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ASYMPTOTIC BEHAVIOR AND BLOW-UP OF SOLUTIONS FOR A
NONLINEAR VISCOELASTIC WAVE EQUATION WITH BOUNDARY

DISSIPATION

Faramarz Tahamtani and Amir Peyravi

Abstract. We study the nonlinear viscoelastic wave equation

utt − k0Δu+
∫ t

0

g(t− s)div
[
a(x)∇u(s)

]
ds+
(
k1 + b(x)|ut|m−2

)
ut = |u|p−2u

with dissipative boundary conditions. Under some restrictions on the initial data
and the relaxation function and without imposing any restrictive assumption on
a(x), we show that the rate of decay is similar to that of g. We also prove the
blow-up results for certain solutions in two cases. In the case k1 = 0, m = 2, we
show that the solutions blow up in finite time under some restrictions on initial
data and for arbitrary initial energy. In another case, k1 ≥ 0, m ≥ 2, we prove a
nonexistence result when the initial energy is less than potential well depth.

1. INTRODUCTION

In this article, we investigate the following initial value problem:

utt − k0Δu+
∫ t

0

g(t− s)div
[
a(x)∇u(s)]ds+(k1 + b(x)|ut|m−2

)
ut(1.1)

= |u|p−2u in Ω × [0,∞),
u(x, t) = 0 on Γ0 × (0,∞),(1.2)

k0
∂u

∂ν
−
∫ t

0
g(t− s)

(
a(x)∇u(s)) . νds+ h(ut) = 0, (x, t) ∈ Γ1 × (0,∞),(1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,(1.4)

where Ω is a bounded domain in Rn(n ≥ 1) with a smooth boundary ∂Ω = Γ0 ∪
Γ1,Γ0 ∩ Γ1 = ∅, Γ0 and Γ1 are closed with positive measures, ν is the unit outward
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normal to ∂Ω, k0 > 0, k1 ≥ 0, m ≥ 2, p > 2, g denotes the memory kernel and a, b,
and h are real valued functions which satisfy appropriate conditions.
This problem arises in the study of motion of viscoelastic materials. We refer to

[6, 22] for mathematical analysis on the motions of materials with memory.
The above problem with dirichlet boundary conditions has been considered by many

authors. Cavalcanti et al. [3] considered,

(1.5)
utt − Δu+

∫ t

0
g(t− s)Δu(s)ds+ b(x)ut + |u|pu = 0, in Ω × [0,∞),

u(x, t) = 0 on ∂Ω × (0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

for b : Ω → R+ is a function which may vanish on any part of Ω. Assuming b(x) ≥
b0 > 0 on ω ⊂ Ω and imposing geometry restrictions on the boundary, they established
an exponential decay result for the energy function when g decays exponentially. In
another work, Cavalcanti and Oquendo [4] considered a more general problem than
(1.5) for the equation

(1.6) utt − k0Δu+
∫ t

0
g(t− s)div[a(x)∇u(s)]ds+ b(x)h(ut) + f(u) = 0.

Under the same conditions on g in [3] and for a(x) + b(x) ≥ δ > 0, they proved
an exponential stability when g decays exponentially and h is linear and a polynomial
stability when g decays polynomially and h is nonlinear. For the same kernel g and
without considering the boundary geometric constraints, Messaoudi and Berrimi [2]
extended these results to a nonlinear damping case in (1.5) by the use of the perturbed
energy technique. In fact, they allowed b to vanish on any part of Ω (includingΩ itself).
Later, this last result improved by Liu [7], where a larger class of relaxation functions
have been considered. When a(x) = 1 and b(x) = 1, Messaoudi [15] studied (1.6)
for f(u) = −|u|p−2u and h(ut) = |ut|m−2ut and proved a global existence result for
2 ≤ p ≤ m and a nonexistence result for p > m ≥ 2. In this regard, see [16, 17, 23, 24]
and references therein for more related studies in connecting with the existence, finite
time blow-up and asymptotic properties of solutions for nonlinear wave equations.
In [8], Li and Zhao studied the problem

(1.7)

utt −k0Δu+
∫ t

0
g(t− s)div

[
a(x)∇u(s)]ds

+b(x)h(ut) = 0, (x, t) ∈ Ω × (0,∞),

u(x, t) = 0, (x, t) ∈ Γ0 × (0,∞),

−k0
∂u

∂ν
+
∫ t

0
g(t−s)(a(x)∇u(s)) .νds = f(u), (x, t) ∈ Γ1×(0,∞),

u(x, 0) = u0(x) ut(x, 0) = u1(x), x ∈ Ω,
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and proved exponential and polynomial decay results under weaker assumptions on g
which improved [20]. In fact, in [20], the authors studied problem (1.7) with nonlinear
boundary damping when f(u) = |u|γu and b(x) = 1 on Ω. Assuming that the kernel
g in the memory term decays exponentially, they showed exponential energy decay by
using the perturbed energy method provided that ‖g‖L1[0,∞) is small enough. In [9] Li
et al. considered a related problem with nonlinear boundary dissipation (1.3). Under
suitable conditions on the initial data and the relaxation function, they established
existence and uniqueness of global solutions by means of Galerkin method and showed
that the energy decays exponentially if the decay rate of the memory kernel is also
exponential. Recently, these results have been improved by Wu and Chen [25] where
the authors considered (1.1)-(1.4) with k1 = 0 and m = 2. The authors used Lyapunov
functions to establish general decay rate of solution energy which is not necessarily
of exponential or polynomial type. However, conditions on initial data have not been
given to ensure nonexistence results in these works. In this regard, we refer to a recent
work by Ma and Geng [14] in which authors considered (1.7) with b(x) = 1 and
h(s) = s and showed the nonexistence of global solutions with arbitrary initial energy
by exploiting the concavity arguments.
For more related studies about the boundary stabilization and blow-up results, we

can refer to Cavalcanti et al. [5], Liu and Yu [10], Lu et al. [11] and Messaoudi and
Soufyane [18].
Motivated by the above works, we study the problem (1.1)-(1.4). We first show

that for a certain class of relaxation functions, the decay rates are similar to those of
the relaxation function provided that the initial data are small enough. We note that,
in the case k1 = 0 and m = 2, our results are in the line with the ones obtained
in [25]. The ingredients of our proof are based on an inequality (Lemma 3.1) given
by Martinez [19]. In this way, the result is obtained without imposing any restrictive
assumption on a(x) (see (A3) in [25]). Moreover, we allow b(x) to vanish on any
part of Ω (including Ω itself). We also prove the blow-up results for certain solutions
in two cases: In the case k1 = 0, m = 2, we show that the solutions blow up in finite
time under some restrictions on initial data and for arbitrary initial energy. In another
case, k1 ≥ 0, m ≥ 2, we prove a nonexistence result when the initial energy is less
than the mountain pass level value.
The outline of this paper is as follows. In section 2 we present some notations,

assumptions and lemmas needed throughout our proofs. Section 3 is devoted to the
establishment of uniform decay rates of solutions: Theorem 3.2. The blow-up results
are given in section 4: Theorems 4.1 and 4.8.

