Finally, we prove that the functors τH

I
i are indeed derived functors of lim← Qτ

(M/InM).
Throughout the paper R will be a commutative ring with identity, τ an idempotent

kernel functor in the category R-Mod, Tτ and Fτ the classes of all τ -torsion and all
τ -torsion free modules respectively, and L(τ) the Gabriel filter associated to τ . By
a torsion or torsion free module we shall mean a τ -torsion or τ -torsion free module
respectively. The localization functor associated to τ will be denoted by Qτ .
Recall that given a moduleM and a submoduleN ≤ M , the τ -closure of N in M

is defined as

ClMτ (N ) = {m ∈ M ; ∃I ∈ L(τ) such that Im ⊆ N} .

N is said to be τ -dense in M if M/N ∈ Tτ , that is, if ClMτ (N ) = M . On the
other hand, N is τ -closed in M if M/N ∈ Fτ , that is, ClMτ (N ) = N .
A moduleM is said to be τ -noetherian (τ -artinian) provided that any nonempty set

of τ -closed submodules posses a maximal (minimal) element. A ring R is τ -noetherian
if it is as an R-module.
Further information on torsion theories can be found in [1, 10] or [4].

2. ATTACHED PRIMES AND SECONDARY REPRESENTATIONS

The aim of this section is the study of relative secondary decompositions. We
will prove that over any ring, every τ -artinian module admits a relative secondary de-
composition, or equivalently, a minimal relative secondary decomposition. In addition,
these minimal decompositions have some sort of unicity that involves the set of relative
attached prime ideals to the module.

Definition 2.1. For any moduleM we define the set of τ -attached primes toM as

τ -Att(M) = {J ∈ Spec(R); J = AnnR (M/N ) ; N � M τ -closed} .
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Proposition 2.2. Any maximal element of the set

A =
{

AnnR

(
M

N

)
; 0 �= M

N
∈ Fτ

}

is τ -attached to M .

Proof. If J = Ann(M/N ) is any maximal ideal of A and ab ∈ J , a /∈ J , then
N � N1 = N+aM . SinceM/ClMτ (N1) is torsion free and J ⊆ Ann

(
M/ClMτ (N1)

)
,

if ClMτ (N1) �= M then J = Ann
(
M/ClMτ (N1)

)
by the maximality of J in A.

Therefore, from the chain

J ⊆ Ann(M/N1) ⊆ Ann
(
M/ClMτ (N1)

)
we immediately get that J = Ann(M/N1). But then a ∈ Ann(M/N1) implies a ∈ J ,
a contradiction.
Thus we get that ClMτ (N1) = M , and then, for any m ∈ M there exists I ∈ L(τ)

such that Im ⊆ N1 and so that bIm ⊆ bN1 = N , that is, bm ∈ ClM(N ) = N for all
m ∈ M . This means that b ∈ J and so that J is prime.

Now, every ideal in the set A = {Ann(M/N ); N � M τ -closed} is τ -closed in
R, so if the ring is τ -noetherian then A has a maximal element which is τ -attached to
M by the above proposition. Thus we have the following.

Corollary 2.3. If R is τ -noetherian then τ -Att(M) = ∅ if and only if M is a
torsion module.

Definition 2.4. A nonzero torsion free module is said to be τ -coprime if its anni-
hilator coincides with the annihilator of any of its nonzero torsion free quotients.

It is clear from the definition (and Proposition 2.2) that if M is τ -coprime then
τ -AttR(M) = {Ann(M)}.

Proposition 2.5. If R is τ -noetherian and M /∈ Tτ , then M has a nonzero τ -
coprime quotient.

Proof. The set A = {Ann(M/N ); N � M τ -closed} is nonempty since M /∈ Tτ

(and so τ -AttR(M) �= ∅). Thus, since every element of A is a τ -closed ideal of
R, A has a maximal element Ann(M/N ). If M/N is not τ -coprime we find a τ -
closed submodule L/N (so AnnM/L ∈ A) such that Ann(M/N ) � Ann(L/N ), a
contradiction.

Definition 2.6. We say that an R-moduleM is τ -secondary provided thatM /∈ Tτ

and that, for any r ∈ R, the endomorphism r· has a torsion cokernel or rnM ∈ Tτ for
some n ≥ 1.
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It is clear that last two conditions on r· cannot occur at the same time on a τ -
secondary module since M/rM ∈ Tτ implies M/rnM ∈ Tτ for all n ≥ 1, so if
rnM ∈ Tτ , the exact sequence

0 → rnM → M → M

rnM
→ 0

forces M to be torsion, so M would not be τ -secondary.

We then see thatM being a τ -secondary module means that it makes the ring to par-
tition in two sets: Rad (Ann (M/τ(M))), and the set of all those r with rM τ -dense in
M . Moreover, it is easy to prove that ifM is τ -secondary, then Rad (Ann (M/τ(M)))
is actually a prime ideal. For if we let anbnM ⊆ τ(M) but bmM � τ(M) for every
m (so ClMτ (bM) = M since M is τ -secondary), we get

anM = anClMτ (bnM) ⊆ ClMτ (anbnM) ⊆ ClMτ (τ(M)) = τ(M),

that is, a ∈ Rad (Ann (M/τ(M))).

Definition 2.7. We shall indicate that p = Rad (Ann (M/τ(M))) by saying that
M is (τ, p)-secondary.

We now prove some properties of the class of all (τ, p)-secondary modules.

Proposition 2.8. Let R be any ring. The following statements hold.

(i) Any finite direct sum of (τ, p)-secondary modules is (τ, p)-secondary.
(ii) If M is (τ, p)-secondary and K ≤ M is such that M/K /∈ Tτ , then M/K is

(τ, p)-secondary.
(iii) If M is a (τ, p)-secondary module then Ann (M/τ(M)) is a p-primary ideal.
(iv) If K is any torsion submodule of M and M/K (τ, p)-secondary, then M is

(τ, p)-secondary.
(v) If Mi, i = 1, . . . , n are (τ, p)-secondary submodules of a given module, then

M1 + · · ·+ Mn is also (τ, p)-secondary.
(vi) If 0 → K → M → T → 0 is exact with K is (τ, p)-secondary and T ∈ Tτ ,

then M is (τ, p)-secondary.

