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MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS
SCHRÖDINGER-POISSON SYSTEMS WITH THE ASYMPTOTICAL

NONLINEARITY IN R
3

Ling Ding, Lin Li and Jing-Ling Zhang

Abstract. In this paper, we study nonhomogeneous Schrödinger-Poisson systems{
−Δu+ u+K(x)φ(x)u = a(x)f(u) + h(x), x ∈ R

3,

−Δφ = K(x)u2, x ∈ R
3,

where f(t) is either asymptotically linear or asymptotically 3-linear with respect
to t at infinity. Under appropriate assumptions on K, a, f and h, the existence
of two positive solutions of the above system is obtained by using the Ekeland’s
variational principle and the Mountain Pass Theorem in critical point theory.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we are concerned with the existence of two positive solutions for the
following nonhomogeneous Schrödinger-Poisson system

(1)

⎧⎪⎨⎪⎩
−Δu + u+K(x)φ(x)u = a(x)f(u) + h(x), x ∈ R

3,

−Δφ = K(x)u2, x ∈ R
3,

u > 0, x ∈ R
3,

where K, h ∈ L2(R3), K, h,≥ ( �≡)0, a is a nonnegative function, the function
f ∈ C(R,R+) and F is the primitive function of f with F (t) =

∫ t
0 f(s)ds. This
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system arises in an interesting physical model which describes the interaction of a
charged particle with electrostatic field (we refer the reader to [4] and the references
therein for more details on the physical aspects). In particular, if we are looking for
electrostatic-type solutions, we just have to solve system (1).
When K ≡ 0, system (1) becomes into a single equation

−Δu+ u = a(x)f(u) + h(x).(2)

Problem (2) with h(x) ≡ 0 (homogeneous) has been studied extensively in the last
decade, see [13, 17, 18, 19, 24] and so on. In these mentioned papers, the condition:
f(t)/t is nondecreasing in t ≥ 0 is usually assumed to prove that the (PS) sequence
is bounded. In the case of h(x) �≡ 0 (nonhomogeneous), Zhu in [28] proved that
problem (2) has at least two positive solutions in R

N with a(x) = 1 and f(t) =
tp(p ∈ (1, 2∗ − 1) if h(x) is small in some sense. After [28], there has been quite
a lot of interesting existence results of positive solutions to problem (2) in R

N , see
[7, 9, 14, 27] and the references herein, the results in these papers are on the base of
assuming that f(t) satisfies usual Ambrosetti-Rabinowitz(AR) condition in [2]:

(AR) 0 < F (t) =
∫ t

0
f(s)ds ≤ θtf(t), for t > 0(3)

and some θ ∈ (0, 1
2

)
. Wang and Zhou in [26] obtained the existence of two positive

solutions for problem (2) in R
N(N ≥ 3), for suitable a and h under the conditions

(f1)-(f3) (seen in Theorem 1.1). From all above papers, we find that methods used in
the homogenous case are difficult to apply to the nonhomogenous case of h(x) �≡ 0.
However, in this paper, we shall obtain solutions for nonhomogeneous Schrödinger-
Poisson systems. Moreover, these systems have the asymptotical nonlinearity: the
asymptotically linear or the asymptotically 3-linear at infinity. Clearly, the nonlinearity
assumed in the following main results satisfies the (AR) condition as in (3) with θ = 1

4 .
When K �≡ 0, Cerami and Vaira in [8] studied system (1) with f(t) = |t|p−1u(p ∈

(3, 5)) and h(x) ≡ 0 (homogeneous) and obtained the existence of positive ground
state solutions by minimizing I restricted to the Nehari manifold when K and a satisfy
different assumptions, respectively. Sun, Chen and Nieto in [23] also studied system
(1) with general f which is asymptotically linear at infinity(limt→+∞

f(t)
t = l < +∞)

and obtain the existence of positive ground state solution under suitable K and a by
Mountain Pass Theorem. Wang and Zhou in [25] studied Schrödinger-Poisson systems
with external potential, parameter λ and f(x, t) which is asymptotically linear with
respect to t at infinity

(4)

{
−Δu+ V (x)u+ λφ(x)u = f(x, u), x ∈ R

3,

−Δφ = u2, lim|x|→+∞ φ(x) = 0 x ∈ R
3,
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and obtained a positive solution for small λ and not obtained any nontrivial solution
for λ large. Zhu in [29] generalized system (4) with autonomous nonlinearity f(t) to
system (4) with non-autonomous nonlinearityK(x)f(t) and obtained the same results
as in [25] with the vanishing potential at infinity. Later, Zhu in [30] studied system (4)
with V (x) = β and asymptotically linear nonlinearity f(x, t)t where f(x, t) tends to
p(x) and q(x) ∈ L∞(R3), respectively, as t→ 0 and t→ +∞ and obtained existence
and nonexistence results depending on the parameters β and λ. Furthermore, there
are abundant results with respect to Schrödinger-Poisson systems, see [1, 3, 6, 11, 12,
21, 22] and so on. But there are few results for system (1) with K �≡ 0, h(x) �≡ 0
(nonhomogeneous) and asymptotically linear or 3-linear at infinity. So I think it is
worth to study. To our best knowledge, this is the first paper which consider this type
of problem.
Now, we firstly give some notations. For any 1 ≤ s ≤ +∞, we denote by ‖ · ‖s

the usual norm of the Lebesgue space Ls(R3). H1(R3) is the usual Sobolev space
endowed with the standard product and norm

(u, v) =
∫

R3
(∇u · ∇v + uv)dx, ‖u‖ :=

(∫
R3

(|∇u|2 + |u|2)dx
)1

2

.

D1,2(R3) is the completion of C∞
0 (R3) with respect to the norm

‖u‖D1,2(R3) :=
(∫

R3

|∇u|2dx
)1

2

.

Here, we state our main results as follows.

Theorem 1.1. Suppose that K, h ∈ L2(R3), K, h ≥ ( �≡)0, and the following
conditions hold:

(f1) f ∈ C(R,R+), f(0) = 0, and f(t) ≡ 0 for t < 0.
(f2) limt→0

f(t)
t = 0.

(f3) limt→+∞
f(t)
t = l with 0 < l < +∞.

