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NONDECREASING SOLUTIONS OF A QUADRATIC INTEGRAL
EQUATION OF VOLTERRA TYPE

Tao Zhu, Chao Song and Gang Li

Abstract. Using the theory of measures of noncompactness and applying a new
method, we prove the existence of nondecreasing solutions of a quadratic integral
equation of Volterra type in C(I).

1. INTRODUCTION

In this paper, we discuss the following quadratic integral equation of Volterra type

(1.1) x(t) = h(t) + g(t, x(t))
∫ t

0
k(t, s)f(s, x(λs))ds, t ∈ I = [0, 1],

where f, g : I × � → � are given functions, λ ∈ (0, 1].
The study of quadratic integral equation has received much attention over the last

thirty years or so. For instance, Cahlon and Eskin [1] prove the existence of positive
solutions in the space C[0, 1] and Cα[0, 1] of an integral equation of the Chandrasekhar
H-equation with perturbation. Argyros [2] investigates a class of quadratic equations
with a nonlinear perturbation. Banaś et al. [3] proves a few existence theorems for some
quadratic integral equations. Banaś and Rzepka [4] study the Volterra quadratic integral
equation on unbounded interval. Banaś and Sadarangani [5] study the solvability of
Volterra-Stieltjes integral equation. In [6-8] the authors proved the existence of nonde-
creasing solutions of a quadratic integral equation. Dhage [9-10] proves an existence
theorem for a certain differential inclusions in Banach algebras. Dhage [11] proves the
existence results of some nonlinear functional integral equations. The purpose of this
paper is to continue the study of those authors. Using the theory of measures of non-
compactness and applying a new method, we prove the existence results of quadratic
integral equations of Volterra type.

Received January 29, 2013, accepted April 3, 2013.
Communicated by Eiji Yanagida.
2010 Mathematics Subject Classification: 45M99, 47H09.
Key words and phrases: Measure of noncompactness, Quadratic integral equation, Nondecreasing solu-
tions, Fixed point theorem.

1715



1716 Tao Zhu, Chao Song and Gang Li

The organization of this work is as follows. In section 2, we recall some defini-
tions and theorems about the measure of noncompactness and fixed point theorem. In
section 3, we give theorems on the existence of nondecreasing continuous solutions of
a quadratic integral equation of Volterra type (1.1). Finally, in section 4, examples are
given to show the applications of our results.

2. PRELIMINARIES

Now, we are going to present definitions and basic facts needed further on.
Assume E is a real Banach space with norm ‖ · ‖. If X is a nonempty subset of E ,

we denote by X̄ and ConvX the closure and the closed convex of X . Let us denote by
ΓE the family of nonempty bounded subsets of E and by ΥE its subfamily consisting
of all relatively compact sets.

Definition 2.1. [12]. A function μ : ΓE → [0,∞) is said to be a measure of
noncompactness in the space E if it satisfies the following conditions:

(1) The family ker(μ) = {X ∈ ΓE , μ(X) = 0} is nonempty and ker(μ) ⊂ ΥE .

(2) X ⊂ Y ⇒ μ(X) ≤ μ(Y ).
(3) μ(X̄) = μ(ConvX) = μ(X).

(4) μ(θX + (1− θ)Y ) ≤ θμ(X) + (1− θ)μ(Y ), ∀θ ∈ [0, 1].

(5) If {Xn} is a sequence of closed sets from ΓE such that Xn+1 ⊂ Xn, for n =
1, 2, · · · , and lim

n→∞ μ(Xn) = 0, then the set X∞ = ∩∞
n=1Xn is nonempty.

Remark 2.2. The family kerμ described above is called the kernel of the measure
of noncompactness μ. Further facts concerning measure of noncompactness and their
properties may be found in [12-13].

Let us suppose that M is a nonempty subset of a Banach space E and the operator
T : M → E is continuous and transforms bounded sets onto bounded ones. We say
that T satisfies the Darbo condition (with constant k ≥ 0 ) with respect to a measure
of noncompactness μ if for any bounded subset X of M we have

μ(TX) ≤ kμ(X).

If T satisfies the Darbo condition with k < 1, then it is called a contraction with
respect to μ.

Theorem 2.3. [14]. Let Q be a nonempty, bounded, closed and convex subset of
the Banach space E and μ a measure of noncompactness in E . Let T : Q → Q be a
contraction with respect to μ. Then T has a fixed point in the set Q.
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Remark 2.4. Under the assumptions of the above theorem, it can be shown that
the set FixT of fixed points of T belonging to Q is a member of kerμ.

