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GENERAL DECAY RATE ESTIMATE FOR THE ENERGY OF A WEAK
VISCOELASTIC EQUATION WITH AN INTERNAL TIME-VARYING

DELAY TERM
Wenjun Liu

Abstract. In this paper we consider the weak viscoelastic equation with an
internal time-varying delay term

utt(x,t)—Au(x,t)—i—a(t)/o g(t—s8)Au(z, s) dstagus(x, t)+ajus(x, t—7(t)) =0

in a bounded domain. By introducing suitable energy and Lyapunov functionals,
under suitable assumptions, we establish a general decay rate estimate for the
energy, which depends on the behavior of both o and g.

1. INTRODUCTION

In this work, we investigate the following weak viscoelastic equation with a linear
damping and a time-varying delay term in the internal feedback

(1.1)

utt(a:,t)—Au(a:,t)—i—a(t)/O g(t—s)Au(zx, s) ds
+agui(z,t) + aju(z, t — 7(t)) = 0, (x,t) € Q x (0,00),

u(z,t) =0, (x,t) € 90 x [0, 00),
u(z,0) =up(z), w(x,0)=ui(x), x €,
L ui(z,t) = fo(w,t) (z,t) € Q x [—7(0),0),

where ) is a bounded domain of R (n > 2) with a boundary 92 of class C2, a and g
are positive non-increasing functions defined on R™, ag and a; are real numbers with
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ap > 0, 7(t) > 0 represents the time-varying delay, and the initial datum wg, uy, fo are
given functions belonging to suitable spaces.

Time delays so often arise in many physical, chemical, biological, thermal and
economical phenomena. In recent years, the control of PDEs with time delay effects has
become an active area of research, see for instance [1, 15, 17, 28, 34] and the references
therein. The presence of delay may be a source of instability. For example, it was
proved in [9, 10, 22, 23, 30] that an arbitrarily small delay may destabilize a system
which is uniformly asymptotically stable in the absence of delay unless additional
conditions or control terms have been used. In [22], Nicaise and Pignotti examined
(1.1) with ¢ = 0,a9 > 0,a; > 0 and 7(t) = 7 be a constant delay in the case
of mixed homogeneous Dirichlet-Neumann boundary conditions, under a geometric
condition on the Neumann part of the boundary. Assuming that 0 < a; < ag, a
stabilization result is given, by using a suitable observability estimate and inequalities
obtained from Carleman estimates for the wave equation due to Lasiecka et al. in
[14]. However, for the opposite case a; > ag, they were able to construct a sequence
of delays for which the corresponding solution is unstable. The same results were
obtained for the case when both the damping and the delay act on the boundary, see
also [2] for the treatment of this problem in more general abstract form. Kirane and
Said-Houari [13] considered (1.1) with a(t) = 1,a9 > 0,a; > 0 and 7(t) = 7 be
a constant delay. They established general energy decay results under the condition
that 0 < a1 < ag. The stability of PDEs with time-varying delays was studied in
[5, 11, 24, 25]. In [25], Nicaise et al. analyzed the exponential stability of the heat and
wave equations with time-varying boundary delay in one space dimension, under the
condition 0 < ay < /1 — d ag, where d is a constant such that 7/(t) < d < 1,V ¢ > 0.
In [24], Nicaise and Pignotti studied the stabilization problem by interior damping of
the wave equation with internal time-varying delay feedback and obtained exponential
stability estimates by introducing suitable Lyapunov functionals, under the condition
la1| < V1 — dag in which the positivity of the coefficient a; is not necessary. More
recently, the present author [17] considered (1.1) with «a(¢) = 1 and established a
general energy decay result from which the exponential and polynomial types of decay
are only special cases.

We also recall some results regarding the viscoelastic equation without delay (i.e.,
a1 = 0). Cavalcanti et al. [7] studied

t
i — Au +/ g(t = 7)Au(r)dr + a(@)us + [ulu = 0, (2,1) € Q x (0,00),
0

for a : Q — R™, a function, which may be null on a part of the domain €. Under the
conditions that a(x) > ap > 0 on w C {2, with w satisfying some geometry restrictions
and —&1g(t) < ¢'(t) < —&g(t), t > 0, the authors established an exponential rate
of decay. Berrimi and Messaoudi [3] improved Cavalcanti’s result by introducing a
different functional which allowed to weak the conditions on both a and g. In [8],
Cavalcanti et al. considered
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uy — koAu + /0 divia(z)g(t — 7)Vu(r)]dr + b(x)h(ut) + f(u) =0,