2. PRELIMINARIES

In this section, we present some notations and materials needed throughout the
paper. First, we introduce
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‖u‖s = ‖u‖Ls(Ω), ‖u‖s,Γ1 = ‖u‖Ls(Γ1), 0 ≤ s ≤ ∞,

and the Hilbert space

H1
Γ0

(Ω) = {u ∈ H1(Ω) : u = 0 on Γ0},

endowed with the norm ‖∇u‖2. Now, we present the following hypotheses on problem
(1.1)–(1.4).

(A1) a, b : Ω → R are positive functions so that a, b ∈ L∞(Ω).
(A2) h : R → R is a nondecreasing function, such that for some positive constants α

and β, satisfies

(2.1) h(s)s ≥ α|s|2, |h(s)| ≤ β|s|, ∀s ∈ R.

(A3) g : [0,∞) → [0,∞) is a non-increasing C1 function such that

(2.2) g(0) > 0, k0 − ‖a‖∞
∫ +∞

0
g(s)ds = l > 0,

and there exists a non-increasing positive differentiable function ξ such that

(2.3) g′(t) ≤ −ξ(t)g(t), ∀t ≥ 0,
∫ +∞

0
ξ(s)ds = ∞.

(A4) For nonlinear terms we assume

(2.4) 0 ≤ m, p ≤ 2n
n − 2

, if n > 2, m, p ≥ 0 if n = 1, 2.

In the sequel, we use the following Sobolev embedding

(2.5) H1
Γ0

(Ω) ↪→ Lq(Ω), 2 ≤ q ≤ q, where q =

{
2n/(n− 2) if n ≥ 3,
+∞ if n = 1, 2,

with optimal embedding constant B, and the following trace Sobolev embedding

(2.6) H1
Γ0

(Ω) ↪→Lq(Γ1), 2≤q ≤ q, where q=

{
2(n−1)/(n−2) if n ≥ 3,
+∞ if n=1, 2

with the embedding constant B1 (cf. [1]).
Next, we define the following functionals

(2.7) I(t) := I(u(t)) =
∫

Ω

(
k0−a(x)

∫ t

0
g(s)ds

)
|∇u(t)|2dx+(g ◦∇u)(t)−‖u‖pp,
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(2.8)
J(t) := J(u(t))

=
1
2

∫
Ω

(
k0 − a(x)

∫ t

0
g(s)ds

)
|∇u(t)|2dx+

1
2
(g ◦ ∇u)(t) − 1

p
‖u‖pp,

(2.9) E(t) := E(u(t)) =
1
2
‖ut‖2

2 + J(t),

on H1
Γ0

(Ω) where

(g ◦ ∇u)(t) =
∫

Ω

∫ t

0
g(t− s)a(x)|∇u(t)−∇u(s)|2dsdx.

Lemma 2.1. E(t) is a non-increasing function for t ≥ 0 and

(2.10)
E ′(t) = −

∫
Γ1

uth(ut)dΓ +
1
2
(g′ ◦ ∇u)(t)− 1

2
g(t)

∫
Ω

a(x)|∇u(t)|2dx

−
∫

Ω

(
k1 + b(x)|ut|m−2

)
|ut|2dx ≤ 0.

Proof. Multiplying (1.1) by ut, integrating over Ω and using (1.2)-(1.4), we obtain
(2.10).

Referring to [9] and [20], we state the following existence and uniqueness theorem.

Theorem 2.2. If (u0, u1) ∈
(
H1

Γ0
(Ω)∩H2(Ω)

)×H1
Γ0

(Ω), then the problem (1.1)-
(1.4) has a unique solution satisfying

u∈L∞([0, T );H1
Γ0

(Ω)∩H2(Ω)
)
, ut∈L∞([0, T );H1

Γ0
(Ω)
)
, utt∈L∞([0, T );L2(Ω)

)
.

Moreover, if (u0, u1) ∈ H1
Γ0

(Ω) × L2(Ω), then the problem (1.1)-(1.4) has a weak
solution satisfying

u ∈ C
(
[0, T );H1

Γ0
(Ω)
)
, ut ∈ C

(
[0, T );L2(Ω)

) ∩ Lmb (Ω × [0, T )
)
,

for some T > 0, where Lmb is the weighted Lebesgue space.

Finally, we define:

d(t) = inf
u∈H1

Γ0
(Ω), u|Γ0

�=0
sup
λ≥0

J(λu).

Then, using (A1)-(A2), (2.2) and by the arguments in [12, 21] and [26], we can prove
the following two lemmas.

Lemma 2.3. For t ≥ 0 we have

0 < d1 ≤ d(t) ≤ d2(u) = sup
λ≥0

J(λu)
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where

d1 =
(
p− 2
2p

)(
l

B2

) p
p−2

,

and

d2(u) =
(
p− 2
2p

)(
k0‖∇u(t)‖2

2 − ‖√a(x)∇u(t)‖2
2

∫ t
0 g(s)ds+ (g ◦ ∇u)(t)

‖u(t)‖2
p

) p
p−2

.

Lemma 2.4. Suppose that assumptions of Theorem 2.2 hold and E(0) < d1. We
have
(i) If I(0) > 0, then I(t) > 0, ∀t ∈ [0, T ), and the solution of (1.1) − (1.4) is
bounded and global in time so that

(2.11) ‖ut(t)‖2
2 + l‖∇u(t)‖2

2 ≤
2p
p− 2

E(t) ≤ 2p
p− 2

E(0).