For our purpose, let us recall the definition of the measure of noncompactness in
the space C(I) which will be used in section 3. This measure was introduced in the
paper [15].
Let C(I) denote the space of all real functions defined and continuous on the in-

terval I = [0, 1]. The space C(I) is furnished with standard norm ‖x‖ = max{|x(t)| :
t ∈ I}.
Fix a nonempty and bounded subset X of C(I). For ε > 0, and x ∈ X denote by

w(x, ε) the modulus of continuity of x defined by

w(x, ε) = sup{|x(t)− x(s)| : t, s ∈ I, |t− s| ≤ ε}.
Furthermore, put

w(X, ε) = sup{w(x, ε), x ∈ X},
w0(X) = lim

ε→0
w(X, ε).

Next, let us define the following quantities:

d(x) = sup{|x(t)− x(s)| − [x(t)− x(s)] : t, s ∈ I, s ≤ t},
d(X) = sup{d(x) : x ∈ X}.

Observe that d(X) = 0 if and only if all functions belonging to X are nondecreasing
on I .
Finally, let

μ(X) = w0(X) + d(X).

It can be showed [15] that the function μ is a measure of noncompactness in the space
C(I). Moreover, the kernel kerμ consists all nonempty and bounded subsets X of
C(I) such that functions from X are equicontinuous and nondecreasing on the interval
I .

3. MAIN RESULTS

In this section, by using the measure of noncompactness defined in section 2, we
give the existence results of the quadratic integral equation (1.1). Here we list the
hypotheses which will be required further on.

(1) h : I → �+ is a continuous and nondecreasing function.
(2) g : I ×� → � is a continuous function , there exists a constant k ≥ 0 such that

|g(t, x)− g(t, y)| ≤ k|x − y|,
for all t ∈ I and x, y ∈ �+. Moreover, g : I ×�+ → �+.
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(3) For arbitrarily x ∈ �, t → g(t, x) is nondecreasing on I , and for arbitrarily
t ∈ I , x → g(t, x) is nondecreasing on �.

(4) k : I × I → �+. For each t ∈ I , k(t, s) is measurable on [0, t] and k̄(t) =
esssup|k(t, s)|, 0 ≤ s ≤ t, is bounded on [0, 1], let K = sup

0≤t≤1
|k̄(t)|. The map

t → kt is continuous from [0, 1] to L∞[0, 1], here kt(s) = k(t, s). Moreover, for
arbitrarily s ∈ I , t → k(t, s) is nondecreasing on I .

(5) f : I × � → � satisfies the Carathéodory type conditions, i.e. t → f(t, x) is
measurable for every x ∈ �, x → f(t, x) is continuous for a.e. t ∈ I . Moreover,
f(t, x) ≥ 0, if x ≥ 0, t ∈ I .

(6) There exist a function L ∈ L1(0, 1;�+) and a nondecreasing continuous function
Ω : �+ → �+such that

|f(t, x)| ≤ L(t)Ω(|x|),
for all x ∈ � and a.e. t ∈ I .

Lemma 3.1. Under assumptions (2) and (3), we have

d(Gx) ≤ kd(x)

for any function x ∈ C(I), where (Gx)(t) = g(t, x(t)) and k is the same constant as
in assumption (2).

Proof. Let us take an arbitrary function x ∈ C(I) and choose arbitrarily t1, t2 ∈
I(t1 < t2).
If x(t2) ≥ x(t1), we have

|(Gx)(t2) − (Gx)(t1)| − [(Gx)(t2) − (Gx)(t1)]
= |g(t2, x(t2))− g(t1, x(t1))| − [g(t2, x(t2))− g(t1, x(t1))]
= 0
≤ k(|x(t2) − x(t1)| − [x(t2) − x(t1)]),

and if x(t2) < x(t1), we have

|(Gx)(t2) − (Gx)(t1)| − [(Gx)(t2)− (Gx)(t1)]
= |g(t2, x(t2)) − g(t1, x(t1))| − [g(t2, x(t2))− g(t1, x(t1))]
≤ |g(t2, x(t2)) − g(t2, x(t1))|+ |g(t2, x(t1))− g(t1, x(t1))|

−{[g(t2, x(t2)) − g(t2, x(t1))] + [g(t2, x(t1))− g(t1, x(t1))]}
= |g(t2, x(t2)) − g(t2, x(t1))| − [g(t2, x(t2))− g(t2, x(t1))]
= 2|g(t2, x(t1))− g(t2, x(t2))|
≤ 2k|x(t1) − x(t2)|
= k(|x(t2)− x(t1)| − [x(t2) − x(t1)]).
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Therefore, we obtain
d(Gx) ≤ kd(x).