under similar conditions on the relaxation function ¢ and a(x) + b(z) > p > 0,
for all x € €. They improved the result of [7] by establishing exponential stability
for g decaying exponentially and h linear and polynomial stability for ¢ decaying
polynomially and & nonlinear. Berrimi and Messaoudi [4] considered

t
uy — Au + / g(t — 7)Au(r)dr = [ulP"2u, p>2
0

in a bounded domain. They showed, under weaker conditions than those in [8], that the
solution is global and decay in a polynomial or exponential fashion when the initial data
is small enough. Then Messaoudi [19] improved this result by establishing a general
decay of energy which is similar to the relaxation function. Recently, Messaoudi [21]
considered problem (1.1) without the linear damping and the time-varying delay term,
and proved a general decay result which depends both on the behavior of o and g. For
other related works, we refer the readers to [6, 16, 18, 26, 27, 20, 29, 31, 32, 33] and
the references therein.

Motivatied by these results, we investigate in this paper system (1.1) under suitable
assumptions and prove a general decay rate estimate for the energy, which depends on
the behavior of both v and g. This work extends the previous results in [13, 17, 21, 22]
to the weak viscoelastic equation and to time-varying delay with not necessarily positive
coefficient a; of the delay term. For our purpose, we use the idea of Nicaise and Pignotti
in [24] (see also [17]) to take into account the dependence of the delay with respect
to time, and some techniques of Messaoudi in [21] to deal with the weak viscoelastic
term.

The paper is organized as follows. In Section 2 we present some assumptions and
state the main result. The general decay result is proved in Sections 3.

2. PRELIMINARIES AND MAIN RESULTS

In this section, we present some assumptions and state the main result. We use the
standard Lebesgue space L?(€2) and the Sobolev space H{(£2) with their usual scalar
products and norms. Throughout this paper, C; is used to denote a generic positive
constant.

For the relaxation function g and the potential «,, we assume that (see [21]):

(Gl) g, : R* — R™ are non-increasing differentiable functions satisfying

4(0) > 0, /O+oog(s)ds <400, alt) >0, 1-a(t) /Otg(s) ds > 1> 0.
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(G2) There exists a non-increasing differentiable function £ : RT — R
satisfying
—o/(t)

§t)>0, g'(t) <—=€Mg(t), Ve=0, lim Dol "

For the time-varying delay, we assume as in [24] that there exist positive constants
79, T such that

2.1 O<7m<7(t)<7, YVt>0.

Moreover, we assume that the speed of the delay satisfies

(2.2) T'(t) <d<1, Vit>0,
that
(2.3) e W2>([0,T]), YT >0

and that ag, a; satisfy
2.4 la1] < V1 —dag.
As in [24], let us introduce the function
(2.5) z2(z, p,t) =w(x, t —7(t)p), €, pe(0,1), t>0.

Then, problem (1.1) is equivalent to

(@, 8) — A, £) +a(t) /O ot —s)Au(x. 5) ds
taguy (2, 8) + arz(z,1,8) = 0, (2, £) €Qx (0, 50),
T(t)zt(ﬂf pyt)+ (1 =7 (t)p)zp(x, p, 1) = 0, (2,p,t)€Qx (0,1)x(0,00),
26 § w(a, 1) = (2, 1) €00 %[0, 50,
2,0, 1) —ut(a: ), (2, ) €02 (0, 00),
u(z,0) = ug(z), u(z,0)=ui(z), T €,
(2(2,p,0) = fo(z, —p7(0)), (z,p) €Q2x(0,1).

We now state, without a proof, a well-posedness result, which can be established
by combining the arguments of [12, 13].
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Lemma 2.1. Let (2.1)-(2.4) be satisfied and g, o satisfy (Gl). Then given ug €
H(Q), u1 € L*(Q), fo € L*(Q x (0,1)) and T > 0, there exists a unique weak
solution (u, z) of the problem (2.6) on (0,T') such that

ue C0,T; Hy(Q)NCH0,T; LAQ)), us € L*(0,T; HY(Q)) N L2((0,T) x Q).