Proof. (i) Let A and B two (τ, p)-secondarymodules, callM = A⊕B and suppose
there exists r ∈ R such that M/rM /∈ Tτ . Let us prove that rnM ∈ Tτ for some
n ≥ 1.

M/rM /∈ Tτ means ClMτ (rM) �= M , so either ClAτ (rA) �= A or ClBτ (rB) �= B

since ClA⊕B
τ (r(A⊕ B)) = ClAτ (rA)⊕ ClBτ (rB).



Relative Attached Primes and Coregular Sequences 1099

If ClAτ (rA) �= A we have that rnA ∈ Tτ for some n ≥ 1 since A is τ -secondary.
Thus, r ∈ Rad(Ann(A/τ(A))) = p, and then there exists k ≥ 1 such that rkB ∈ Tτ .
Therefore, letting m = max{n, k} we have that rmM ∈ Tτ .
To see that p = Rad(Ann(M/τ(M))) take any x ∈ Rad(Ann(M/τ(M))) and

any k ≥ 1 with xkM ∈ Tτ . Then xkA ⊕ xkB ∈ Tτ so clearly xkA ∈ Tτ and then
x ∈ p. The converse is clear.
The general case is a trivial extension of the case n = 2 using induction.

(ii) For any r ∈ R we have that either
M

rM
∈ Tτ or rnM ∈ Tτ for some n ≥ 1.

If
M

rM
∈ Tτ then also

M

rM + K
∈ Tτ , but

M

rM + K
∼=

M/K

(rM + K)/K
=

M/K

r · M/K
,

so
M/K

r · M/K
∈ Tτ .

On the other hand, we have an epimorphism rnM → rn · M
K
, so if rnM ∈ Tτ then

also rn M

K
∈ Tτ . This also shows that p ⊆ Rad

(
Ann

(
M/K

τ(M/K)

))
.

Finally, if x ∈ Rad
(

Ann
(

M/K

τ(M/K)

))
then there exists n ≥ 1 such that xn ·

M

K
∈ Tτ and therefore

M/K

x · M/K
cannot be a torsion module.

Thus, M/xM cannot be a torsion module either since otherwise
M/K

x · M/K
would

be torsion by the above.
But M is τ -secondary, so necessarily xnM ∈ Tτ for some n, that is, x ∈ p.

(iii) Clear.

(iv) Let r ∈ R be any element. If rn M

K
∈ Tτ then

rnM

rnM ∩ K
∈ Tτ . But

rnM ∩ K ∈ Tτ since K is torsion, so necessarily rnM ∈ Tτ .

If, on the other hand, the torsion module is
M/K

r M/K
∼=

M

rM + K
, since

rM + K

rM
is torsion because K is, from the exact sequence

0 → rM + K

rM
→ M

rM
→ M

rM + K
→ 0

we immediately see that M/rM ∈ Tτ .
Therefore M is a τ -secondary module.
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Finally we have

Rad
(

Ann
(

M/K

τ(M/K)

))
= Rad

(
Ann

(
M/K

τ(M)/K

))
= Rad

(
Ann

(
M

τ(M)

))
.

(v) Call V = ⊕iMi, S =
∑

i Mi and K = ker (V → S), so S ∼= V/K .
By (i) V is (τ, p)-secondary, and by ii) so is V/ClVτ (K). But ClVτ (K)/K is a

torsion module and
V/K

ClVτ (K)/K
∼=

V

ClVτ (K)
, so V/K (that is, S) is (τ, p)-secondary

by iv).

(vi) Given any r ∈ R either K/rK ∈ Tτ or rnK ∈ Tτ for some n ≥ 1.
If K/rK ∈ Tτ thenK/(K∩rM) ∈ Tτ since rK ≤ K∩rM , so (K+rM)/rM is

a torsion module. But T ∈ Tτ means
M/K

(K + rM)/K
∈ Tτ , that is,M/(K+rM) ∈ Tτ ,

so from the exactness of the sequence

0 → K + rM

rM
→ M

rM
→ M

K + rM
→ 0

we get that M/rM ∈ Tτ .
On the other hand, M/K ∈ Tτ implies rnM/rnK ∈ Tτ for every n ≥ 1 since we

have an epimorphism
M

K
→ rnM

rnK

m + K 
→ rnm + rnK

Therefore, if rnK ∈ Tτ necessarily rnM ∈ Tτ since the sequence

0 → rnK → rnM → rnM

rnK
→ 0

is exact.

Definition 2.9. When a moduleM can be written as M = ClMτ (
∑n

i=1 Ni) where
each Ni is a (τ, pi)-secondary module, we say that ClMτ (

∑n
i=1 Ni) is a τ -secondary

representation of M . If this representation is such that all prime ideals pi are different,
it will be called a minimal τ -secondary representation.
A module M is said to be τ -representable if it has a minimal τ -secondary repre-

sentation.

By Proposition 2.8 we see that a module is τ -representable if and only if it has a
τ -secondary representation.
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Thus, associated to each τ -representable module there is a family of distinct prime
ideals {p1, . . . , pn}. Our next goal will be to prove that any τ -artinian module is τ -
representable, and that the last family of prime ideals does not depend on the choice
of the minimal τ -secondary representation of M .
We introduce some notation.

Definition 2.10. Given any ideal I ≤ R and any R-module M , we write M(I) to
denote the set of all m ∈ M annihilated by I . Thus, if a ∈ R is any element, M(a)
is the kernel of the map M

a·−→ M . Similarly, if b ∈ R is any other element then
M(a, b) is the kernel of M(a) b·−→ M(a).

Proposition 2.11. For any ring R, any τ -artinian R-moduleM with the following
two properties is τ -secondary.

(1) M /∈ Tτ .
(2) If N1, N2 ≤ M are such that M/N1, M/N2 /∈ Tτ then M/(N1 + N2) /∈ Tτ .