Thus the proof is complete.

Now we give the existence results under above hypotheses.

Theorem 3.2. Under assumptions (1)-(6), equation (1.1) has at least one nonde-
creasing solution x ∈ C(I) provided that there exists a constant R such that

(3.1)
∫ 1

0

L(s)ds <
1

K(kR + b)

∫ R

a

1
Ω(s)

ds,

where a = max{|h(t)| : t ∈ I}, b = max{|g(t, 0)| : t ∈ I}.
Proof. Let us consider the operator T defined on the space C(I) by the formula,

(Tx)(t) = h(t) + g(t, x(t))
∫ t

0

k(t, s)f(s, x(λs))ds.

Taking into account assumptions (1)-(6), we infer that the function Tx is continuous
on I for any x ∈ C(I), i.e., the operator T transforms the space C(I) into itself.
In view of assumption (3.1), we infer that there exists a constant ε > 0 such that∫ 1

0

L(s)ds = A

∫ R

a+ε

1
Ω(s)

ds,

where A = 1
K(kR+b) .

Then there exists a positive integer n such that

A

∫ a+nε

a+ε

1
Ω(s)

ds <

∫ 1

0
L(s)ds ≤ A

∫ a+(n+1)ε

a+ε

1
Ω(s)

ds.

Therefore, there exists a sequence {t0, t1, t2, ..., tn} such that
0 = t0 < t1 < t2 < · · ·· < tn−1 < tn = 1,

for which we have ∫ t1
0 L(s)ds = A

∫ a+2ε

a+ε

1
Ω(s)

ds,

∫ t2
t1

L(s)ds = A

∫ a+3ε

a+2ε

1
Ω(s)

ds,

· · · = · · · ,

∫ tn−1

tn−2
L(s)ds = A

∫ a+n)ε

a+(n−1)ε

1
Ω(s)

ds,

∫ 1
tn−1

L(s)ds ≤ A

∫ a+(n+1)ε

a+nε

1
Ω(s)

ds.
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If we denote by W = {x ∈ C(I) : x(t) ≥ 0 for t ∈ I} and ‖xi‖ = sup{|x(t)| :
t ∈ [ti−1, ti]}, then W ⊆ C(I). Since ‖xi‖ ≤ a + iε for i = 1, 2, ..., n, we infer that
the set W is a bounded, closed, convex and nonempty subset of the space C(I).
For any x ∈ W , we have

|Tx(t)| = |h(t) + g(t, x(t))
∫ t

0
k(t, s)f(s, x(λs))ds|

≤ a + (|g(t, x(t))− g(t, 0)|+ |g(t, 0)|)|
∫ t

0
k(t, s)f(s, x(λs))ds|

≤ a + K(k|x(t)|+ b)
∫ t

0
L(s)Ω(|x(λs)|)ds

≤ a + K(k(a + nε) + b)
∫ t

0
L(s)Ω(|x(λs)|)ds

≤ a + K(kR + b)
∫ t

0
L(s)Ω(|x(λs)|)ds,

and

‖Tx‖i = sup{|(Tx)(t)| : t ∈ [ti−1, ti]}
≤ sup{a + K(kR + b)

∫ t

0

L(s)Ω(|x(λs)|)ds : t ∈ [ti−1, ti]}

≤ a + K(kR + b)
∫ ti

0
L(s)Ω(|x(λs)|)ds

≤ a + K(kR + b)[
∫ t1

0

L(s)Ω(|x(λs)|)ds+
∫ t2

t1

L(s)Ω(|x(λs)|)ds

+ · · ·+
∫ ti

ti−1

L(s)Ω(|x(λs)|)ds]

≤ a + K(kR + b)[
∫ t1

0
L(s)dsΩ(a + ε) +

∫ t2

t1

L(s)dsΩ(a + 2ε)

+· · ·+
∫ ti

ti−1

L(s)dsΩ(a + iε)]