(A1) a(x) is a positive continuous function and there exists R0 > 0 such that

sup{f(t)/t : t > 0} < inf{1/a(x) : |x| ≥ R0}.
(A2) There exists a constant β ∈ (0, 1) such that

(1 − β)l>μ∗ : = inf
{∫

R3

(|∇u|2+u2)dx : u∈H1(R3,R+),
∫

R3

a(x)F (u)dx≥ l

2
,∫

R3
K(x)φu(x)u2dx < 2βl

}
.
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Then there exists m > 0 such that system (1) has at least two positive solutions
u0, u1 ∈ H1(R3) satisfying I(u0) < 0 and I(u1) > 0 if ‖h‖2 < m.

Remark 1.1. In this paper, K �≡ 0 and h(x) �≡ 0, system (1) is nonhomogeneous
and the existence of two positive solutions for system (1) has been proved in our The-
orem 1.1. Note that the first local minimum solution exists due to the homogeneous
term which is looked a small perturbation because ‖h‖2 < m. Moreover, the second
solution u1 is the mountain pass solution with the positive energy. Furthermore, func-
tions K, a, f which satisfy the above conditions of Theorem 1.1 exist. For example,
for any R0 > 0 and r > 0, taking ψ ∈ C∞

0 (R3, [0, 1]) such that ψ(x) = 1 if |x| ≤ r,
ψ(x) = 0 if |x| ≥ 2r and |∇ψ(x)| ≤ C

r for all x ∈ R
3, where C > 0 is an arbitrary

constant independent of x, and K ∈ L2(R3) such that K(x) ≥ 0 for all x ∈ R
3,

K(x) �≡ 0 and ‖K‖2
2 ≤ 9

2×322π2S
−2S

−4
R−2

0

(
C2 +R2

0

)−2, where S, S are also seen
in Section 2. Let

a(x) =

{
1000/(1 + |x|), if |x| ≤ R0

2 ,

1/(1 + R0), if |x| ≥ R0,

and

f(t) =

{
R0t

2/(1 + t), if t > 0,
0, if t ≤ 0.

These functions are also seen in Remark 1.1 of [23].

Theorem 1.2. Suppose thatK, h ∈ L2(R3), a ∈ L3(R3). LetK, h and a ≥ ( �≡)0.
Assume (f1), (f2) and the following conditions hold:

(f4) limt→+∞
f(t)
t3

= l with 0 < l < +∞.
(f5) F (t)

t4
is nondecreasing for t > 0.

(A3) There exists a constant β ∈ (0, 1) such that

(1−β)l > μ∗ : = inf
{∫

R3
(|∇u|2 + u2)dx : u ∈ H1(R3,R+),

∫
R3
a(x)u4dx ≥ 1,∫

R3

K(x)φu(x)u2dx < βl

}
.

Then there exists m > 0 such that system (1) has at least two positive solutions
u0, u1 ∈ H1(R3) satisfying I(u0) < 0 and I(u1) > 0 if ‖h‖2 < m.

Remark 1.2. In Theorem 1.2, f is superlinear at zero and asymptotical 3-linear at
infinity, of course, is also superlinear at infinity. We usual need the (AR) condition as
in (3) with θ ∈ (0, 1

4

)
, to deal with this superlinear case( seen [10] and the references

herein). But here, (f5) only satisfies condition (3) with θ = 1
4 �∈ (0, 1

4

)
. Furthermore,
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since f is asymptotical 3-linear at infinity, (A1) is not meaning. We try to replaced
(A1) by (A4) as follows:
(A4) a(x) is a positive continuous function and there exists R0 > 0 such that

sup{f(t)/t3 : t > 0} < inf{1/a(x) : |x| ≥ R0}.
We find that other conditions are needed to prove our result. So, I can’t consider (A4).
In order to obtain the compact result:

∫
|x|≥R(|∇un|2 + |un|2)dx ≤ ε, we assume that

a ∈ L3(R3) and a ≥ ( �≡)0.

Remark 1.3. It is not difficult to find some functionsK, a, f satisfying conditions
of Theorem 1.2. For example, for any r > 0, taking ψ ∈ C∞

0 (R3, [0, 1]) such that
ψ(x) = 1 if |x| ≤ r, ψ(x) = 0 if |x| ≥ 2r and |∇ψ(x)| ≤ C

r for all x ∈ R
3, where

C > 0 is an arbitrary constant independent of x, and K ∈ L2(R3) such that K(x) ≥ 0
for all x ∈ R

3, K(x) �≡ 0 and ‖K‖2
2 ≤ 9

2×322π2S
−2S

−4
R−2

0

(
C2 +R2

0

)−2. Setting
a(x) = 3 3√1+R0

4πR3
0

1
3
√

1+|x| if |x| ≤ r, a(x) = 0 if |x| ≥ r. Let f(t) = t3 if t ≥ 0 and

f(t) = 0 if t < 0. Clearly, f satisfies (f1), (f2), (f4) and (f5) and l = 1 ∈ (0,+∞).
Taking β = 1

2 . Furthermore, for any r < R0, we have

(5)

∫
R3
a(x)ψ(x)4dx ≥ 3 3

√
1 +R0

4πR3
0

∫
|x|≤r

1
3
√

1 + |x|dx

≥ 3 3
√

1 +R0

4πR3
0

1
3
√

1 +R0

∫
|x|≤R0

dx

=
3 3
√

1 +R0

4πR3
0

1
3
√

1 +R0

4π
3
R3

0 = 1,

∫
R3(|∇ψ|2 + |ψ|2)dx ≤

∫
|x|≤2r

C2

r2
dx+

∫
|x|≤2r

dx

≤
(

1 +
C2

r2

)
32π
3
r3

=
32π
3
r
(
C2 + r2

)
.

This and (11) in section 2 yield∫
R3
K(x)φψψ2dx ≤ S2S

4‖K‖2
2‖ψ‖4

≤ S2S
4‖K‖2

2

322π2

9
r2
(
C2 + r2

)2
≤ S2S

4‖K‖2
2

322π2

9
R2

0

(
C2 +R2

0

)2
≤ βl =

1
2
.
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Taking R0 = 1, r = 1
8R0 = 1

8 and C = r
4 = 1

32 . Moreover, in view of the definition
of μ∗ and (5), one has

μ∗ ≤
∫

R3
(|∇ψ|2 + |ψ|2)dx ≤ 32π

3
r
(
C2 + r2

)
<
R0

2
= (1 − β)l.