Proof. Suppose there exists r ∈ R such that rnM /∈ Tτ ∀ n and that M/rM /∈ Tτ .
M is τ -artinian so there is k such that ClMτ (rkM) = ClMτ (rk+nM) ∀ n. If we

call N1 = M(rk) and N2 = rkM we have M/N1
∼= rkM /∈ Tτ and M/N2 /∈ Tτ by

our hypotheses.
However ClMτ (rkM) = ClMτ (r2kM), so for any m ∈ M we find I ∈ L(τ) such

that Irkm ⊆ r2kM , that is, for any y ∈ I we have rk(ym − rkmy) = 0. This
means that ym − rkmy ∈ N1 and so that ym = rkmy + ny with ny ∈ N1. Thus
m ∈ ClMτ (N1 + N2) and then M/(N1 + N2) is torsion, contradicting 2).

Theorem 2.12. Every τ -artinian module M over any ring is τ -representable.

Proof. Suppose this is not the case and consider the set A of all not torsion τ -closed
and not τ -representable submodules of M . A is not empty since M ∈ A, so A has
a minimal element, say N . But N τ -closed and not τ -representable implies N is not
τ -secondary, and since N is τ -artinian, condition 2) of Proposition 2.11 must fail.
Thus, there are two submodules N1, N2 ≤ N such that N/Ni /∈ Tτ but N/(N1 +

N2) ∈ Tτ . Then we have

N = ClNτ (N1 + N2) ⊆ ClNτ
(
ClNτ (N1) + ClNτ (N2)

)
,

so N = ClNτ
(
ClNτ (N1) + ClNτ (N2)

)
.

If ClNτ (Ni) /∈ Tτ then ClNτ (Ni) must be τ -representable by the minimality of N
in A, and then it is easy to check that ClNτ (N1) = ClNτ (

∑
Ai), being each Ai a

τ -secondary module. Thus, if both ClNτ (Ni), i = 1, 2 are torsion we have

N = ClN
(
ClNτ

(∑
Ai

)
+ ClNτ

(∑
Bi

))
= ClNτ

(∑
Ai +

∑
Bi

)
,
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that is, N τ -representable, a contradiction.
Therefore we see some of the ClNτ (Ni) must be a torsion module, so some of the

Ni is torsion.
The two of them cannot be torsion because in that case N1 + N2 would be torsion

too, which, in addition to the fact that N/(N1 + N2) is torsion, would force N to be
torsion, a contradiction.
Thus we can suppose N1 to be torsion but not N2. Then

N = ClNτ
(
ClNτ (0) + ClNτ (N2)

)
= ClNτ

(
ClNτ (N2)

)
= ClNτ (N2),

that is, N/N2 is torsion, a contradiction.

Theorem 2.13. Let R be any τ -noetherian ring,M any τ -representableR-module,
A = {p1, . . . , pn} the set of associated prime ideals to a minimal τ -secondary rep-
resentation of M and B = {Ann(M/N ) ; M/N τ -coprime}. Then A = B =
τ -AttR(M).

Proof. B ⊆ τ -AttR(M) is clear.

If p ∈ τ -AttR(M) then p = Ann(M/N ) for some nonzero torsion free quotient
M/N , but since p is actually prime, the equality p = Rad (Ann(M/N )) holds.
LetM = ClMτ (

∑n
i=1 Ni) be a minimal τ -secondary representation of M (so each

Ni is (τ, pi)-secondary). Then ClMτ (
∑n

i=1 Ni) /N is torsion free, and then so is the
submodule (

∑n
i=1 Ni + N ) /N . If we order the Ni

′s so that Ni � N i = 1, . . . , r

and Ni ⊆ N, i = r + 1, . . . , n, we have

n∑
i=1

Ni + N

N
∼=

r∑
i=1

Ni

Ni ∩ N
.

Thus, the quotient
M/N

(
∑r

i=1 Ni) /(Ni ∩ N )
is torsion since

ClMτ

(
n∑

i=1

Ni

)
n∑

i=1

Ni + N

∼=
M/N(

r∑
i=1

Ni

)
/ (Ni ∩ N )

.

Therefore we get M/N = Cl
M/N
τ (

∑r
i=1 (Ni/(Ni ∩ N ))) and so that the module

Cl
M/N
τ (

∑r
i=1 (Ni/(Ni ∩ N ))) is torsion free. But it is not hard to prove that if the
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closure of a module is torsion free then its annihilator coincides with the annihilator of
the module itself. Therefore we have

p = Rad
(

Ann
(

M

N

))
= Rad

(
Ann

(
r∑

i=1

Ni

Ni ∩ N

))

=
r⋂

i=1

Rad
(

Ann
(

Ni

Ni ∩ N

))
=

r⋂
i=1

pi,

where the last equality holds because each Ni/(Ni ∩N ) is a torsion free quotient of a
(τ, pi)-secondary module (see ii) of Proposition 2.8).
But p = ∩ pi clearly implies that pj = p for some j, so τ -AttR(M) ⊆ A.
Finally, let p ∈ A, for instance, p = pj = Rad (Ann (Nj/τ(Nj))).
If we call Lj = ClMτ

(∑
i�=j Ni

)
we clearly have M = ClMτ (Nj + Lj), so the

quotient M/Lj is torsion free. Then, the submodule

Nj + Lj

Lj

∼=
Nj

Nj ∩ Lj

is also torsion free and so (τ, p)-secondary since Nj is (τ, p)-secondary. But then the
exactness of the sequence

0 → Nj + Lj

Lj
→ M

Lj
→ M

Nj + Lj
→ 0

forces M/Lj to be (τ, p)-secondary by vi) of Proposition 2.8 since M/(Nj + Lj) =
ClMτ (Nj + Lj)/(Nj + Lj) ∈ Tτ .
Now, M/Lj torsion free implies there exists a τ -coprime quotient M/N (Propo-

sition 2.5), and then, again by Proposition 2.8, M/N is (τ, p)-secondary, that is,
p = Rad (Ann (M/N )).
But M/N τ -coprime means that τ -AttR(M/N ) = {Ann(M/N )}, so we know

Ann(M/N ) is a prime ideal, and then of course Rad (Ann(M/N )) = Ann(M/N ),
so p ∈ B.