(ii) If I(0) < 0, then I(t) < 0, ∀t ∈ [0, T ), and

(2.12) ‖∇u(t)‖2
2 ≥ 2pd1

(p− 2)l
.

3. ENERGY DECAY

In this section we shall prove the energy decay of solutions of the problem (1.1)–
(1.4). First, we present the following lemma by Martinez [19] which plays a critical
role in our proof.

Lemma 3.1. Let E : R+ → R+ be a non-increasing function and ψ : R+ → R+

be a C2 increasing function such that ψ(0) = 0 and limt→+∞ ψ(t) = +∞. Assume
that there exists c > 0 for which

(3.1)
∫ +∞

t
ψ′(s)E(s)ds ≤ cE(t), ∀t ≥ 0,

then

(3.2) E(t) ≤ λE(0)e−ωψ(t),

for some positive constants ω and λ.

Our main result reads as follows:

Theorem 3.2. Assume that (A1)− (A4) hold. Let (u0, u1) ∈ H1
Γ0

(Ω)×L2(Ω) be
given and satisfying

(3.3) I(0) > 0, E(0) < d1.
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Then, the solution of problem (1.1)–(1.4) satisfies

(3.4) E(t) ≤ KE(0)e−k
∫ t
0 ξ(s)ds,

for some positive constants K and k. Proof. Multiplying (1.1) by ξ(t)u(t) and
integrating over Ω × [t1, t2] (0 ≤ t1 ≤ t2), we have

(3.5)

∫ t2

t1

ξ(t)
∫

Ω
uuttdxdt+ k0

∫ t2

t1

ξ(t)
∫

Ω
|∇u(t)|2dxdt

+
∫ t2

t1

ξ(t)
∫

Γ1

uh(ut)dΓdt+ k1

∫ t2

t1

ξ(t)
∫

Ω
uutdxdt

+
∫ t2

t1

ξ(t)
∫

Ω
b(x)uut|ut|m−2dxdt

−
∫ t2

t1

ξ(t)
∫

Ω
∇u(t) .

∫ t

0
g(t− s)

(
a(x)∇u(s))dsdxdt

=
∫ t2

t1

ξ(t)‖u(t)‖ppdt.

For the last term in the left hand side of (3.5) we have

(3.6)

∫
Ω
∇u(t) .

∫ t

0
g(t− s)

(
a(x)∇u(s))dsdx

=
∫

Ω
∇u(t) .

∫ t

0
g(t− s)a(x)

(∇u(s) −∇u(t))dsdx
+
∫ t

0
g(s)ds

∫
Ω
a(x)|∇u(t)|2dx.

Using (3.6) and (2.7), the equality (3.5) takes the form

(3.7)

2
∫ t2

t1

ξ(t)
(
E(t) − p− 2

2p
‖u‖p

p

)
dt

= −
∫ t2

t1

ξ(t)
∫

Ω

uuttdxdt− k1

∫ t2

t1

ξ(t)
∫

Ω

uutdxdt−
∫ t2

t1

ξ(t)
∫

Γ1

uh(ut)dΓdt

−
∫ t2

t1

ξ(t)
∫

Ω

b(x)uut|ut|m−2dxdt+
∫ t2

t1

ξ(t)‖ut‖2
2dt+

∫ t2

t1

ξ(t)(g ◦ ∇u)(t)dt

+
∫ t2

t1

ξ(t)
∫

Ω

∇u(t) .
∫ t

0

g(t − s)a(x)
(∇u(s) −∇u(t)

)
dsdxdt.

Integrating by parts, for the first term in the right-hand side of (3.7), we have

(3.8)
−
∫ t2

t1

ξ(t)
∫

Ω
uuttdxdt

= −
∫

Ω
ξ(t)uutdx

∣∣∣∣t2
t1

+
∫ t2

t1

ξ′(t)
∫

Ω
uutdxdt+

∫ t2

t1

ξ(t)‖ut‖2
2dt.
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By Young’s inequality, (2.5) and (2.11), we get

(3.9)

∣∣∣∣∣−
∫

Ω
ξ(t)uutdx

∣∣∣∣t2
t1

∣∣∣∣∣ ≤
2∑
i=1

∣∣∣∣ξ(t) ∫
Ω
uutdx

∣∣∣∣
t=ti

≤
2∑
i=1

[
ξ(t)

(
B2

2
‖∇u‖2

2 +
1
2
‖ut‖2

2

)]
t=ti

≤
2∑
i=1

[(
p

p− 2

)(
B2

l
+ 1
)
ξ(t)E(t)

]
t=ti

≤
(

2p
p− 2

)(
B2 + l

l

)
ξ(0)E(t1).

Similarly,

(3.10)

∣∣∣∣∫ t2

t1

ξ′(t)
∫

Ω
uutdxdt

∣∣∣∣ ≤ ∫ t2

t1

|ξ′(t)|
(
B2

2
‖∇u‖2

2 +
1
2
‖ut‖2

2

)
≤ −

(
p

p− 2

)(
B2 + l

l

)∫ t2

t1

ξ′(t)E(t)dt.

For the last term in the right hand side of (3.8), we use (2.10) to get

(3.11)
∫ t2

t1

ξ(t)‖ut‖2
2dt ≤ − 1

k1

∫ t2

t1

ξ(t)E ′(t)dt.

By using Young’s inequality, (2.5), (2.11) and (3.11), for the second term in the right
hand side of (3.7), we have

(3.12)

∣∣∣∣− ∫ t2

t1

ξ(t)
∫

Ω

uutdxdt

∣∣∣∣
≤
∫ t2

t1

ξ(t)
(
δB2

2
‖∇u‖2

2 +
1
2δ

‖ut‖2
2

)
dt

≤ δ

l

(
p

p− 2

)
B2

∫ t2

t1

ξ(t)E(t)dt− 1
2δk1

∫ t2

t1

ξ(t)E ′(t)dt.

By (2.10) and the first inequality in (2.1), we have

(3.13) ‖ut‖2
2,Γ1

≤ − 1
α
E ′(t).