Inspired by [17, 21, 24], we define the energy functional as
1 5 t 5 1
E(t): == ui + | 1 —a(t) [ g(s)ds | |Vu|*| dx + §a(t)(g o Vu)(t)
Q 0

2
t

—i—é / / A2 (s)dads,

2 Ji—ry Jo
where £, A are suitable positive constants, and

t
(gov)(t) = / / gt — $)[v(t) — v(s)2dsde, ¥ v € LX(Q).
QJo

We will fix ¢ such that

a1

a
2.8 2a0 — —¢>0 and — > 0,
(28) 0— = ¢ -
and

1 a1
2.9 A< = |log ———]|.

In fact, the existence of such a constant £ is guaranteed by the assumption (2.4).
Our main result reads as follows.

Theorem 2.2. Let (2.1)—(2.4) be satisfied and g, a satisfy (G1)-(G2). Then there
exist two positive constants K,k such that, for any solution of problem (1.1), the
energy satisfies

(2.10) E(t) < Ke FJo a9)8(s)ds

[ )

Vit>0.
3. PROOF OF THE GENERAL DECAY RESULT

In this section, we give the proof of the general decay result. We have the following
lemmas.
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Lemma 3.1. Let (2.1)-(2.4) be satisfied and g,  satisfy (Gl). Then for all regular
solution of problem (1.1), the energy functional defined by (2.7) satisfies

E/(t) < 50(t)(g' 0 Vu)(t) — 2a(t)g(1) / Vulds

—C’l/Q [uf () + uf (t—7( da:——/tT(t/ A2 (s)dads
50/ (1)(go Vu)(t) — 50 (1) (/O g(s)ds)/g\Vu\Qda:

< 2a0lg' o V)0 - 300 ([ atas) [ (ufa

for some positive constant C1.

l\3|*i

3.1)

Proof. Differentiating (2.7) and by (1.1), we obtain

E(t) = /Q [ututt + (1 — a(®) /0 t g(s)ds) V- Vi — %a(t)g(t)|Vu|2] dz

+ Lo van - 2ot ( / tg(s)ds) [ ivutas

+a / (t—s) /Vut — Vu(s)|dzds

/ t—s/|Vu — Vu(s |dxds+§/ut

R
2

—é/ 6_)‘T(t)u§(t—7(t))(1—T/(t))dl‘—)\é/ /e_)‘(t_s)uf(s)dxds
2 Jo 2 Ji—rt) Ja

:/Q [ututt + Vu - Vus — «aft) /Ot g(t — s)Vu(s) - Vut(t)ds] dx

+ lo/(t)(g o Vu)(t) — %o/(t) (/t 9(5)d5> / | Vul|*da

1

—505 /|Vu|2dx+ —a(t)(g" o Vu)( g/ut

_ g/ﬂe—Ar(t)uf(t —7()(1 = 7'(t))dx — )\g /t_T(t) /Q e_)‘(t_s)uf(s)dxds,

and then, using integration by parts, the assumptions (2.1)-(2.2) and some manipulations
as in [24],
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E'(t)
= —ao/Q 2(t)dx — al/ ut(t)/ us(t—7(t)) J}——Oé / |Vul?dx
—i—%a( (g o Vu)( 5/ W2t / SN2 (= (1) (1 =7 () da

_ Ag /t o /Q e M9y 2 (s)dwds
+%o/(t)(g o Vu)(t) — %o/(t) (/Ot 9(5)d5> / | Vul|*da

—ao/ﬂuf(t)dx—al/ut(t)/ we(t — 7(t))de — —a(t / |Vu|*dz

+la( t)(g’ o Vu)( g/ut J:—— (1—d)e ™ [ wl(t—r(t)dx

—)\g/t T(t)/ e ME=s)y 2 s)dxds )

T a()(gOVu)()—%a(t) (/0 (s)ds)/ﬂ|Vu|2dx

50000 V)= 50(0a() [ [VuPar—(a- 2 -8) [ o
- <e-”§(1—d)—'C;—”\/m)/ﬂuf(t—f(t))dx

—)\g /;T(t)/ﬂe_)‘(t_s)uf(s)dxds
30/ (1)(g 0 Vu)(t) — 5a'(1) (/Otg(s)ds>/Q|Vu|2dx.

Combining (2.8)—(2.9), (3.2) and hypothese (G1), (3.1) is established. ]

IN

3.2)

IA
|
2

t
Remark 1. Since —a/(t) </ g(s)ds) / |Vu|?dz > 0, E(t) may not be non-
0 )

increasing.