The following is now immediate from Theorems 2.12 and 2.13

Corollary 2.14. If R is τ -noetherian and M is τ -representable (so for instance if
M is τ -artinian), then τ -AttR(M) is finite.

3. COREGULAR SEQUENCES AND THE WIDTH OF A MODULE

In this section we introduce the concept of relative coregular M -sequences and
relate them with the torsion of some Tor modules. This connection will end up in a
very nice way to compute the relative width of a module, and gives a relation between
the (relative) width of the modules of a short exact sequence.
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Definition 3.1. If M is an R-module, a sequence {a1, . . . , an} ⊆ R is said to be
a weak τ -coregular M -sequence if the cokernel of each one of the maps

M(a1, . . . , ai)
ai+1·−→ M(a1, . . . , ai), i = 1, . . . , n − 1,

is a torsion module. If in addition M(a1, . . . , an) /∈ Tτ then sequence is called a
τ -coregular M -sequence.
An element x ∈ R is (M, τ)-coregular if {x} is a weak τ -coregular M -sequence.

Lemma 3.2. Let I ≤ R be an ideal, M an R-module and {a1, . . . , an} ⊆ I a
weak τ -coregular M -sequence. If TorR

i (M, R/I) ∈ Tτ ∀i < n then

Qτ

(
TorR

i (M, R/I)
) ∼= Qτ

(
TorRi−j(M(a1, . . . , aj), R/I)

)
∀j < i ≤ n

(so TorRi−j(M(a1, . . . , aj), R/I) ∈ Tτ ∀j < i < n − j − 1).

Proof. From the exact sequences

0 → M(a1) −→ M
·a1−→ a1M → 0

and
0 → a1M ↪→ M → M

a1M
→ 0

we get the long exact sequences

TorRi

(
M,

R

I

)
a1·→ TorR

i

(
a1M,

R

I

)
→ TorR

i−1

(
M(a1),

R

I

)
→ TorR

i−1

(
M,

R

I

)
and

TorRi+1

(
M

a1M
,
R

I

)
→ TorR

i

(
a1M,

R

I

)
→ TorR

i

(
M,

R

I

)
→ TorR

i

(
M

a1M
,
R

I

)
Since a1 ∈ I we have ·a1 = 0 and then we get from the first long exact se-

quence that TorR
i (a1M, R/I) is a submodule of TorRi−1 (M(a1), R/I) for all i, so

Qτ

(
TorRi (a1M, R/I)

)
≤ Qτ

(
TorRi−1 (M(a1), R/I)

)
for all i. But TorRi (M, R/I)

is torsion for all i < n so again from the first exact sequence we get indeed that
Qτ

(
TorRi (a1M, R/I)

) ∼= Qτ

(
TorR

i−1 (M(a1), R/I)
)
for all i ≤ n.

Now, M/a1M ∈ Tτ so TorR
i (M/a1M, R/I) ∈ Tτ ∀i, and then the second long

exact sequence shows that Qτ

(
TorR

i (a1M, R/I)
) ∼= Qτ

(
TorR

i (M, R/I)
)
for all i.

Therefore Qτ

(
TorRi (M, R/I)

) ∼= Qτ

(
TorRi−1 (M(a1), R/I)

)
for all i ≤ n.

But then TorRi (M(a1), R/I) ∈ Tτ ∀i < n − 2, and applying the previous argu-
ment, Qτ

(
TorRi (M(a1), R/I)

) ∼= Qτ

(
TorRi−1(M(a1, a2), R/I)

)
∀i ≤ n − 1, that is,

Qτ

(
TorRi (M, R/I)

) ∼= Qτ

(
TorRi−2(M(a1, a2), R/I)

)
∀i ≤ n.

The result follows repeating this procedure.

The next definition is inspired by [9, Definition 2.4].
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Definition 3.3. For any R-moduleM we call τ -WR(M) the set of all non (M, τ)-
coregular elements of R, that is, τ -WR(M) = {a ∈ R; ClMτ (aM) �= M}.

Proposition 3.4. If R is τ -noetherian then τ -WR(M) =
⋃

J∈τ-AttR(M )

J.

Proof. We first see that

τ -WR(M) = ∅ ⇔ M/rM ∈ Tτ ∀r ∈ R ⇔ τ -AttR(M) = ∅.

On the other hand, if a ∈ τ -WR(M) then M/aM /∈ Tτ , so by the last corollary
there exists J = Ann(M/N ) with aM ≤ N � M (M/N ∈ Fτ ). But then a ∈ J ∈
τ -AttR(M), that is, a ∈

⋃
J∈τ-AttR(M )

J .

Conversely, if a ∈ Ann(M/N ) with M/N ∈ Fτ , then aM ⊆ N and then
ClMτ (aM) ⊆ ClMτ (N ) �= M , so a ∈ τ -WR(M).

Theorem 3.5. Let I be an ideal of a τ -noetherian ring R andM a τ -representable
module such that M(I) /∈ Tτ . Then TorR

i (M, R/I) is a torsion module for all i < n

if and only if there exists a τ -coregular M -sequence {a1, . . . , an} ⊆ I .
Moreover, if M is τ -artinian then the sequence {a1, . . . , an} is maximal if and

only if TorR
n (M, R/I) /∈ Tτ .

Proof. If there is no a ∈ I with ClNτ (aM) = M then I ⊆ τ -WR(M) =⋃
τ-AttR(M ) J and then I is contained in some J = Ann(M/N ) ∈ τ -AttR(M) since

τ -AttR(M) is finite.
Now, TorR0 (M, R/I) ∈ Tτ by hypothesis, that is ClMτ (IM) = M , but also

ClMτ (IM) ⊆ ClMτ (JM) ⊆ ClMτ (N ) = N (M/N ∈ Fτ ). Thus M = N , a con-
tradiction.
Let then a1 ∈ I be such that M/a1M ∈ Tτ . Since TorR

1 (M, R/I) ∈ Tτ by
hypothesis, M(a1)/IM(a1) ∈ Tτ by Lemma 3.2. Thus, by the previous argument we
find a2 ∈ I such that Cl

M (a1)
τ (a2M(a1)) = M(a1).