Taking the second inequality in (2.1) and (3.13) into account, using Young’s inequality
and the trace embedding (2.6), the third term in the right hand side of (3.7) can be
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estimated in the form

(3.14)

∣∣∣∣− ∫ t2

t1

ξ(t)
∫

Γ1

uh(ut)dΓdt
∣∣∣∣

≤ β

∫ t2

t1

ξ(t)
(
δ

2
B2

1‖∇u‖2
2 +

1
2δ

‖ut‖2
2,Γ1

)
dt

≤ δ

l

(
βp

p− 2

)
B2

1

∫ t2

t1

ξ(t)E(t)dt− β

2δα

∫ t2

t1

ξ(t)E ′(t)dt.

For the fourth term we use (2.4) and (2.10) to obtain

(3.15)

∣∣∣∣− ∫ t2

t1

ξ(t)
∫

Ω
b(x)uut|ut|m−2dxdt

∣∣∣∣
≤
∫ t2

t1

ξ(t)
∫

Ω
b(x) (δ|u(t)|m + c(δ)|ut(t)|m) dxdt

≤ δ‖b‖∞
(

2p
l(p− 2)

E(0)
)m−2

2
∫ t2

t1

ξ(t)‖∇u‖2
2dt

+ c(δ)
∫ t2

t1

ξ(t)
∫

Ω
b(x)|ut|mdxdt

≤ δ

l
‖b‖∞

(
2p
p− 2

)(
2p

l(p− 2)
E(0)

)m−2
2
∫ t2

t1

ξ(t)E(t)dt

− c(δ)
∫ t2

t1

ξ(t)E ′(t)dt.

Also, we have

(3.16)

∫
Ω

a(x)∇u(t) .
∫ t

0

g(t− s)
(∇u(s) −∇u(t)

)
dsdx

≤ δ

∫
Ω

a(x)|∇u(t)|2dx+
1
4δ

∫
Ω

a(x)
(∫ t

0

g(t− s)
(∇u(s) −∇u(t)

)
ds

)2

dx

≤ δ‖a‖∞‖∇u‖2
2 +

1
4δ

∫ t

0

g(s)ds
∫

Ω

∫ t

0

g(t − s)a(x)|∇u(s) −∇u(t)|2dsdx

≤ δ

l

(
2p
p− 2

)
‖a‖∞E(t) +

(
k0 − l

4δ‖a‖∞

)
(g ◦ ∇u)(t).

Combining (3.7)-(3.16) and using

ξ(t)(g ◦ ∇u)(t) ≤ −(g′ ◦ ∇u)(t) ≤ −2E ′(t),
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we arrive at

(3.17)

2
∫ t2

t1

ξ(t)
(
E(t) − p− 2

2p
‖u‖p

p

)
dt

≤ δ

l

(
p

p −2

){
k1B

2+βB2
1 +2‖a‖∞+2‖b‖∞

(
2p

l(p−2)
E(0)

)m−2
2
}∫ t2

t1

ξ(t)E(t)dt

+
(

2p
p− 2

)(
B2 + l

l

)
ξ(0)E(t1) −

(
p

p− 2

)(
B2 + l

l

)∫ t2

t1

ξ′(t)E(t)dt

−
(

2
k1

+
1
2δ

+
β

2δα
+ c(δ)

)∫ t2

t1

ξ(t)E′(t)dt−
(
k0 − l

2δ‖a‖∞ + 2
)∫ t2

t1

E′(t)dt.

≤ δ

l

(
p

p−2

){
k1B

2+βB2
1 +2‖a‖∞+2‖b‖∞

(
2p

l(p−2)
E(0)

)m−2
2
}∫ t2

t1

ξ(t)E(t)dt

+
{[(

3p
p−2

)(
B2+l
l

)
+

2
k1

+
1
2δ

+
β

2δα
+c(δ)

]
ξ(0)+

k0 − l

2δ‖a‖∞ +2
}
E(t1).

On the other hand, by the use of (2.4) and (2.11), we have

p− 2
2p

∫ t2

t1

ξ(t)‖u(t)‖ppdt ≤ Bp
(
p− 2
2p

)(
2p

l(p− 2)
E(0)

)p−2
2
∫ t2

t1

ξ(t)‖∇u(t)‖2
2dt

≤
(
E(0)
d1

)p−2
2
∫ t2

t1

ξ(t)E(t)dt,

which implies

(3.18)
∫ t2

t1

ξ(t)
(
E(t)− p− 2

2p
‖u‖pp

)
dt ≥

[
1 −
(
E(0)
d1

) p−2
p

]∫ t2

t1

ξ(t)E(t)dt.

Using the fact that E(0) < d1 and choosing δ sufficiently small, (3.17) and (3.18)
imply that ∫ t2

t1

ξ(t)E(t)dt ≤ cE(t1),

for some c > 0. Letting t2 go to infinity, assumptions of lemma 3.1 satisfy with
ψ(t) =

∫ t
0 ξ(s)ds. Therefore, (3.4) is now established and the proof of Theorem 3.2 is

complete.

4. BLOW-UP PROPERTY

In this section, we consider the blow-up properties for the solutions of (1.1)-(1.4)
in two cases. First, we suppose that k1 = 0, m = 2 and h(s) = s. We show that the
solutions blow-up in a finite time T ∗ when the initial energy lies in different ranges.
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Secondly, we will obtain a nonexistence result in the case that k1 ≥ 0 and 2 ≤ m < p

with positive initial energy less than potential well depth.

4.1. Blow-up with different ranges of initial energy: the case k1 = 0, m = 2

Theorem 4.1. Suppose that (2.2) hold, k1 = 0, m = 2, h(s) = s and

(4.1) a1 = k0(p− 2) − (p− 2 + 1/p)‖a‖∞
∫ +∞

0
g(s)ds > 0.

Assume that (u0, u1) ∈ H1
Γ0

(Ω)×L2(Ω) and that either one of the following conditions
is satisfied:

(1) E(0) < 0,

(2) E(0) = 0 and

∫
Ω

u0u1dx > 0,

(3) 0 < E(0) <
a1d1

l(p− 2)
(one can verify that

a1

l(p− 2)
< 1) and I(u0) < 0,

(4)
a1d1

l(p− 2)
≤ E(0) < min

{ (∫
Ω u0u1dx

)2
2
[‖u0‖2

2 + T1(‖u0‖2
2,Γ1

+ ‖√b(x)u0‖2
2)
] ,

p+ 2
2p

(
r1

∫
Ω
u0u1dx−

(‖u0‖2
2 + ‖u0‖2

2,Γ1
+ ‖
√
b(x)u0‖2

2

))}
,

where r1 = 1 +
√
p− 2/

√
p+ 2. Then, the solution u(t) blows up at finite time T ∗

in the sense of
lim

t↗T ∗−
‖∇u(t)‖2

2 = +∞.