≤ a + K(kR + b)A[
∫ a+2ε

a+ε

1
Ω(s)

dsΩ(a + ε) +
∫ a+3ε

a+2ε

1
Ω(s)

dsΩ(a + 2ε)

+· · ·+
∫ a+(i+1)ε

a+iε

1
Ω(s)

dsΩ(a + iε)]

≤ a + K(kR + b)Aiε

≤ a + iε,

which implies that T : W → W is a bounded operator.
Next, let us take a nonempty subset X ⊆ W . Fix x ∈ X , then for any arbitrarily

choose t1, t2 ∈ I(t1 < t2), we have
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|(Tx)(t2) − (Tx)(t1)| ≤ |h(t2) − h(t1)|
+|g(t2, x(t2))

∫ t2

0
k(t2, s)f(s, x(λs))ds− g(t1, x(t1))

∫ t1

0
k(t1, s)f(s, x(λs))ds|

≤ |h(t2)− h(t1)|+ |g(t2, x(t2)) − g(t1, x(t2))||
∫ t2

0
k(t2, s)f(s, x(λs))ds|

+|g(t1, x(t2)) − g(t1, x(t1))||
∫ t2

0
k(t2, s)f(s, x(λs))ds|

+|g(t1, x(t1))||
∫ t2

0
k(t2, s)f(s, x(λs))ds−

∫ t1

0
k(t2, s)f(s, x(λs))ds|

+|g(t1, x(t1))||
∫ t1

0
k(t2, s)f(s, x(λs))ds−

∫ t1

0
k(t1, s)f(s, x(λs))ds|

≤ |h(t2)− h(t1)|+ |g(t2, x(t2)) − g(t1, x(t2))|
∫ t2

0
|k(t2, s)f(s, x(λs))|ds

+k|x(t2) − x(t1)|
∫ t2

0
|k(t2, s)f(s, x(λs))|ds

+|g(t1, x(t1))|
∫ t2

t1

|k(t2, s)f(s, x(λs))|ds

+|g(t1, x(t1))||
∫ t1

0

k(t2, s) − k(t1, s)f(s, x(λs))ds|

≤ |h(t2)− h(t1)|+ |g(t2, x(t2)) − g(t1, x(t2))|K
∫ 1

0
L(s)dsΩ(R)

+k|x(t2) − x(t1)|K
∫ 1

0

L(s)Ω(|x(λs)|)ds

+(kR + b)K
∫ t2

t1

L(s)dsΩ(R)

+(kR + b)|k(t2, ·)− k(t1, ·)|L∞

∫ 1

0
L(s)dsΩ(R),

and∫ 1

0
L(s)Ω(|x(λs)|)ds =

∫ t1

0
L(s)Ω(|x(λs)|)ds +

∫ t2

t1

L(s)Ω(|x(λs)|)ds

+.... +
∫ 1

tn−1

L(s)Ω(|x(λs)|)ds

≤
∫ t1

0
L(s)dsΩ(a + ε) +

∫ t2

t1

L(s)dsΩ(a + 2ε)

+.... +
∫ 1

tn−1

L(s)dsΩ(a + nε)

≤ A

∫ a+2ε

a+ε

1
Ω(s)

dsΩ(a + ε) + A

∫ a+3ε

a+2ε

1
Ω(s)

dsΩ(a + 2ε)
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+.... + A

∫ a+(n+1)ε

a+nε

1
Ω(s)

dsΩ(a + nε)

≤ Anε.

In view of assumptions (1)-(6) and keeping in mind the fact that g is uniformly
continuous on the set I × [−R, R], we have

w0(TX) ≤ kKAnεw0(X).

Further, taking into account the assumptions of our theorem and lemma 3.1, we
obtain

|(Tx)(t2) − (Tx)(t1)| − [(Tx)(t2) − (Tx)(t1)] ≤ |h(t2) − h(t1)| − [h(t2) − h(t1)]

+|g(t2, x(t2))
∫ t2

0
k(t2, s)f(s, x(λs))ds− g(t1, x(t1))

∫ t1

0
k(t1, s)f(s, x(λs))ds|

−[g(t2, x(t2))
∫ t2

0

k(t2, s)f(s, x(λs))ds− g(t1, x(t1))
∫ t1

0

k(t1, s)f(s, x(λs))ds]