So, condition (A3) holds.
As we know, in order to obtain two different solutions, for the asymptotically

linear case, the method is standard. Precisely, similar to [27], by the Ekeland’s vari-
ational principle [15], it is not difficult to get a weak solution u0 for ‖h‖2 suitably
small. Moreover, u0 is the local minimizer of I and I(u0) < 0. However, under
our assumptions, it seems difficult to get the Mountain Pass solution (different from
the local minimum solution) of (1) by applying the Mountain Pass Theorem as the
mentioned references because h(x) ≥ ( �≡)0, the nonlinearity is asymptotical and the
working space is H1(R3). We have to find new ways to show that a Cerami sequence
is bounded in H1(R3). Once a Cerami sequence is bounded in H1(R3), the usual
strategy is try to show this sequence converges to a solution different from u0, but
this seems not so easy because the imbedding of H1(R3) ↪→ Lp(R3) (p ∈ (2, 6))
is not compact. In fact, firstly, this difficulty can be avoided by restricting I to the
subspace of H1(R3) such as radially functions subspace usually denoted by H1

r (R
3),

see [1, 3, 8, 11, 21, 22]. Especially, many authors avoid the lack of the compact-
ness by the external potential V (x), some conditions are assumed on V (x) to make
the working space which is a subspace of H1(R3) have compactness imbeddings, see
[10, 21, 23, 29]. However, for the asymptotically case, we have to find another method
to verify Cerami condition. Motivated by [26, 23], we consider system (1) with the
following two asymptotical cases at infinity: asymptotically linear and asymptotically
3-linear in this paper, respectively. Secondly, in order to recover the compactness,
we establish the equi-absolutely-continuity at infinity:

∫
|x|≥R(|∇un|2 + |un|2)dx ≤ ε

which is also called the compactness result in this paper.
This paper is organized as follows. In section 2, some important preliminaries are

listed out. In sections 3 and 4, we manage to give proofs of Theorems 1.1 and 1.2. In the
following discussion, we denote various positive constants as C or Ci(i = 0, 1, 2, 3, ...)
for convenience.

2. PRELIMINARIES

System (1) has a variational structure. Indeed we consider the functional

J : H1(R3) ×D1,2(R3) → R

defined by

J (u, φ) =
1
2
‖u‖2−1

4

∫
R3
|∇φ|2dx+1

2

∫
R3
K(x)φu2dx−

∫
R3
a(x)F (u)dx−

∫
R3
h(x)udx.
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Evidently, the action functional J belongs to C1(H1(R3)×D1,2(R3),R) and the partial
derivatives in (u, φ) are given, for ξ ∈ H1(R3) and η ∈ D1,2(R3), by

〈
∂J
∂u (u, φ), ξ

〉
=
∫

R3

(∇u · ∇ξ + uξ +K(x)φuξ − a(x)f(u)ξ − h(x)ξ)dx,〈
∂J
∂φ (u, φ), η

〉
=

1
2

∫
R3

(−∇φ · ∇η +K(x)u2η)dx.

Thus, the pair (u, φ) is a weak solution of system (1) if and only if it is a critical
point of J in H1(R3) ×D1,2(R3). Clearly, the action functional J exhibits a strong
indefiniteness, namely it is unbounded both from below and from above on infinite
dimensional subspaces. This indefiniteness can be removed using the reduction method
described in [5], by which we are led to study a one variable functional that does not
present such a strongly indefinite nature.
For all u in H1(R3), the Lax-Milgram theorem (see [16]) implies that there exists

a unique φu ∈ D1,2(R3) such that −Δφu = K(x)u2 in a weak sense. Then, insert φu
into the first equation of (1), we have

−Δu+ u+K(x)φu(x)u = a(x)f(u) + h(x).(6)

That is, system (1) can be easily transformed to a nonlinear Schrödinger equation (6)
with a non-local term. Moreover, we can write an integral expression for φu in the
explicit form:

φu(x) =
∫

R3

K(y)u(y)2

|x− y| dy(7)

for any u ∈ H1(R3). So, we can consider the functional I : H1(R3) → R defined by
I(u) = J (u, φu). After multiplying −Δφu = K(x)u2 by φu and integration by parts,
we obtain ∫

R3

|∇φu|2dx =
∫

R3

K(x)φu(x)u2dx.(8)

Therefore, the reduced functional takes the form

Ĩ(u)

=
1
2
‖u‖2+

1
4

∫
R3

K(x)φu(x)u2dx−
∫

R3

a(x)F (u)dx−
∫

R3

h(x)udx, u∈H1(R3).

Using the reduction method, this indefiniteness for J can be removed and we are led
to study a one variable functional Ĩ that does not present such a strongly indefinite
nature structure.
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Recall the Sobolev ’s inequalities with the best constant S and S

‖v‖6 ≤ S‖v‖D1,2(R3), ‖v‖6 ≤ S‖v‖,(9)

together with (8) and the Hölder’s inequality, we have

‖φu‖2
D1,2(R3) =

∫
R3

K(x)φu(x)u2dx

≤ ‖K‖2‖u2‖3‖φu‖6

= ‖K‖2‖u‖2
6‖φu‖6

≤ SS
2‖K‖2‖u‖2‖φu‖D1,2(R3).

This yields

(10) ‖φu‖D1,2(R3) ≤ SS
2‖K‖2‖u‖2, ‖φu‖6 ≤ S‖φu‖D1,2(R3) ≤ S2S

2‖K‖2‖u‖2.

Therefore, by the Hölder’s inequality, (10) and (9) we have

(11)

∫
R3

K(x)φu(x)u(x)2dx

≤ ‖K‖2‖u‖2
6‖φu‖6

≤ S2S
4‖K‖2

2‖u‖4

:= C0‖u‖4.

In this paper, we shall look for the positive solution of problem (1). By assumption
(f1), we know that to seek a nonnegative weak solution of problem (1) is equivalent
to finding a nonzero critical point of the following functional I on H1(R3) defined by

(12) I(u) =
1
2
‖u‖2+

1
4

∫
R3

K(x)φu(x)(u+)2dx−
∫

R3

a(x)F (u+)dx−
∫

R3

h(x)udx,

where u+ = max{u, 0}. Combining (10), (11), (f1)-(f3), and Lemma 3.3 in [23], I
is well defined. Furthermore, I is C1 and we have

〈I ′(u), v〉 =
∫

R3

(∇u · ∇v + uv +K(x)φu(x)u+v − a(x)f(u+)v − h(x)v)dx.