To prove the above theorem, we will use the following lemmas.

Lemma 4.2. ([13]). Let δ > 0 and B(t) ∈ C2(0,∞) be a nonnegative function
satisfying

B′′(t) − 4(δ + 1)B′(t) + 4(δ + 1)B(t) ≥ 0.

If
B′(0) > r2B(0) +K0,

with r2 = 2(δ+1)−2
√

(δ + 1)δ, then B′(t) > K0 for t > 0, where K0 is a constant.

Lemma 4.3. ([13]). If M(t) is a non-increasing function on [t0,∞), t0 ≥ 0, and
satisfies the differential inequality

M ′(t)2 ≥ μ1 + μ2M(t)2+ 1
δ , t ≥ t0,

where μ1 > 0, μ2 ∈ R. Then, there exists a finite time T ∗ such that

lim
t−→T ∗−

M(t) = 0,

and the upper bound of T ∗ is estimated respectively by the following cases:
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(1) If μ2 < 0, then

T ∗ ≤ t0 +
1√−μ2

ln

√−μ1/μ2√−μ1/μ2 −M(t0)
.

(2) If μ2 = 0, then
T ∗ ≤ t0 +

M(t0)
M ′(t0)

.

(3) If μ2 < 0, then

T ∗ ≤ M(t0)√
μ1

or T ∗ ≤ t0 + 2(3δ+1)/2δ δc√
μ1

[
1 − (1 + cM(t0))−1/2δ

]
,

where c = (μ1/μ2)2+ 1
δ .

Lemma 4.4. Under the conditions of Theorem 4.1, for any solution u of (1.1)-(1.4),
we have

(4.2)
G′′(t) ≥ (p+ 2)‖ut‖2

2 − 2pE(0) + 2p
∫ t

0

‖ut(s)‖2
2,Γ1

ds

+2p
∫ t

0
‖
√
b(x)ut(s)‖2

2ds,

where

(4.3) G(t) = ‖u(t)‖2
2 +
∫ t

0

‖u(s)‖2
2,Γ1

ds+
∫ t

0

‖
√
b(x)u(s)‖2

2ds.

Proof. From (4.3) we have

(4.4) G′(t) = 2
∫

Ω
u(t)ut(t)dx+

∫
Γ1

|u(t)|2dx+
∫

Ω
b(x)|u(t)|2dx.

(4.5)
G′′(t) = 2‖ut(t)‖2

2 − 2k0‖∇u(t)‖2
2

+2
∫

Ω
∇u(t).

∫ t

0
g(t− s)a(x)∇u(s)dsdx+ 2‖u(t)‖pp.

By the Young’s inequality, for any η > 0, we get

(4.6)

∫
Ω
∇u(t) .

∫ t

0
g(t− s)a(x)∇u(s)dsdx

≥
∫

Ω
∇u(t) .

∫ t

0
g(t− s)a(x)

(∇u(s)
−∇u(t))dsdx+

∫ t

0
g(s)ds

∫
Ω
a(x)|∇u(t)|2dx

≥
(

1− 1
2η

)∫ t

0
g(s)ds

∫
Ω
a(x)|∇u(t)|2dx− η

2
(g ◦ ∇u)(t).
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Using (4.5), (4.6), (2.9) and the fact that

E(t) +
∫ t

0
‖ut(s)‖2

2,Γ1
ds+

∫ t

0
‖
√
b(x)ut(s)‖2ds ≤ E(0),

we obtain

(4.7)

G′′(t) ≥(p+ 2)‖ut(t)‖2
2 − 2pE(0) + (p− η)(g ◦ ∇u)(t)

+
∫

Ω

(
k0(p− 2)− (p− 2 +

1
η
)
∫ t

0
g(s)ds a(x)

)
|∇u(t)|2dx

+ 2p
∫ t

0
‖ut(s)‖2

2,Γ1
ds+ 2p

∫ t

0
‖
√
b(x)ut(s)‖2dxds

Letting η = p and using (4.1), we obtain (4.2).

Lemma 4.5. Under the conditions of Theorem 4.1, for any solution u of (1.1)-(1.4),
we have

(4.8) G′(t) >
∫

Γ1

|u0(x)|2dΓ +
∫

Ω
b(x)|u0(x)|2dx, ∀t ≥ t0,

where t0 = t∗ is given in (4.9) and (4.10) in cases (1) and (3) and t∗ = 0 in cases
(2) and (4).

Proof. To obtain (4.8), we consider different cases on the sign of the initial energy.
(1) If E(0)< 0, then from (4.2), we have

G′(t) ≥ G′(0)− 2pE(0)t.

Therefore, we have G′(t) > ‖u0‖2
2,Γ1

+ ‖√b(x)u0‖2
2 for t > t∗ where

(4.9) t∗ = max

{
G′(0)− ‖u0‖2

2,Γ1
− ‖√b(x)u0‖2

2

2pE(0)
, 0

}
.

(2) If E(0) = 0, then G′′(t) ≥ 0 and so G′(t) > G′(0) for t ≥ 0. Moreover, if
G′(0) > ‖u0‖2

2,Γ1
+ ‖√b(x)u0‖2

2 then G′(t) > ‖u0‖2
2,Γ1

+ ‖√b(x)u0‖2
2 for t ≥ 0.

(3) If 0 < E(0) < a1d1
l(p−2) and I(u0) < 0, by (4.7) and using lemma 2.4-(ii) we have

G′′(t) ≥ a1‖∇u‖2
2 − 2pE(0) ≥ 2p

(
a1d1

l(p− 2)
− E(0)

)
.