We can repeat this procedure and find a sequence {a1, . . . , an} ⊆ I such that
ClMτ (a1M) = M and Cl

M (a1,...,ai)
τ (ai+1M(a1, . . . , ai)) = M(a1, . . . , ai) ∀i < n−1.

But clearlyM(a1, . . . , an) /∈ Tτ sinceM(I) /∈ Tτ , so {a1, . . . , an} is a τ -coregular
M -sequence.

Conversely, if a ∈ I is such that ClMτ (aM) = M then

M = ClMτ (aM) ⊆ ClMτ (IM) ⊆ M

so ClMτ (IM) = M and TorR0 (M, R/I) ∈ Tτ .
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If {a1, . . . , an} ⊆ I is now a τ -coregular M -sequence, by induction hypothesis
TorRi (M, R/I) ∈ Tτ ∀i < n − 1. But again Cl

M (a1,...,an−1)
τ (anM(a1, . . . , an−1)) =

M(a1, . . . , an−1) implies Cl
M (a1,...,an−1)
τ (IM(a1, . . . , an−1)) = M(a1, . . . , an−1), so

TorR0 (M(a1, . . . , an−1), R/I) ∈ Tτ .
Now TorR

i (M, R/I) ∈ Tτ ∀i < n − 1 implies by Lemma 3.2 that

Qτ

(
TorRn−1(M, R/I)

)∼= Qτ

(
TorR

0 (M(a1, . . . , an−1), R/I)
)
,

so TorRn−1(M, R/I) ∈ Tτ .

Finally, if TorRn (M, R/I) ∈ Tτ , Lemma 3.2 would say that
M(a1, . . . , an)
IM(a1, . . . , an)

∈ Tτ

and then that {a1, . . . , an} would not be maximal, for otherwise I would be con-
tained in τ -WR(M(a1, . . . , an)), and since M(a1, . . . , an) is τ -artinian, I ⊆ J =
Ann((M(a1, . . . , an)/N ) (N � M(a1, . . . , an) with M(a1, . . . , an)/N ∈ Fτ ). But
then

M(a1, . . . , an) = ClM (a1,...,an)(IM(a1, . . . , an)) ⊆

ClM (a1,...,an)
τ (JM(a1, . . . , an)) ⊆ ClM (a1,...,an)

τ (N ) = N,

a contradiction.
Conversely, if {a1, . . . , an} were not maximal, we could find b ∈ I with

M(a1, . . . , an)
bM(a1, . . . , an)

∈ Tτ , so also
M(a1, . . . , an)
IM(a1, . . . , an)

∈ Tτ . But we know by Lemma

3.2 that Qτ

(
TorRn (M, R/I)

) ∼= Qτ (M(a1, . . . , an)⊗ R/I) so TorR
n (M, R/I) ∈ Tτ ,

a contradiction.

We are now able to give the announced way for computing the (relative) width of
a module.

Definition 3.6. If I ≤ R is any ideal, τ -WidthI(M) is defined as the length of
the longest τ -coregular M -sequence contained in I or ∞ if such a sequence is infinite.

Corollary 3.7. If R is τ -noetherian, M is τ -representable and M(I) /∈ Tτ , then
τ -WidthI(M) may be computed as the minimum of the set{

n ≥ 0; TorR
n (M, R/I) /∈ Tτ

}
.

If furthermore M is τ -artinian then τ -WidthI(M) is always finite.

Proof. The first assertion is clear.
If |τ -WidthI(M)| = ∞ there exists an infinite τ -coregularM -sequence {a1, a2, . . .} ⊆

I , and since M is τ -artinian, the sequence

ClMτ (M(a1) ⊇ ClMτ (M(a1, a2) ⊇ · · ·
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becomes constant after some n. But then

ClM (a1,...,an)
τ (M(a1, . . . , an+1)) = ClMτ (M(a1, . . . , an+1)) ∩ M(a1, . . . , an)

= ClMτ (M(a1, . . . , an)) ∩ M(a1, . . . , an) = M(a1, . . . , an).

If we then choose any m ∈ M(a1, . . . , an), we find J ∈ L(τ) such that Im ⊆
M(a1, . . . , an+1), so an+1IM = 0 and then I ⊆ Ann(an+1m), that is, Ann(an+1m) ∈
L(τ). This means that an+1m ∈ τ (an+1M(a1, . . . , an)). Thus an+1M(a1, . . . , an) ∈
Tτ .
On the other hand Cl

M (a1,...,an)
τ (an+1M(a1, . . . , an)) = M(a1, . . . , an), that is,

M(a1, . . . , an)
an+1M(a1, . . . , an)

∈ Tτ .

Therefore, from the exact sequence

0 → an+1M(a1, . . . , an) → M(a1, . . . , an) → M(a1, . . . , an)
an+1M(a1, . . . , an)

→ 0

we get that M(a1, . . . , an) ∈ Tτ , a contradiction (M(I) /∈ Tτ ).

Proposition 3.8. Let R be a τ -noetherian ring, I ≤ R an ideal andM a τ -artinian
R-module such that M(I) /∈ Tτ . If there exists an (M, τ)-coregular element x ∈ I
then

τ -WidthI(M) = τ -WidthI(M(x)) + 1.

Proof. Suppose τ -WidthI (M(x)) = m. Then Qτ

(
TorR

i (M(x), R/I)
)

= 0 ∀i <

m and Qτ

(
TorRm(M(x), R/I)

)
�= 0.