Hence, if u ∈ H1(R3) is a nonzero critical point of I , then (u, φu) with φu as in (7),
is a nonnegative solution of (1). In fact, by (f1) and h ≥ 0, we have 〈I ′(u), u−〉 =
−‖u−‖2 − ∫

R3 h(x)u−dx = 0, where u− = max{−u, 0}. This yields that u− = 0,
then u = u+ − u− = u+ ≥ 0. By the strong maximum principle, the nonzero critical
point of I is the positive solution for problem (1).
In the following sections, we shall discuss system (1) with the two cases: asymp-

totically linear case and asymptotically cubic case at infinity, respectively.
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3. THE ASYMPTOTICALLY LINEAR CASE

In this section, we prove that system (1) has a mountain pass type solution and a
local minimum solution. For this purpose, we use a variant version of Mountain Pass
Theorem [15], which allows us to find a so-called Cerami type (PS) sequence (Cerami
sequence, in short). The properties of this kind of Cerami sequence are very helpful in
showing its boundedness in the asymptotically case. The following lemmas will show
that I defined in (12) has the so-called mountain pass geometry.

Lemma 3.1. Suppose that K, h ∈ L2(R3), K ≥ ( �≡)0, (f1)-(f3) and (A1) hold.
Then there exist ρ, α, m > 0 such that I(u)|‖u‖=ρ ≥ α > 0 for ‖h‖2 < m.

Proof. For any ε > 0, it follows from (f1)-(f3) that there exists Cε > 0 such that

|f(t)| ≤ ε|t| + Cε|t|5 for all t ∈ R.(13)

Therefore, we have

|F (t)| ≤ 1
2
ε|t|2 +

Cε
6
|t|6 for all t ∈ R.(14)

Furthermore, by (f1)-(f3) and (A1), there exists C1 > 0 such that

a(x) ≤ C1 for all x ∈ R
3.(15)

According to (14), (15) and (9), we deduce∣∣∣∣∫
R3

a(x)F (u+)dx
∣∣∣∣ ≤ εC1

2

∫
R3

|u+|2dx+
C1Cε

6

∫
R3

|u+|6dx

≤ εC1

2
‖u+‖2 +C2‖u+‖6

≤ εC1

2
‖u‖2 + C2‖u‖6,

where C2 = C1CεS
6

6 . Together with (7), K ≥ ( �≡)0, h ∈ L2(R3) and the Hölder
inequality, one has

(16)

I(u) ≥ 1
2
‖u‖2 − εC1

2
‖u‖2 − C2‖u‖6 − ‖h‖2‖u‖2

≥ 1
2
‖u‖2 − εC1

2
‖u‖2 − C2‖u‖6 − ‖h‖2‖u‖

≥ ‖u‖
(

1 − εC1

2
‖u‖ − C2‖u‖5 − ‖h‖2

)
.
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Taking ε = 1
2C1

and setting g(t) = 1
4 t − C2t

5 for t ≥ 0, we see that there exists

ρ =
(

1
20C2

) 1
4 such that maxt≥0 g(t) = g(ρ) := m > 0. Then it follows from (16)

that there exists α > 0 such that I(u)|‖u‖=ρ ≥ α > 0 for ‖h‖2 < m. Of course, ρ can
be chosen small enough, we can obtain the same result: there exist α > 0, m > 0 such
that I(u)|‖u‖=ρ ≥ α > 0 for ‖h‖2 < m.

Lemma 3.2. Suppose that K, h ∈ L2(R3), K, h ≥ ( �≡)0, (f1)-(f3) and (A1)-(A2)
hold. Then there exists v ∈ H1(R3) with ‖v‖ > ρ, ρ is given by Lemma 3.1, such that
I(v) < 0.

Proof. By (A2) and h ≥ ( �≡)0, in view of the definition of μ∗ and (1− β)l > μ∗,
there is a nonnegative function v ∈ H1(R3) such that∫

R3

a(x)F (v)dx >
l

2
,

∫
R3

K(x)φvv2dx < 2βl,
∫

R3

h(x)vdx ≥ 0,

and μ∗ ≤ ‖v‖2 < (1− β)l. Then, we have

I(v) =
1
2
‖v‖2 +

1
4

∫
R3
K(x)φv(x)v2dx−

∫
R3
a(x)F (v)dx−

∫
R3
h(x)vdx

≤ 1
2
‖v‖2 +

1
4
× 2βl− l

2

=
1
2
(‖v‖2 − (1 − β)l) < 0.

Choosing ρ > 0 small enough in Lemma 3.1 such that ‖v‖ > ρ, then this Lemma is
proved.

From Lemmas 3.1, 3.2 and Mountain Pass Lemma in [15], taking α as in Lemma
3.1 and v as in Lemma 3.2, there is a Cerami sequence {un} ⊂ H1(R3) such that

‖I ′(un)‖H−1(1 + ‖un‖) → 0 and I(un) → c ≥ α > 0 as n→ ∞,(17)

here, H−1 denotes the dual space of H1(R3) and c denotes by

c = inf
γ∈τ max

t∈[0,1]
I(γ(t)),

where
τ = {γ ∈ ([0, 1], H1(R3))|γ(0) = 0, γ(1) = v}.

In the following, we shall prove that I satisfies the Cerami condition, that is, the Cerami
sequence {un} has a convergence subsequence.
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Lemma 3.3. Suppose that K, h ∈ L2(R3), K, h ≥ ( �≡)0, (f1)-(f3) and (A1)
hold. Then {un} defined in (17) is bounded in H1(R3).