Thus, we obtain G′(t) ≥ ‖u0‖2
2,Γ1

+ ‖√b(x)u0‖2
2 for t > t∗ where

(4.10) t∗ = max

⎧⎨⎩‖u0‖2
2,Γ1

+ ‖√b(x)u0‖2
2 −G′(0)

2p
(
a1d1
l(p−2) − E(0)

) , 0

⎫⎬⎭ .
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(4) For the case that E(0)> a1d1
l(p−2)

, we first note that

(4.11)
‖u(t)‖2

2,Γ1
− ‖u0‖2

2,Γ1
= 2
∫ t

0

∫
Γ1

u(s)ut(s)dΓds,

‖
√
b(x)u(t)‖2

2 − ‖
√
b(x)u0‖2

2 = 2
∫ t

0

∫
Ω
b(x)u(s)ut(s)dxds.

By the Hölder and Young’s inequalities, we obtain

(4.12)
‖u(t)‖2

2,Γ1
≤ ‖u0‖2

2,Γ1
+
∫ t

0
‖u(s)‖2

2,Γ1
ds+

∫ t

0
‖ut(s)‖2

2,Γ1
ds,

‖
√
b(x)u(t)‖2

2≤‖
√
b(x)u0‖2

2+
∫ t

0
‖
√
b(x)u(s)‖2

2ds+
∫ t

0
‖
√
b(x)ut(s)‖2

2ds.

We use Hölder and Young’s inequalities, (4.3), (4.4), (4.11) and (4.12) to get

(4.13)
G′(t) ≤G(t) + ‖u0‖2

2,Γ1
+ ‖
√
b(x)u0‖2

2

+ ‖ut(t)‖2
2 +
∫ t

0
‖ut(s)‖2

2,Γ1
ds+

∫ t

0
‖
√
b(x)ut(s)‖2

2ds.

By (4.7) and (4.13), we find

(4.14)

G′′(t) − (p+ 2)G′(t) + (p+ 2)G(t) +G0

≥(p− 2)
∫ t

0
‖ut(s)‖2

2,Γ1
ds+ (p− 2)

∫ t

0
‖
√
b(x)ut(s)‖2

2ds

+
(
k0(p− 2)− (p− 2 +

1
p
)‖a‖∞

∫ ∞

0
g(s)ds

)
‖∇u(t)‖2

2,

where
G0 = 2pE(0) + (p+ 2)‖u0‖2

2,Γ1
+ (p+ 2)‖

√
b(x)u0‖2

2.

Let
B(t) = G(t) +

G0

p+ 2
.

Then, B(t) satisfies the assumptions of lemma 4.2 for δ = p−2
4 . Therefore, if

(4.15) G′(0) ≥ r2

(
‖u0‖2

2 +
G0

p+ 2

)
+ ‖u0‖2

2,Γ1
+ ‖
√
b(x)u0‖2

2,

then, from the lemma 4.2, we deduce that G′(t) ≥ ‖u0‖2
2,Γ1

+ ‖√b(x)u0‖2
2 for t ≥ 0.

This completes the proof.
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Remark 4.6. By (4.15), one can verify that

(4.16) E(0) <
p+ 2
2p

(
2
r2

∫
Ω
u0u1dx−

(‖u0‖2
2 + ‖u0‖2

2,Γ1
+ ‖
√
b(x)u0‖2

2

))
.

Proof of Theorem 4.1. Let

(4.17) M(t) =
[
G(t) + (T1 − t)(‖u0‖2

2,Γ1
+ ‖
√
b(x)u0‖2

2)
]−δ

, for t ∈ [0, T1],

where δ = p−2
4 and T1 > 0 is a certain constant which will be specified later. We have

(4.18)

M ′(t) = − δ
[
G(t) + (T1 − t)(‖u0‖2

2,Γ1
+ ‖
√
b(x)u0‖2

2)
]−δ−1

× [G′(t)− (‖u0‖2
2,Γ1

+ ‖
√
b(x)u0‖2

2)
]

= − δM(t)1+ 1
δ [G′(t) − (‖u0‖2

2,Γ1
+ ‖
√
b(x)u0‖2

2)
]
,

and

(4.19) M ′′(t) = −δM(t)1+ 2
δV (t),

where

(4.20)
V (t) =G′′(t)

[
G(t) + (T1 − t)(‖u0‖2

2,Γ1
+ ‖
√
b(x)u0‖2

2)
]

− (δ + 1)[G′(t) − (‖u0‖2
2,Γ1

+ ‖
√
b(x)u0‖2

2)
]2
.

For simplicity of calculation, we denote

Pu =
∫

Ω
|u(t)|2dx, Qu =

∫ t

0
‖
√
b(x)u(s)‖2

2ds,

Ru =
∫

Ω
|ut(t)|2dx, Su =

∫ t

0
‖
√
b(x)ut(s)‖2

2ds,

Q̂u =
∫ t

0

‖u(s)‖2
2,Γ1

ds, Ŝu =
∫ t

0

‖ut(s)‖2
2,Γ1

ds.

Using (4.4), (4.11) and Hölder’s inequality, we deduce

(4.21) G′(t) ≤ 2
(√

RuPu +
√
QuSu +

√
Q̂uŜu

)
+ ‖u0‖2

2,Γ1
+ ‖
√
b(x)u0‖2

2.

If case (1) or (2) holds, then by (4.7) we get

(4.22) G′′(t) ≥ 4(δ + 1)(Ru + Su + Ŝu) − (4 + 8δ)E(0).
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Using (4.3), (4.21) and (4.22), from the definition of V (t), we obtain

(4.23)
V (t) ≥[4(δ + 1)(Ru + Su + Ŝu)− (4 + 8δ)E(0)

]
M− 1

δ (t)

− 4(δ + 1)
(√

RuPu +
√
QuSu +

√
Q̂uŜu

)2

.

From

G(t) =
∫

Ω
u2dx+

∫ t

0

∫
Γ1

|u(s)|2dΓds+
∫ t

0

∫
Ω
b(x)|u(s)|2dxds = Pu + Q̂u +Qu,

and (4.17), we have

(4.24)
V (t) ≥ −(4 + 8δ)E(0)

]
M− 1

δ (t)

+ 4(δ+1)
(
Ru+Su+Ŝu

)
(T1−t)

(‖u0‖2
2,Γ1

+‖
√
b(x)u0‖2

2

)
+4(δ+1)K(t),

where

K(t) =
(
Ru + Su + Ŝu

)(
Pu +Qu + Q̂u

)−(√RuPu +
√
QuSu +

√
Q̂uŜu

)2

.