As in the proof of Lemma 3.2, since M/xM ∈ Tτ we know

Qτ

(
TorR

i (M, R/I)
) ∼= Qτ

(
TorR

i (xM, R/I)
)
∀i,

and since TorR
i (M, R/I) x·→ TorRi (xM, R/I) is the zero map for all i, we see that

Qτ

(
TorRi (xM, R/I)

)
= 0 ∀i ≤ m. Therefore TorR

i (M, R/I) ∈ Tτ ∀i < m.
Similarly, the sequence

0 → TorR
m+1

(
xM,

R

I

)
→ TorRm

(
M(x),

R

I

)
→ TorR

m

(
M,

R

I

)

is exact and TorRm(M, R/I) ∈ Tτ , thus

Qτ

(
TorRm+1

(
xM,

R

I

))
∼= Qτ

(
TorRm

(
M(x),

R

I

))
�= 0,

that is, TorRm+1 (M, R/I) /∈ Tτ .
Therefore τ -WidthI(M) = m + 1.



1108 J. R. Garcı́a-Rozas, Inmaculada López and Luis Oyonarte

Proposition 3.9. Let R be τ -noetherian, I ≤ R an ideal and

0 → M ′ → M → M ′′ → 0

an exact sequence of τ -artinian R-modules such that M ′(I), M(I), M ′′(I) /∈ Tτ .
Then:

(1) τ -WidthI(M) < τ -WidthI(M ′) ⇒ τ -WidthI(M) = τ -WidthI(M ′′).

(2) τ -WidthI(M ′) < τ -WidthI(M) ⇒ τ -WidthI(M ′′) = τ -WidthI (M ′) + 1.

(3) τ -WidthI(M) = τ -WidthI(M ′) ⇒ τ -WidthI(M) ≤ τ -WidthI(M ′′).

Proof. If τ -WidthI(M) = 0 then obviously τ -WidthI(M) ≤ τ -WidthI (M ′′)
(so 3) holds in this case).
Moreover, M/xM ∈ Tτ ∀x ∈ I so I ⊆ τ -WR(M), that is, I ⊆ τ -AttR(M) ⊆

τ -AttR(M ′) ∪ τ -AttR(M ′′). Therefore, if τ -WidthI(M ′) > τ -WidthI(M) we have
I ⊆ τ -AttR(M ′′) and then τ -AttR(M ′′) = 0 (and 1) holds).
On the other hand, if τ -WidthI(M ′) = 0 we only have to prove 2).
In this case τ -WidthI(M) ≥ 1 so M ⊗ R/I ∈ Tτ and then M ′′ ⊗ R/I ∈ Tτ .
Now if TorR

1 (M ′′, R/I) ∈ Tτ then ker (M ′ ⊗ R/I → M ⊗ R/I) ∈ Tτ so the
sequence

0 → Qτ

(
M ′ ⊗ R

I

)
→ Qτ

(
M ⊗ R

I

)

is exact. But Qτ (M ′ ⊗ R/I) �= 0 by Theorem 3.5 and Qτ (M ⊗ R/I) = 0, a contra-
diction.
Thus TorR1 (M ′′, R/I) /∈ Tτ and Theorem 3.5 says that τ -WidthI(M ′′) = 1.

Suppose now that τ -WidthI(M) > 0, τ -WidthI(M ′) > 0. We then have I �
τ -WR(M) ∪ τ -WR(M ′) and there exists an (M, τ)-coregular (so (M ′′, τ)-coregular)
and (M ′, τ)-coregular element x ∈ I . Thus, the modules M/xM ′, M/xM and
M ′′/xM ′′ are torsion, and from the snake’s lemma we get the exact sequences

(1) 0 → M ′(x) → M(x) → V → 0

and
0 → V → M ′′(x) → T → 0

with T ∈ Tτ , which means that for all i, TorR
i (V, R/I) ∈ Tτ if and only ifTorRi (M ′′(x),

R/I) ∈ Tτ . In other words, τ -WidthI(V ) = τ -WidthI(M ′′(x)).
Proposition 3.8 says that

τ -WidthI (M(x)) = τ -WidthI(M) − 1,

τ -WidthI

(
M ′(x)

)
= τ -WidthI (M ′) − 1,
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and
τ -WidthI

(
M ′′(x)

)
= τ -WidthI (M ′′)− 1.

Let us then call τ -WidthI(M ′(x)) = n and τ -WidthI(M(x)) = m and, with the
help of the long exact sequence of TorRi associated to (1), let us compute τ -WidthI(V ).

Case 1. m < n

TorR
i (M ′(x), R/I) ∈ Tτ ∀i < n, thus

Qτ (TorRi (M(x), R/I)) ∼= Qτ (TorR
i (V, R/I)) ∀i < n.

Therefore, since TorRi (M(x), R/I) ∈ Tτ ∀i < m we have TorRi (V, R/I) ∈ Tτ ∀i <

m, and since TorRm(M(x), R/I) /∈ Tτ we have TorR
m(V, R/I) /∈ Tτ .

This means that τ -WidthI(V ) = m = τ -WidthI(M(x)).
The same argument shows cases 2) and 3).

With the arguments above it is easy to prove the following.

Proposition 3.10. Assume the conditions of Proposition 3.9. The following state-
ments hold.

(1) τ -WidthI(M) < τ -WidthI(M ′′) ⇒ τ -WidthI (M) = τ -WidthI(M ′).

(2) τ -WidthI(M ′′) < τ -WidthI(M) ⇒ τ -WidthI (M ′′) = τ -WidthI(M ′) + 1.

(3) τ -WidthI(M) = τ -WidthI(M ′′) ⇒ τ -WidthI (M) ≤ τ -WidthI(M ′) + 1.

(4) τ -WidthI(M ′) < τ -WidthI(M ′′) ⇒ τ -WidthI(M) ≥ τ -WidthI (M ′).

(5) τ -WidthI(M ′′) ≤ τ -WidthI(M ′) ⇒ τ -WidthI(M) = τ -WidthI (M ′′).

The concept τ -WidthI(M) may be thought of as a sort of a dual of the τ -depth of
M in I , defined in [3] as the length of any maximal τ -regular M -sequence contained
in I or ∞.
WhenM is a τ -finitely generated module over a τ -noetherian ring, its τ -depth can

be computed as

τ -depthI(M) = min{n ∈ IN ; Qτ (ExtnR(R/I, M)) �= 0}.