≤ |g(t2, x(t2))− g(t1, x(t1))||
∫ t2

0
k(t2, s)f(s, x(λs))ds|

+|g(t1, x(t1))||
∫ t2

0

k(t2, s)f(s, x(λs))ds−
∫ t1

0

k(t2, s)f(s, x(λs))ds|

+|g(t1, x(t1))||
∫ t1

0
k(t2, s)f(s, x(λs))ds−

∫ t1

0
k(t1, s)f(s, x(λs))ds|

−[g(t2, x(t2)) − g(t1, x(t1))]
∫ t2

0

k(t2, s)f(s, x(s))ds

−g(t1, x(t1))[
∫ t2

0
k(t2, s)f(s, x(λs))ds−

∫ t1

0
k(t2, s)f(s, x(λs))ds]

−g(t1, x(t1))[
∫ t1

0

k(t2, s)f(s, x(λs))ds−
∫ t1

0

k(t1, s)f(s, x(λs))ds]

≤ {|g(t2, x(t2)) − g(t1, x(t1))| − [g(t2, x(t2))− g(t1, x(t1))]}∫ t2

0
k(t2, s)f(s, x(λs))ds

≤ d(Gx)K
∫ 1

0
L(s)Ω(|x(λs)|)ds

≤ kK

∫ 1

0
L(s)Ω(|x(λs)|)dsd(x)

≤ kKAnεd(x).

This estimate implies

(3.2) d(TX) ≤ kKAnεd(X).



Solutions of a Quadratic Integral Equation 1723

Consequently, we get

μ(TX) = w0(TX) + d(TX)
≤ kKAnε(w0(X) + d(X))

< (k
R − a

kR + b
)(w0(X) + d(X))

≤ (1 +
−b − ka

kR + b
)(w0(X) + d(X))

≤ (1 +
−b − ka

kR + b
)μ(X),

which implies T is a contraction with respect to μ on W .
Thus, applying fixed point theorem, we infer that there exists a function x ∈ W that

is a solution of equation (1.1). Moreover, in view of Remark 2.4 and the description
of the kernel of noncompactness μ, we deduce that all solutions of the equation (1.1)
are nondecreasing on I . This completes the proof.

Theorem 3.3. Under assumptions (1)-(6), equation (1.1) has at least one nonde-
creasing solution x ∈ C(I) provided there exists a constant R satisfied

(3.3) a + K(kR + b)Ω(R)
∫ 1

0
L(s))ds ≤ R.

Proof. In view of (3.3), we have∫ 1

0
L(s))ds ≤ R − a

K(kR + b)Ω(R)
<

1
K(kR + b)

∫ R

a

1
Ω(s)

ds.

Then, applying Theorem 3.2 we obtain the desired assertion.

4. EXAMPLES

Example 4.1. Consider the following quadratic integral equation

(4.1) x(t) = 1 +
1
3
arctanx(t)

∫ t

0
x(λs)ds, t ∈ I.

Obviously this equation is a particular case of equation (1.1), where h(t) = 1,
g(t, x(t)) = 1

3arctanx(t), k(t, s) = 1, f(s, x(t)) = x(t).
We know there exists a constant R = e such that

1 <
1
1
3e

∫ e

1

1
s
ds =

3
e
.

So, by Theorem 3.2, we conclude that equation (4.1) has at least one nondecreasing
solution.
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Remark 4.2. For the above equation, we can not obtain a constat R such that

1 +
1
3
R2 ≤ R.

By using Theorem 3.3, we do not know whether or not the equation (4.1) has a solution.
Thus, Theorem 3.2 is more general than the Theorem 3.3.

Example 4.3. Consider the following differential equation

(4.2)

{
( x(t)

g(t,x(t))
)
′
= f(t, x(t)), a.e.t ∈ I,

x(0) = 0,

where g satisfies assumptions (2), (3) and g(t, x) �= 0 for all t ∈ I and x ∈ �, f

satisfies assumptions (5) and (6).

Then equation (4.2) can be regarded as the following quadratic integral equation

(4.3) x(t) = g(t, x(t))
∫ t

0
f(s, x(s))ds, t ∈ I = [0, 1].

If there exists a constant R such that∫ 1

0
L(s)ds <

1
kR + b

∫ R

0

1
Ω(s)

ds.

Then applying Theorem 3.2, we can prove that the equation (4.2) has at least one
nondecreasing solution in C(I).
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