By the Schwartz inequality and K(t) being nonnegative, we have

V (t) ≥ (−4 − 8δ)E(0)M− 1
δ (t).

By (4.19), we get

(4.25) M ′′(t) ≤ δ(4 + 8δ)E(0)M1+ 1
δ (t).

By lemma 4.5 and (4.18), we know that M ′(t) < 0 for t ≥ t0. Multiplying (4.25) by
M ′(t) and integrating it from t0 to t, we have

(4.26) M ′(t)2 ≥ μ1 + μ2M
2+1/δ(t) for t ≥ t0,

where

(4.27)
μ1 =

(
p−2

2

)2

M
2p+4
p−2 (t0)

[(∫
Ω
(u0u1)dx

)2

−2E(0)M
−4
p−2 (t0)

]
> 0,

μ2 =
1
2
(p− 2)2E(0),

and
M(t0) =

[‖u0‖2
2 + T1(‖u0‖2

2,Γ1
+ ‖
√
b(x)u0‖2

2)
]−p−2

4 .
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In the case (3), from (4.7) and lemma 2.4-(ii), we obtain

G′′(t) ≥ (4 + 8δ)c1 + 4(δ + 1)
(
Ru + Su + Ŝu

)
,

where c1 = a1d1
l(p−2) −E(0). Following similar procedure in case (1), we find

M ′′(t) ≤ −δ(4 + 8δ)c1M1+ 1
δ (t) for t ≥ t0,

M ′(t)2 ≥ μ1 + μ2M
2+1/δ(t) for t ≥ t0,

where

(4.28)
μ1 =

(
p− 2

2

)2

M
2p+4
p−2 (t0)

[(∫
Ω

(u0u1

)2

+ 2c1M
−4
p−2 (t0)

]
> 0,

μ2 = −c1
2

(p− 2)2.

For the case (4), by the steps of case (1), we obtain (4.26) with μ1, μ2 > 0 in (4.27) if

E(0) <

(∫
Ω u0u1dx

)2
2
[‖u0‖2

2 + T1(‖u0‖2
2,Γ1

+ ‖√b(x)u0‖2
2)
] .

Then, by lemma 4.3, there exists a finite time T ∗ so that limt↗T ∗− M(t) = 0 . This
indicates that limt↗T ∗− ‖u(t)‖2

2 = +∞. Using the Poincaré inequality, we obtain
‖∇u(t)‖2

2 → +∞ as t→ T ∗−. This completes the proof.

Remark 4.7. By lemma 4.3, the upper bounds of T ∗ can be estimated respectively
according to the sign of E(0). In the case (1)

T ∗ ≤ t0 − M(t0)
M ′(t0)

.

Furthermore, if M(t0) < min{1,√−μ1/μ2}, we have

T ∗ ≤ t0 +
1√−μ2

ln

√−μ1/μ2√−μ1/μ2 −M(t0)
,

where μ1 and μ2 are defined in (4.27). In case (2),

T ∗ ≤ t0 +
M(t0)√
μ1

,
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where μ1 is defined in (4.27). In cases (3) and (4),

T ∗ ≤ M(t0)√
μ1

, or T ∗

≤ t0 + 2
3p−2

2(p−2)

(
μ2

1

μ2
2

) p+2
p−2 (p− 2)

4
√
μ1

[
1−
(

1 +
(
μ1

μ2

) 2p
p−2

M(t0)
)− 2

p−2

]
.

Moreover, in case (3), μ1 and μ2 are defined in (4.28) and in case (4), μ1 and μ2 are
defined in (4.27).

4.2. Blow-up with initial energy less than potential well depth: the case k1 ≥ 0,
2 ≤ m < p

Theorem 4.8. Assume that 2 ≤ m < p, b(x) ≥ b0 > 0 and (A1), (A2) and (2.2)
hold. Suppose that (u0, u1) ∈ H1

Γ0
(Ω) × L2(Ω) satisfies,

(4.29) I(0) < 0, E(0) < γd1, γ ∈ (0, 1).

Assume further that

(4.30) ‖a‖∞
∫ +∞

0
g(s)ds <

k0(p− 2)(1− γ)
(p− 2)(1− γ) + 1/[(p− 2)(1− γ) + 2]

.

Then, the solution of (1.1)-(1.4) blows up in finite time.

Proof. On the contrary, suppose that the existence time of solution u(t) can be
extended to the whole interval [0,∞). We define

(4.31) A(t) =
1
2
‖u(t)‖2

2.

By (1.1)-(1.4), we have

A′(t) =
∫

Ω

u(t)ut(t)dt,

(4.32)
A′′(t) =‖ut(t)‖2

2 − k0‖∇u(t)‖2
2 +
∫

Ω

∇u(t) .
∫ t

0

g(t− s)a(x)∇u(s)dsdx

−
∫

Γ1

uh(ut)dΓ − k1

∫
Ω
uutdx−

∫
Ω
b(x)uut|ut|m−2dx+ ‖u(t)‖pp.

Using (2.9) to substitute for ‖u(t)‖pp and (4.6), we obtain

(4.33)

A′′(t) ≥
(
p+ 2

2

)
‖ut(t)‖2

2 −
∫

Γ1

uh(ut)dΓ− k1

∫
Ω

uutdx

+
∫

Ω

{
k0

(p
2
− 1
)
−
(
p

2
− 1 +

1
2η

)
a(x)

∫ t

0
g(s)ds

}
|∇u|2dx

+
1
2
(p− η)(g ◦ ∇u)(t) −

∫
Ω
b(x)uut|ut|m−2dx− pE(t).
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Now, we set

(4.34) Z(t) = γd1 −E(t), ∀t ≥ 0.

Clearly Z ′(t) ≥ 0 and Z(0) > 0. Thus,

(4.35) Z(t) ≥ Z(0) > 0, ∀t ≥ 0.

By the lemma 2.3 and lemma 2.4-(ii), we can see

(4.36) 0 < d1 ≤
(
p− 2
2p

){∫
Ω

(
k0 − a(x)

∫ t

0

g(s)ds
)
|∇u|2dx+ (g ◦ ∇u)(t)

}
.