Proof. By contradiction, let ‖un‖ → ∞. Define wn = un‖un‖−1. Clearly, {wn}
is bounded in H1(R3) and there is a w ∈ H1(R3) such that, up to a subsequence,⎧⎪⎨⎪⎩

wn ⇀ w weakly in H1(R3),
wn → w a.e. in R

3,

wn → w strongly in L2
loc(R

3)

as n→ ∞. Therefore, we obtain that w±
n = u±n ‖un‖−1 and⎧⎪⎨⎪⎩

w±
n ⇀ w± weakly in H1(R3),

w±
n → w± a.e. in R

3,

w±
n → w± strongly in L2

loc(R
3)

as n→ ∞.
Firstly, we claim that w is nontrivial, that is w �≡ 0. Otherwise, if w ≡ 0, the

Sobolev embedding implies that wn → 0 strongly in L2(BR0), R0 is given by (A1).
By (f1)-(f3), there exists C3 > 0 such that

f(t)
t

≤C3 for all t ∈ R.(18)

Then, by (15) and (18), for all n ∈ N , we have

0≤
∫
|x|<R0

a(x)
f(u+

n )
u+
n

(w+
n )2dx≤C1C3

∫
|x|<R0

(w+
n )2dx≤C1C3

∫
|x|<R0

w2
ndx→ 0.

This yields

lim
n→∞

∫
|x|<R0

a(x)
f(u+

n )
u+
n

(w+
n )2dx = 0.(19)

Furthermore, by (A1), there exists a constant θ ∈ (0, 1) such that

(20) sup{f(t)/t : t > 0} ≤ θ inf{1/a(x) : |x| ≥ R0}.
Then, for all n ∈ N , we have

(21)
∫
|x|≥R0

a(x)
f(u+

n )
u+
n

(w+
n )2dx ≤ θ

∫
|x|≥R0

(w+
n )2dx ≤ θ‖wn‖2 = θ < 1.

Combining (19) and (21), we obtain

(22) lim sup
n→∞

∫
R3
a(x)

f(u+
n )

u+
n

(w+
n )2dx < 1.
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By (17), we get

(23) 0 ≤ |〈I ′(un), un〉| ≤ ‖I ′(un)‖H−1‖un‖ ≤ ‖I ′(un)‖H−1(1 + ‖un‖) → 0

as n→ ∞. Together with ‖un‖ → ∞ as n→ ∞, it follows that
〈I ′(un), un〉

‖un‖2
= o(1),

that is,

o(1) = ‖wn‖2 +
∫

R3

K(x)φwn(u+
n )2dx−

∫
R3

a(x)
f(u+

n )
u+
n

(w+
n )2dx

≥ 1 −
∫

R3

a(x)
f(u+

n )
u+
n

(w+
n )2dx,

where, and in what follows, o(1) denotes a quantity which goes to zero as n → ∞.
Therefore, we deduce that∫

R3

a(x)
f(u+

n )
u+
n

(w+
n )2dx+ o(1) ≥ 1,

which contradicts (22). So, w �≡ 0.
Furthermore, because ‖un‖ → ∞ as n→ ∞, it follows from (23) that

〈I ′(un), un〉
‖un‖4

= o(1),

that is,

o(1) =
1

‖un‖2
+
∫

R3

K(x)φwn(w+
n )2dx− 1

‖un‖2

∫
R3

a(x)
f(u+

n )
u+
n

(w+
n )2dx.

Together with (15) and (18), one has∫
R3

K(x)φwn(w+
n )2dx = o(1).(24)

By the same method of Lemma 3.3 in [23], we can prove∫
R3
K(x)φwn(w+

n )2dx =
∫

R3
K(x)φw(w+)2dx+ o(1).(25)

Here we omit its proof. (24) and (25) show that∫
R3
K(x)φw(w+)2dx = 0,
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which implies w+ ≡ 0. By (23), (f1), h ∈ L2(R3) and ‖un‖ → ∞ as n → ∞, we
obtain

0 = lim
n→∞

〈I ′(un), u−n 〉
‖un‖2

= − lim
n→∞ ‖w−

n ‖2.

This and w−
n ⇀ w− weakly in H1(R3) imply that w− = 0. Thus w = w+ −w− = 0.

That is a contradiction. Therefore, {un} is a bounded in H1(R3).

From the idea of Lemma 3.4 in [23] or Lemma 2.1 in [26], we have the following
Lemma. The proof of this Lemma follows from Lemma 3.4 in [23](also seen Lemma
2.1 in [26]). Here we write it for the completeness because this Lemma plays a key
role to prove our Theorem 1.1.

Lemma 3.4. Suppose that K, h ∈ L2(R3), K, h ≥ ( �≡)0, (f1)-(f3), and (A1)
hold. Then for any ε > 0, there exist R(ε) > R0 and n(ε) > 0 such that {un} defined
in (17) satisfies

∫
|x|≥R(|∇un|2 + |un|2)dx ≤ ε for n > n(ε) and R ≥ R(ε).

Proof. Let ξR : R
3 → [0, 1] be a smooth function such that

(26) ξR(x) =

{
0, 0 ≤ |x| ≤ R/2,
1, |x| ≥ R.

Moreover, there exists a constant C4 independent of R such that

|∇ξR(x)| ≤ C4

R
for all x ∈ R

3.(27)

Then, for all n ∈ N and R ≥ R0, by (26), (27) and the Hölder inequality, we have∫
R3

|∇(unξR)|2dx

≤
∫

R3

|∇un|2|ξR|2dx+
∫

R3

|un|2|∇ξR|2dx+ 2
∫

R3

|un||ξR||∇un||∇ξR|dx

≤
∫
R/2<|x|<R

|∇un|2dx+
∫
|x|>R

|∇un|2dx+
C2

4

R2

∫
R3

|un|2dx

+2
(∫

R3

|∇un|2|ξ2R|dx
)1

2
(∫

R3

|un|2|∇ξR|2dx
)1

2

≤
∫
R/2<|x|<R

|∇un|2dx+
∫
|x|>R

|∇un|2dx+
C2

4

R2

∫
R3

|un|2dx

+2

(∫
R/2<|x|<R

|∇un|2dx+
∫
|x|>R

|∇un|2dx
)1

2 (
C2

4

R2

∫
R3

|un|2dx
)1

2



1640 Ling Ding, Lin Li and Jing-Ling Zhang

≤
(

2 +
C2

4

R2
+

2
√

2C4

R

)
‖un‖2

≤
(

2 +
C2

4

R2
0

+
2
√

2C4

R0

)
‖un‖2.