Now we are going to construct a Lyapunov functional L equivalent to F. For this
purpose, we use the following functionals:

(3.3) I(t) ::/Quutda:,
(3.4) K(t) = —/Qut/o ot — ) (u(t) — uls))dsdz,
Set

(3.5) L(t) = NE(t) + ca(t)I(t) + a(t) K (¢)
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where N and e are suitable positive constants to be determined later. Similar as in
[19, 21], we can prove that, for € small enough while N large enough, there exist two
positive constants 31, Fo such that

(3.6) BLE(t) < L(t) < BE(t), V120
The following estimates hold true.

Lemma 3.2. ([21, Lemma 3.2]). For u € H}(Q), we have

/Q </Otg(t — s)(u(t) — u(s))ds)

where C,, is the Poincaré constant.

2

1 <63 ([ aas) (oo Va0,

Lemma 3.3. Under the assumption (Gl), the functional I satisfies, along the
solution, the estimate

(37) I’(t)g—é/ \Vu\Qda:—i-C’g/[u?(t)—i—u?(t—T(t))}dx—i—C'ga(t)(goVu)(t).
Q Q
Proof. Differentiating and integrating by parts
I'(t) = 2q
(t) /Qut x t
/ <Au alt) / o(t— ) Au(s)ds — apu(t) — s (t— T(t>>) do

/ da:—l/\Vu\Qda:—i—a /Vu / (t — s)(Vu(s)

_Vu(t ))dsdx—aO/Q w(t)ug(t da:—al/Q w(Bua(t — () da.

(3.8)

Now, using Young’s inequality and (G1), we obtain (see [19])

/Vu / (t — s)(Vu(s) — Vu(t))dsdx

39 < 5/\Vu\2d + 4?/@(/0 g(t—s)\Vu(s)—Vu(t)\ds)2da:

< 5/ wu2de + L2000 v, veso.
Q

46
Also, using Young’s and Poincaré’s inequalities gives
(3.10) —a,g/ uw(t)u(t)de < 5/ |Vu|?dz + C(9) / ulde,
Q Q Q

3.11) —al/gu(t)ut(t—T(t))da:S5/(2\Vu\2da:+C’(5)/Quf(t—r(t))da:.

Combining (3.8)—(3.11) and choosing ¢ small enough, we obtain (3.7). ]
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Lemma 3.4. Under the assumption (Gl), the functional K satisfies, along the
solution, the estimate

K'(t) < — </Otg(s)ds—25)/Qu?dx—i-d[l—i-Q(l—l)Q]/Q\Vu\Qda:

(3.12) + (21504 + 250 ()) (/t (s )ds) (g0 Va)(#)
—i—;C’ngVu +5/utt—7

Proof. Using (1.1) and (3.4), we have

K'(t)
— [ [ ate= (0 - u)asi
- Lo [ = e —utspasas = [ g6s1as)
/vu (/ t—s)(Vu(t)—Vu(s))ds) do
a0 [ ([ att-svuts >d) ([ att=s)(Tu(t)-Vuts)as) az
/ut/ (t — ) (u(t) — u(s))dsdz — </Otg(s)ds) a2

+/Q</O gt — s)(u(t) - (s))ds) [aoue(t) + aruy(t — 7(t))]da

=L+ L+ 13+ 14+ Is.

(3.13)

The first to the third terms on the right-hand side of (3.13) can be estimated as in [21]
as follows, for any § > O:

< 51vul+ 35 ([ ot91as) o v
I < Ga(t )/ </tg(t—s)(\Vu(t) — Vu(s), +\Vu(t)\)ds)2da:

(3.14) 45/ (/ (t — )| Vu(t) — u(s)\ds)2dx
< <25a (1) + 4%) (/O ()ds) (g0 V) (£) +26(1—1) /\vu\2dx

Ig<5/utda:——029 o Vu)(t).
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As for the fifth term, we have

I < %(goVu +(5/ da:—i—d/ ul(t — 7(t))dx.
)

Summarizing these estimates with (3.13), we get (3.12). ]
Now, we are ready to prove the general decay result.