The next result gives a relation between both concepts over semilocal rings.
If R is semilocal and Ω denotes the (finite) set of all maximal ideals, we let

E = ⊕M∈ΩE(R/M).

Proposition 3.11. Let R be a semi-local noetherian ring, I ≤ R any ideal, M a
finitely generated R-module such that M(I) /∈ Tτ , and τ a stable torsion theory in
R-Mod. Then τ -WidthI (Hom(M, E)) = τ -depthI (M).



1110 J. R. Garcı́a-Rozas, Inmaculada López and Luis Oyonarte

Proof. TorRn (R/I, Hom(M, E)) ∼= Hom(Extn
R(R/I, M), E) for every n ≥ 0 by

[9, Corollary 1.5], and it is not hard to check that a finitely generated R-module M is
torsion if and only if Hom(M, E) is.

4. CONNECTIONS WITH RELATIVE LOCAL HOMOLOGY

Throughout this section we assume that τ is a perfect torsion theory. We then
have that for any J ≤ R and any module M , JQτ (M) ∼= J (M ⊗Qτ (R)) = JM ⊗
Qτ (R) ∼= Qτ (JM).
For any moduleM we let τHI

i (M) = lim← Qτ

(
TorR

i (M, R/In)
)
. Our first goal in

this section will be to find a connection in such a way that the τ -WidthI of a module
can be computed using these τHI

i ’s in a very similar way as the projective or injective
dimension using Ext.
We start with the following.

Proposition 4.1. ∩sI
s

τH
I
i (M) = 0 ∀i.

Proof. ∩sI
s

τH
I
i (M) = lim←s

Is

(
lim←n

Qτ

(
TorRi (M, R/In)

))
, which (up to an

isomorphism) is a submodule of lim←s

lim←n

IsQτ

(
TorR

i (M, R/In)
)
. But

lim←s

lim←n

IsQτ

(
TorRi (M, R/In)

) ∼= lim←n

lim←s

Qτ

(
IsTorRi (M, R/In)

)
= lim←s

0 = 0.

Proposition 4.2. If R is τ -noetherian and M is τ -representable, then there exists
an (M, τ)-coregular element x ∈ I if and only if τHI

0 (M) = 0.

Proof. Let x ∈ I be such that M = ClMτ (xM).
Since xn−1M = xn−1ClMτ (xM) ⊆ ClMτ (xnM), we get that ClMτ (xn−1M) ⊆

ClMτ (xnM). But by the induction hypothesis ClMτ (xn−1M) = M , so we have M ⊆
ClMτ (xnM) ⊆ M and then that ClMτ (xnM) = M for every n ≥ 1.
Therefore M = ClMτ (xnM) ⊆ ClMτ (InM) ⊆ M , that is, ClMτ (InM) = M , and

this means M ⊗ R/In ∈ Tτ ∀n.

Conversely, if I ⊆ τ -WR(M) then I ⊆ J = AnnR(M/N ) with M/N ∈ Fτ since
M is τ -artinian. Thus Qτ (M/N ) �= 0 and InM ⊆ N .
If pn : M → M/InM is the canonical projection for any n, we get a compatible

system of morphisms {Qτ (pn); n ≥ 1}, so there exists a unique h : Qτ (M) →
lim← Qτ (M/InM) such that fih = Qτ (pi) ∀i (fi : lim← Qτ (M/InM) → Qτ (M/I iM)
are the canonical homomorphisms).
But τH

I
0 (M) = 0 implies that h = 0 and then that Qτ (pi) = 0 ∀i, so if we call

p : M → M/N and πn : M/InM → M/N the canonical projections, we get

0 = Qτ (πn)Qτ (pn) = Qτ (πnpn) = Qτ (p),
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a contradiction since Qτ (p) is an epimorphism (τ is perfect) and Qτ (M/N ) �= 0.

Recall that a module M is τ -finitely generated if there is a finitely generated
submodule N ≤ M with M/N ∈ Tτ . We then prove the following.

Proposition 4.3. Let R be τ -noetherian,M τ -artinian and N τ -finitely generated.
Then TorRn (N, M) is τ -artinian for every n ≥ 0.

Proof. We use induction on n.
Let N ′ ≤ N be finitely generated with N/N ′ ∈ Tτ . We then have an epimorphism

Mn → N ′ ⊗ M , so we see N ′ ⊗ M is τ -artinian.
Now, sinceN ′/N ∈ Tτ we know that Qτ

(
TorR1 (N/N ′, M)

)
= Qτ (N/N ′⊗M) =

0 and then that Qτ (N ′⊗ M) ∼= Qτ (N ⊗ M), so Qτ (N ′ ⊗ M) being artinian implies
that Qτ (N ⊗ M) is artinian, and so that N ⊗ M is τ -artinian.
Suppose now TorR

n−1(L, M) is τ -artinian for every τ -finitely generated L.
TorR

i (N/N ′, M) is a torsion module for every i so Qτ

(
TorRn (N ′, M)

) ∼= Qτ(
TorR

n (N, M)
)
, that is, TorR

n (N, M) is τ -artinian if and only if TorR
n (N ′, M) is τ -

artinian. But if N ′ ∼= Rn/L we know L is τ -finitely generated since R is τ -noetherian,
so we are done since TorR

n (N ′, M) ∼= TorR
n−1(L, M).

Proposition 4.4. Let R be a τ -noetherian ring, I ≤ R an ideal andM a τ -artinian
module such that M(I) /∈ Tτ . Then τ -WidthI (M) = min{n ∈ IN ; τHI

n(M) �= 0}.

Proof. Let n = τ -WidthI(M). If n = 0 then τHI
0 (M) �= 0 by Proposition 4.2.

Let{x1, . . . , xn} ⊆ I now be a maximal τ -coregular M -sequence. By Proposition
3.8 we know that τ -WidthI(M(x1)) = n − 1, so by the induction hypothesis we get
that τHI

i (M(x1)) = 0 ∀i < n − 1 and that τHI
n−1(M(x1)) �= 0.