This implies that

‖unξR‖ ≤ C5‖un‖(28)

for all n ∈ N and R ≥ R0, where C5 =
(
3 + C2

4

R2
0

+ 2
√

2C4
R0

) 1
2 . From Lemma 3.3, we

know that {un} is bounded in H1(R3). Together with (17), we obtain that I ′(un) → 0
in H−1(R3). Moreover, for ε > 0, there exists n(ε) > 0 such that

〈I ′(un), ξRun〉 ≤ C5‖I ′(un)‖H−1(R3)‖un‖ ≤ ε

4

for n > n(ε) and R > R0. Note that

〈I ′(un), ξRun〉 =
∫

R3
(|∇un|2 + |un|2)ξRdx+

∫
R3
un∇un · ∇ξRdx

+
∫

R3

K(x)φun(x)(u+
n )2ξRdx

−
∫

R3

a(x)f(u+
n )u+

n ξRdx−
∫

R3

h(x)unξRdx

≤ ε

4
.

This yields

(29)

∫
R3

[(|∇un|2 + |un|2)ξR + un∇un · ∇ξR]dx

≤
∫

R3

a(x)f(u+
n )u+

n ξRdx+
∫

R3

h(x)unξRdx−
∫

R3

K(x)φun(x)(u+
n )2ξRdx+

ε

4

≤
∫

R3

a(x)f(u+
n )u+

n ξRdx+
∫

R3

h(x)unξRdx+
ε

4
.

By (20), we have

a(x)f(u+
n )u+

n ≤ θ(u+
n )2 for θ ∈ (0, 1) and |x| ≥ R0.

This yields∫
R3
a(x)f(u+

n )u+
n ξRdx ≤ θ

∫
R3

(u+
n )2ξRdx ≤ θ

∫
R3
u2
nξRdx(30)
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for all n ∈ N and |x| ≥ R0. For any ε > 0, there exists R(ε) ≥ R0 such that

1
R2

≤ 4ε2

C2
4

for all R > R(ε).(31)

Because h ∈ L2(R3), h ≥ 0, there exists ρ = ρ(ε) such that

‖h‖2,R3\Bρ(0) < ε, ∀ρ ≥ ρ.(32)

By the Hölder inequality, (32), (26) and {un} is bounded in H1(R3), we have

(33)

∫
R3

h(x)unξRdx ≤ ‖h(x)ξR‖2‖un‖2

≤ ‖h(x)‖2,|x|>R/2‖un‖2 ≤ ε

4
for all R > R(ε).

By the Young inequality, (27) and (31), for all n ∈ N and R > R(ε), we obtain

(34)

∫
R3

|un∇un · ∇ξR|dx

=
∫

R3

√
2ε|∇un| 1√

2ε
|un||∇ξR|dx

≤ ε

∫
R3

|∇un|2dx+
1
4ε

∫
|x|≤R

|un|2C
2
4

R2
dx

≤ ε

∫
R3

|∇un|2dx+ ε

∫
|x|≤R

|un|2dx

≤ ε‖un‖2.

Combining (29), (30), (33) and (34), there exists C6 > 0 such that∫
R3

(|∇un|2 + (1 − θ)|un|2)ξRdx ≤ ε

2
+ ε‖un‖2 ≤ C6ε for all R > R(ε).

Noting that C6 is independent of ε. So, for any ε > 0, we can choose R(ε) > R0 and
n(ε) > 0 such that

∫
|x|≥R(|∇un|2 + |un|2)dx ≤ ε holds.

Lemma 3.5. Suppose that K, h ∈ L2(R3), K, h ≥ ( �≡)0, (f1)-(f3), and (A1)-(A2)
hold. Then the sequence {un} in (17) has a convergent subsequence. Moreover, u is
a positive solution of problem (1) and I(u) > 0.

Proof. By Lemma 3.3, the sequence {un} in (17) is bounded in H1(R3). We may
assume that, up to a subsequence, such that un ⇀ u weakly in H1(R3), un → u a.e.
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in R
3 and un → u strongly in L2

loc(R
3) for some u ∈ H1(R3). Now, we shall show

that ‖un‖ → ‖u‖ as n→ ∞.
By (17), we have

(35)

〈I ′(un), un〉

=
∫

R3

(|∇un|2+u2
n+K(x)φun(x)(u+

n )2−a(x)f(u+
n )u+

n−h(x)un)dx=o(1),

and

(36)

〈I ′(un), u〉

=
∫

R3

(∇un ·∇u+unu+K(x)φun(x)u+
nu−a(x)f(u+

n )u+−h(x)u)dx=o(1).

Since un ⇀ u weakly in H1(R3), we obtain

(37)
∫

R3

(∇un · ∇u+ unu)dx =
∫

R3

(|∇u|2 + |u|2)dx+ o(1).

By the same argument of proof of Theorem 3.1 in [23], we have the following equalities:

(38)
∫

R3

a(x)f(u+
n )u+

n dx =
∫

R3

a(x)f(u+
n )u+dx+ o(1),

and

(39)
∫

R3

K(x)φun(x)(u+
n )2dx =

∫
R3

K(x)φun(x)u+
nudx+ o(1).

Moreover, h ∈ L2(R3) imply that for any ε > 0 there exists ρ = ρ(ε) such that

‖h‖2,R3\Bρ(0) < ε, ∀ρ ≥ ρ.(40)

Since h ∈ L2(R3), the Hölder inequaltiy, un → u strongly in L2
loc(R

3) and (40), we
have ∫

R3
h(x)undx−

∫
R3
h(x)udx

≤
∫

R3\Bρ(0)
|h(x)(un − u)|dx+

∫
Bρ(0)

|h(x)(un − u)|dx

≤ ‖h(x)‖2,R3\Bρ(0)‖un − u‖2,R3\Bρ(0) + ‖h(x)‖2,Bρ(0)‖un − u‖2,Bρ(0)

≤ ε‖un − u‖2,R3\Bρ(0) + ε‖un − u‖2,Bρ(0)

≤ C6ε.
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This yields ∫
R3
h(x)undx =

∫
R3
h(x)udx+ o(1).(41)

By (35)-(39) and (41), we obtain∫
R3

(|∇un|2 + u2
n)dx−

∫
R3

(|∇u|2 + |u|2)dx = o(1).

This yields that ‖un‖ → ‖u‖ as n → ∞ and u is a nonzero critical point of I in
H1(R3) and I(u) = c > 0 by Mountain Pass Theorem in [15]. Therefore, u is a
positive solution of problem (1).

Now, we give local properties of the variational functional I , which is required by
using Ekeland’s variational principle.