Proof of Theorem 2.2. Since g is positive, we have, for any ty > 0,

t to
/ g(s)ds > / g(s)ds:=go >0, t=>t.
0 0

By using (3.1), (3.5), (3.7), (3.12) and (G1), a series of computations yields, for ¢t > ¢y,

L'(t)

Ea(t)(g’oVu)(t)—go/(t) < / t g(s)ds> / Vulda

—NCl/Q[uf(t)—i-uf(t—T )]dz — ){—N/t T(t)/ A2 (5)deds
+8020z(t)/ﬂ[uf(t)+uf(t—7 J:——oz /|Vu|2dx
FeCha2(t)(g o V) (1) — </tg( )d 5—25> a(t)/ﬂufdx

+6[1 +2(1 —1)? / |Vu|*dz

<2+c4 2502 )> (/0 g(s )ds> a(t)(go Vu)(t)
_9(00

46
Cp a(t)(g o Vu)(t )+6a(t)/Quf(t—f(t))deraa’(t)](t)+o/(t)K(t)

IN

(3.15)

(0o ~ 25 - <C3) [ wdar a0 (3 - g(?fp) (¢ o Vu)(t)

2
—Ea(t)</t ds>/|Vu|2dx a(t)(——6[1+2(1 )? >/ Vulda
A{N/ / As=t)y, 2 s)dxds
t—7(t)

_(NCy — 5a(0) — £Ca(0 ))/Qut(t—f(t))dx

Falt) <503a(t) 4 (2 Zf“ +26a2(t)> ( /0 t g(s)ds>> (g0 Vau)(t)
+ea/ ()I(t) + o' (£) K (t).

IN




Weak Viscoelastic Equation with an Internal Time-varying Delay Term 2111

By using (3.3), (3.4), Young’s and Poincaré’s inequalities, we have

o/ ()I(t) + o (1)K (1)

e/ (t)Cp 2 (1+¢)a'(t) 2
S—T/\Vu\ dz — f/gutdx
()

2 </O (3>d3) C2(g o Vu)(t).

Hence, (3.15) takes the form

i) < - ()[(90—25—502> M] /Qufdx

2a(t)
02
+alt) (% _20% ) (¢ o Vu)(t
~a(t) |5 — (1 +2(1 -1

+No‘lg> </t9(8)ds) +72(i(>f2 /\Vu\Qda:
AN /t » / (=042 (s)dwds — (NCy

—50(0) — £Cha(0 ))/Qut(t—T(t))da:

(3.16)

+a(t) [50304(0) + <2 —2504 +2502(0)

S ) (o)

At this point, we choose € small enough such that ¢ < &~ and (3.6) still hold, and ¢
sufficiently small such that

(g o Vu)(t).

alz%l—d[ £2(1-17 > 0and L 25> 0,

As long as € and ¢ are fixed, we choose IV large enough such that

N 0)C?
NCy = 6a(0) = £Ca(0) > 0 and - - 9(425 P 0.

Thus, it follows from (3.16) that, for all ¢ > ¢,
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L'(t) < —a(t) [90 + W] / ulda

/\5]\2[ /t:t/ As=D42(s)dads
(3.17) —a(t) |a1 + 2a(§>> (/O g9(s)d ) /\Vu\Qda:
+alt) | Ca(0) + (21504 + 2602(0)

(g o Vu)(t).

-Gt ) ([ o)

We then use hm al) _ (which can be deduced from (G2)) to choose t; > g so

t—oo @)

that (3.17) takes the form

(3.18) L'(t) < —Csa(t)E(t) + Cea(t)(g o Vu)(t), YV t>t,

where C5 and Cjg are positive constants.
As in [21], multiplying (3.18) by £(¢) and using (G2) and (3.1), we obtain

EL(t) < =Csa(t)E(t)E(t) + Coa(t)E(t)(g o Vu)(t)
< =Csa()E()E(t) — Cea(t)(g'o Vu)(t)

_Csa(E E(E) — Coa (1) ( /O tg(s)ds) /Q Vulda

—2C6E'(t), Vt>t,

(3.19)

IN

Since &'(t) < 0, by (2.7), we have

(€()L(E) + 2CE()
sy = —CaE0BO -G [ aas) [ [VuPas
< —a(®)E) [c5+ 20 (%) </Otg(s)ds)] E(), Vi>t

la(t)€(t)
By (G2), we can choose t3 > ¢; and then (3.20) gives

(WL +20B0) < - LaWEWED). V>,

Set L(t) = &(t)L(t) + 2Cs E(t). Since £'(t) < 0, we can easily get L(t) ~ E(t) and

(3:21) L(t) < —ka(OEM)L(E), V=t
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for some positive constant k. Integrating (3.21) over [to, t], we have

(3.22) L(t) < L(ty)e Fi @O o gk [fae6)ds g > g,

for some positive constant /. Using the equivalence of £(¢) and E(t) again, we have
BE(t) < Ke Floa@s)ds -y g >4,

By the virtue of the continuity and boundedness of E(¢) in the interval [0, t3], we
complete the proof. ]
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