Combining (4.33), (4.34) and (4.36), we arrive at

(4.37)

A′′(t) ≥
(
p+ 2

2

)
‖ut(t)‖2

2 −
∫

Γ1

uh(ut)dΓ

− k1

∫
Ω
uutdx+

∫
Ω

{
k0(

p

2
− 1)(1− γ)

−
(

(
p

2
− 1)(1− γ) +

1
2η

)
a(x)

∫ t

0
g(s)ds

}
|∇u|2dx

+
[
(1 − γ)(

p

2
− 1) + 1 − η

2
]
(g ◦ ∇u)(t)

−
∫

Ω
b(x)uut|ut|m−2dx+ pZ(t).

Choosing η sufficiently small so that

(1− γ)(
p

2
− 1) + 1− η

2
> 0,

and using Hölder’s inequality, by (4.30), the estimate (4.37) takes the form

(4.38)
A′′(t) ≥c1‖ut(t)‖2

2 + c2‖∇u(t)‖2
2 −
∫

Γ1

uh(ut)dΓ − k1

∫
Ω
uutdx

+ c3(g ◦ ∇u)(t)−
∫

Ω

b(x)uut|ut|m−2dx+ pZ(t),

for some c1, c2, c3 > 0. By using Young’s inequality on the third and fourth terms in
(4.38) and by (2.1), (2.5) and (2.6), for any δ > 0, we deduce∫

Γ1

uh(ut)dΓ ≤ β

2

(
δB2

1‖∇u(t)‖2
2 +

1
δ
‖ut(t)‖2

2,Γ1

)
.(4.39) ∫

Ω
uutdx ≤ 1

2

(
δB2‖∇u(t)‖2

2 +
1
δ
‖ut(t)‖2

2

)
.(4.40)
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By Hölder’s inequality and standard interpolation inequality, we have

(4.41)

∫
Ω
b(x)uut|ut|m−2dx

≤ ‖b‖∞‖u(t)‖m‖ut(t)‖m−1
m ≤ ‖b‖∞‖u(t)‖k2‖u(t)‖1−k

p ‖ut(t)‖m−1
m

≤ c4‖u(t)‖
kp
2
p ‖u(t)‖1−k

p ‖ut(t)‖m−1
m ≤ c4‖u(t)‖

p
m
p ‖ut(t)‖m−1

m ,

where k
2 + 1−k

p = 1
m which gives k = 2(p−m)

m(p−2) > 0 and c4 = ‖b‖∞(B2l−1)k/2 comes
from the fact that ‖u‖2

2 ≤ B2l−1‖u‖pp. By (4.38)-(4.40) and using Young’s inequality
for the last inequality in (4.41), we get

(4.42)

A′′(t) +
1
2δ
(
β‖ut(t)‖2

2,Γ1
+ k1‖ut(t)‖2

2

)
+ c4c(δ)‖ut(t)‖mm

≥ c1‖ut(t)‖2
2+
(
c2 − δ

2
(βB2

1 + k1B
2)
)
‖∇u(t)‖2

2

+ c3(g ◦ ∇u)(t) − c4δ‖u(t)‖pp + pZ(t).

Letting c5 = min{c1, c2k−1
0 , c3,

p
2} and decomposing pZ(t) in (4.42) by

pZ(t) = 2c5Z(t) + (p− 2c5)Z(t).

Therefore, by (4.34) and (2.9), we obtain

(4.43)

A′′(t) +
1
2δ
(
β‖ut(t)‖2

2,Γ1
+ k1‖ut(t)‖2

2

)
+ c4c(δ)‖ut(t)‖mm

≥ (c1 − c5)‖ut(t)‖2
2+
(
c2 − c5k0 − δ

2
(βB2

1 + k1B
2)
)
‖∇u(t)‖2

2

+ (c3 − c5)(g ◦ ∇u)(t)+
(2c5
p

− c4δ
)
‖u(t)‖pp + (p− 2c5)Z(t).

Choosing δ sufficiently small so that δ ≤ min{ 2(c2−c5k0)
βB2

1+k1B
2 ,

2c5
pc4

}, by (4.35) and (2.12),
we arrive at

(4.44)
A′′(t) +

1
2δ
(
β‖ut(t)‖2

2,Γ1
+ k1‖ut(t)‖2

2

)
+ c4c(δ)‖ut(t)‖mm

≥c6‖ut(t)‖pp ≥ c6l‖∇u(t)‖2
2 ≥ c6

2pd1

p− 2
,

for some c6 > 0. Integrating (4.44) over (0, t), we deduce

(4.45)
A′(t)+

β

2δ

∫ t

0

‖ut(s)‖2
2,Γ1

ds+
k1

2δ

∫ t

0

‖ut(s)‖2
2ds+c4c(δ)

∫ t

0

‖ut(s)‖mmds

≥ c7t+
∫

Ω
u0u1dx,
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where c7 = 2c6pd1/(p− 2). By lemma 2.1 and the assumptions of Theorem 4.8, for
t ∈ [0,∞), we have

(4.46)

∫ t

0
‖ut(s)‖2

2,Γ1
ds ≤ E(0)− E(t)

α
<
γd1

α
,∫ t

0
‖ut(s)‖2

2ds ≤
E(0)− E(t)

k1
<
γd1

k1
,∫ t

0
‖ut(s)‖mmds ≤

E(0)− E(t)
b0

<
γd1

b0
.

Inserting (4.46) into (4.45) and integrating over (0, t) once more, we obtain

(4.47) A(t) >
1
2
c7t

2 +
(∫

Ω
u0u1dx−

[
1
2δ
(
βα−1 + 1

)
+
c4
b0
c(δ)
]
γd1

)
t+

1
2
‖u0‖2

2,

which shows that ‖u(t)‖2
2 has quadratic growth for t ≥ 0. On the other hand, similar

as in [26], by the use of Hölder’s inequality and (4.46), we have

(4.48)
‖u(t)‖2 ≤ ‖u0‖2 +

∫ t

0
‖ut(s)‖2ds ≤ ‖u0‖2 + C

∫ t

0
‖ut(s)‖mds

≤ ‖u0‖2 + C

(
γd1

b0

) 1
m

t
m−1

m ,

for some C > 0. Clearly, (4.48) contradicts (4.47). Therefore, the solution of
(1.1)-(1.4) can not be extended to the whole interval [0,+∞). This completes the
proof.
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