Lemma 3.6. Suppose that K, h ∈ L2(R3), K, a, h ≥ ( �≡)0, (f1)-(f3) and (A1)
hold. If ‖h‖2 < m, then there exists u0 ∈ H1(R3) such that

I(u0) = inf{I(u) : u ∈ Bρ} < 0, where Bρ = {u ∈ H1(R3) : ‖u‖ < ρ},

m, ρ are given by Lemma 3.1 and u0 is a positive solution of system (1).

Proof. Because h ∈ L2(R3), h ≥ ( �≡)0, we can choose a nonnegative function
ϕ ∈ H1(R3) such that ∫

R3
h(x)ϕdx > 0.(42)

Together with (11), (f1), a ≥ ( �≡)0 and (42), for t > 0, we have

I(tϕ) =
t2

2
‖ϕ‖2 +

1
4

∫
R3

K(x)φtϕ(x)(tϕ)2dx−
∫

R3

a(x)F (tϕ)dx−
∫

R3

h(x)tϕdx

≤ t2

2
‖ϕ‖2 +

t4

4
C0‖ϕ‖4 − t

∫
R3

h(x)ϕdx

≤ 0

for t > 0 small enough. Thus there exists u small enough such that I(u) < 0. By
Lemma 3.1, we deduce that

c0 := inf
u∈Bρ

I(u) < 0 < inf
u∈∂Bρ

I(u).
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By applying Ekeland’s variational principle (Theorem 4.1 in [20]) in Bρ, there is a
minimizing sequence {un} ⊂ Bρ such that

(i) c0 ≤ I(un) < c0 +
1
n
, (ii) I(w) ≥ I(un) − 1

n
‖w− un‖ for all w ∈ Bρ.

Clearly, {un} is a bounded (PS) sequence of I . Then, by a standard procedure,
Lemmas 3.4 and 3.5 imply that there exists u0 ∈ H1(R3) such that I ′(u0) = 0,
I(u0) = c0 < 0. Moreover, I(u0) = c0 < 0 implies that u0 �= 0. Therefore, u0 is
a nonzero critical point of I , thus u0 is a positive solution of problem (1). So this
Lemma is proved.

Proof of Theorem 1.1. By Lemmas 3.1-3.6, we know that system (1) has two
different positive solutions u0 and u. Moreover, I(u0) = c0 < 0 and I(u) > 0.

4. ASYMPTOTICALLY 3-LINEAR CASE

To obtain two positive solutions of system (1) with asymptotically 3-linear at in-
finity, we also use the same method as Theorem 1.1. I can obtain corresponding results
by suitably modifying the proofs of Lemmas 3.1-3.6 as follows. Here, some proofs of
the following Lemmas which are the same as ones of Lemmas 3.1-3.6 are omitted.

Lemma 4.1. Suppose that K, h ∈ L2(R3), a ∈ L3(R3), K, a ≥ ( �≡)0, h ≥ 0.
Assume that (f1), (f2) and (f4) hold. Then there exist ρ̃, α̃, m̃ > 0 such that
I(u)|‖u‖=ρ̃ ≥ α̃ > 0 for ‖h‖2 < m̃.

Proof. For any ε > 0, it follows from (f1), (f2) and (f4) that there exists C′
ε > 0

such that

|f(t)| ≤ ε|t| + C′
ε|t|3 for all t ∈ R.(43)

Therefore, we have

|F (t)| ≤ 1
2
ε|t|2 +

C′
ε

4
|t|4 for all t ∈ R.(44)

According to (44), a ∈ L3(R3), a(x) ≥ ( �≡)0, the Hölder inequality, and Sobolev
imbedding theorem, we deduce∣∣∣∣∫

R3

a(x)F (u+)dx
∣∣∣∣ ≤ ε

2

∫
R3

a(x)|u+|2dx+
C′
ε

4

∫
R3

a(x)|u+|4dx

≤ ε

2

∫
R3

a(x)|u|2dx+
C′
ε

4

∫
R3

a(x)|u|4dx

≤ ε

2
‖a(x)‖3‖u‖2

3 +
C′
ε

4
‖a(x)‖3‖u‖4

6

≤ εC7

2
‖u‖2 + C8‖u‖4
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for some C7, C8 > 0. Together with (7), h ∈ L2(R3) and the Hölder inequality, one
has

(45)

I(u) =
1
2
‖u‖2+

1
4

∫
R3

K(x)φu(x)(u+)2dx−
∫

R3

a(x)F (u+)dx−
∫

R3

h(x)udx

≥ 1
2
‖u‖2− εC7

2
‖u‖2 −C8‖u‖4 − ‖h‖2‖u‖

≥ ‖u‖
(

1− εC7

2
‖u‖ −C8‖u‖3 − ‖h‖2

)
.

Taking ε = 1
2C7

and setting g̃(t) = 1
4 t − C8t

3 for t ≥ 0, we see there exists ρ =(
1

12C8

) 1
2 such that maxt≥0 g̃(t) = g̃(ρ) := m̃. Then it follows from (45) that there

exists α̃ > 0 such that I(u)|‖u‖=ρ̃ ≥ α̃ > 0 for ‖h‖2 < m̃. We also choose ρ̃ small
enough to obtain the same result.

Lemma 4.2. Suppose that K, h ∈ L2(R3), a ∈ L3(R3), K, a ≥ ( �≡)0, h ≥ 0,
(f1), (f2), (f4) and (A3) hold. Then there exists ṽ ∈ H1(R3) with ‖ṽ‖ > ρ̃, ρ̃ is given
by Lemma 4.1, such that I(ṽ) < 0.

Proof. By (A3), in view of the definition of μ∗ and (1 − β)l > μ∗, there is a
nonnegative function ṽ ∈ H1(R3) such that∫

R3

a(x)ṽ4dx ≥ 1,
∫

R3

K(x)φṽṽ2dx < βl,

∫
R3

h(x)ṽdx > 0,

and μ∗ ≤ ‖ṽ‖2 < (1− β)l. Together with (f4), we have

lim
t→+∞

I(tṽ)
t4

= lim
t→+∞

(
1

2t2
‖ṽ‖2+

1
4

∫
R3
K(x)φṽ(x)ṽ2dx−

∫
R3
a(x)ṽ4F (tṽ)

(tṽ)4
dx− 1

t3

∫
R3
h(x)ṽdx

)
=

1
4

∫
R3

K(x)φṽ(x)ṽ2dx− l

4

≤ βl − l

4
< 0.