Now, since τ is a perfect torsion theory we have an exact sequence

· · · → Qτ

(
TorRi (M, R/In)

) ·x1→ Qτ

(
TorR

i (x1M, R/In)
)
→

→ Qτ

(
TorRi−1(M(x1), R/In)

)
→ · · · ,

and M τ -artinian implies that both M(x1) and x1M are τ -artinian, so by Proposition
4.3 we know every Qτ

(
TorR

i (M, R/In)
)
, Qτ

(
TorR

i (x1M, R/In)
)
and Qτ (TorRi

(M(x1), R/In)) is artinian and then Mittag-Leffler. Therefore, applying lim← we get
the exact sequence

· · · →τ HI
i (M(x1)) →τ HI

i (M) ·x1→τ HI
i (x1M) →τ HI

i−1(M(x1)) → · · ·

Thus, τH
I
i (M(x1)) = 0 ∀i < n − 1 implies x1 ·τ HI

i (M) =τ HI(x1M) ∀i < n.
Similarly, we have the exact sequence

· · · → Qτ

(
TorRi (x1M, R/In)

)
→ Qτ

(
TorR

i (M, R/In)
)
→
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→ Qτ

(
TorRi (M/x1M, R/In))

)
→ · · ·

where Qτ

(
TorRi (M/x1M, R/In))

)
= 0 ∀i since M/x1M ∈ Tτ (x1 is an (M, τ)-

coregular element), so we see that τHI
i (M) ∼=τ HI

i (x1M) ∀i and then that τH
I
i (M) ∼=

x1 τHI
i (M) ∀i < n. Therefore τH

I
i (M) ∼= ∩xt

1 τHI
i (M) = 0 (Proposition 4.1) for

all i < n.
Now, since τHI

n−1(M) = 0, the sequence

τH
I
n(M) →τ HI

n(x1M) →τ HI
n−1(M(x1)) → 0

is exact, and we know τHI
n−1(M(x1)) �= 0 so necessarily τH

I
n(x1M) �= 0. But

τH
I
n(x1M) ∼=τ HI

n(M) so we are done.

Conversely, let n = min{n ∈ IN ; τHI
n(M) �= 0}. If n = 0 we immediately get

τ -WidthI(M) = 0 by Proposition 4.2.
If n > 0 then τHI

0 (M) �= 0 so there exists an (M, τ)-coregular element x1 ∈ I .
Arguing as in the necessary part, we get that τHI

i (M) ∼=τ HI
i−1(M(x1)) ∀i < n, so we

see that τHI
i (M(x1)) = 0 ∀i < n − 1 and τH

I
n−1(M(x1)) �= 0. Thus, by the induc-

tion hypothesis we find a maximal τ -coregularM(x1)-sequence {x2, . . . , xn} ⊆ I . It is
then clear that {x1, . . . , xn} is a maximal τ -coregularM -sequence, so τ -WidthI(M) =
n.

We now turn out to prove that the functors τH
I
i are indeed derived functors of the

relative completion lim← Qτ (M/InM). For we extend [2, Proposition 1.1] to this new
setting involving torsion theories.

Given any ideal I ≤ R and a free resolutionXn of R/In, the canonical morphism
R/In+1 → R/In induces a morphism of complexes fn+1 : Xn+1 → Xn in such a
way that the family {Xn; n ≥ 1} is an inverse system of complexes.
If we consider the morphism of complexes

π :
∏
n

Qτ (Xn ⊗R M) →
∏
n

Qτ (Xn ⊗R M)

(. . . , xn, . . . , x1, x0) 
→ (. . . , xn − gn+1(xn+1), . . . , x0 − g1(x1))

where gn is the induced morphism by fn, we see that kerπ = lim← Qτ (Xn⊗R M) and

coker π = lim←
1Qτ (Xn ⊗R M).

Thus, if we let Mic (Qτ (Xn ⊗R M)) = Cone(−π)[1], the long exact sequence
induced by the short exact sequence

0 →
∏

Qτ (Xn ⊗R M)[1] → Mic (Qτ (Xn ⊗R M)) →
∏

Qτ (Xn ⊗R M) → 0

gives, for any i, a short exact sequence

0 → lim←
1Qτ

(
TorR

i+1

(
R

In
, M

))
→ Hi (Mic (Qτ (Xn ⊗ M))) →
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(1) → lim← Qτ

(
TorRi

(
R

In
, M

))
→ 0

(note that

lim←
1Hi+1 (Qτ (Xn ⊗R M)) ∼= lim←

1Qτ

(
TorR

i+1

(
R

In
, M

))
,

lim← Hi (Qτ (Xn ⊗R M)) ∼= lim← Qτ

(
TorRi

(
R

In
, M

))
since Qτ is an exact functor).
With the use of the last exact sequence we can prove the following.

Theorem 4.5. If R is τ -noetherian and M is τ -artinian then

Hi

(
lim← Qτ (M/InM)

)
∼= τHI

i (M) ∀i ≥ 0.

Proof. By Proposition 4.3 Qτ

(
TorRi (R/In, M)

)
is artinian (and then Mittag-

Leffler) so lim←
1Qτ

(
TorR

i (R/In, M)
)

= 0 ∀i. Then, by (1) we get that

Hi (Mic (Qτ (Xn ⊗ M))) ∼= τH
I
i (M) ∀i ≥ 0.

Now, clearly {H∗ (Mic (Qτ (Xn ⊗−)))} and
{

H∗
(
lim← Qτ (R/In ⊗R −)

)}
are

exact δ-functors, and if we choose any free module F we see that

Hi (Mic (Qτ (Xn ⊗ F ))) = 0 = Hi

(
lim← Qτ (R/In ⊗R F )

)
∀i ≥ 1,

H0 (Mic (Qτ (Xn ⊗ F ))) ∼= H0

(
lim← Qτ (M/InM)

)
.

Therefore, arguing as in [2, page 439] we have

Hi (Mic (Qτ (Xn ⊗ M)) ∼= Hi

(
lim← Qτ (M/InM)

)
for every i ≥ 0 and every τ -artinian module M .
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