Choosing ρ̃ > 0 small enough in Lemma 4.1 such that ‖v‖ > ρ̃, then this Lemma is
proved.

From Lemmas 4.1, 4.2 and Mountain Pass Lemma in [15], there is a sequence
{un} ⊂ H1(R3) such that

(46) ‖I ′(un)‖H−1(1 + ‖un‖) → 0 and I(un) → c̃ ≥ α̃ > 0 as n→ ∞,
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where c̃ denotes by
c̃ = inf

γ∈τ max
t∈[0,1]

I(γ(t)),

where
τ = {γ ∈ ([0, 1], H1(R3))|γ(0) = 0, γ(1) = ṽ}.

In the following, we shall prove that sequence {un} has a convergence subsequence.

Lemma 4.3. Suppose that K, h ∈ L2(R3), a ∈ L3(R3), K, a ≥ ( �≡)0, h ≥ 0,
(f1), (f2) and (f5) hold. Then {un} defined in (46) is bounded in H1(R3).

Proof. By (46), we have

|〈I ′(un), un〉| ≤ ‖I ′(un)‖‖un‖ ≤ (1 + ‖un‖)‖I ′(un)‖H−1 → 0

as n→ ∞. From (f1) and (f5), we obtain
f(t)t− 4F (t) ≥ 0 for all t ∈ R.

Thus, we deduce

(47)

1 + c̃ ≥ I(un) − 1
4
〈I ′(un), un〉

=
1
4
‖un‖2 +

∫
R3

a(x)
[
1
4
f(u+

n )u+
n − F (u+

n )
]
dx− 3

4

∫
R3

h(x)undx

≥ 1
4
‖un‖2 − 3

4
‖h(x)‖2‖un‖2

≥ 1
4
‖un‖2 − 3

4
‖h(x)‖2‖un‖

for n large enough. This yields that {un} is bounded in H1(R3), since ‖h‖2 < m̃.

Lemma 4.4. Suppose that K, h ∈ L2(R3), a ∈ L3(R3), K, a ≥ ( �≡)0, h ≥ 0,
(f1), (f2), (f4) and (f5) hold. Then for any ε > 0, there exist R(ε) > R0 and n(ε) > 0
such that {un} defined in (46) satisfies

∫
|x|≥R(|∇un|2 + |un|2)dx ≤ ε for n > ñ(ε)

and R ≥ R̃(ε).

Proof. Since a ∈ L3(R3) and a(x) ≥ ( �≡)0, there exists r = r(ε) > 0 such that

‖a(x)‖3,R3\Br(0) < ε for all ∀r > r.(48)

Let ξR : R
3 → [0, 1] be a smooth function defined by (26) and (27). By the same

method of Lemma 3.4, we also obtain

‖unξR‖ ≤ C9‖un‖
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for all n ∈ N and R ≥ R̃0(ε) > 2r. Moreover, for ε > 0, there exists ñ(ε) > 0 such
that

〈I ′(un), ξRun〉 ≤ C9‖I ′(un)‖H−1(R3)‖un‖ ≤ ε

4

for n > ñ(ε) and R > R̃0(ε) > 2r. By (43), the Hölder inequality, Sobolev imbedding
inequalities, (48) and the boundedness of un, we have

(49)

∫
R3

a(x)f(u+
n )u+

n ξRdx

≤ ε

∫
R3

a(x)(u+
n )2ξRdx+ C′

ε

∫
R3

a(x)(u+
n )4ξRdx

≤ ε

∫
|x|>R/2

a(x)u2
ndx+C′

ε

∫
|x|>R/2

a(x)u4
ndx

≤ ε‖a(x)‖3,|x|>R/2‖un‖2
3 +C′

ε‖a(x)‖3,|x|>R/2‖un‖4
6

≤ ε‖a(x)‖3,R3\Br(0)‖un‖2 +C′
ε‖a(x)‖3,R3\Br(0)‖un‖4

≤ ε

for all n ∈ N and |x| ≥ R̃0(ε) > r.
Combining (29), (49), (33) and (34), there exists C14 > 0 such that∫

R3

(|∇un|2 + |un|2)ξRdx ≤ 3ε
4

+ ε‖un‖2 ≤ C14ε for all R > R(ε).

Noting that C14 is independent of ε. So, for any ε > 0, we can choose R(ε) > R̃0

and ñ(ε) > 0 such that
∫
|x|≥R(|∇un|2 + |un|2)dx ≤ ε holds.

Lemma 4.5. Suppose that K, h ∈ L2(R3), a(x) ∈ L3(R3), K, a ≥ ( �≡)0, h ≥ 0,
(f1), (f2), (f4), (f5) and (A3) hold. Then the sequence {un} in (46) has a convergent
subsequence. Moreover, I possesses a nonzero critical point ũ in H1(R3), I(ũ) > 0
and ũ is a positive solution of problem (1).

Proof. By Lemma 3.3, the sequence {un} in (46) is bounded in H1(R3). We may
assume that, up to a subsequence un ⇀ ũ weakly in H1(R3) for some ũ ∈ H1(R3).
Now, we shall show that ‖un‖ → ‖ũ‖ as n → ∞. Under the conditions of this
Lemma, (37), (39) and (41) of Lemma 3.5 still hold. Now, we only need to prove that
(38) still holds under conditions of Lemma 4.5. By Lemma 4.3, we know that un is
bounded and weakly converge to ũ in H1(R3). Together with Hölder inequality, (43)
and Sobolev inequalities, we obtain
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∫
|x|≥R̃(ε)

a(x)f(u+
n )u+

n dx−
∫
|x|≥R̃(ε)

a(x)f(u+
n )ũ+dx

=
∫
|x|≥R̃(ε)

a(x)f(u+
n )(u+

n − ũ+)dx

≤
∫
|x|≥R̃(ε)

|a(x)f(u+
n )||un − ũ|dx

≤
(∫

|x|≥R(ε)
|f(u+

n )|2dx
) 1

2
(∫

|x|≥R(ε)
a(x)2|un − ũ|2dx

)1
2

≤
(∫

|x|≥R(ε)
(ε|un|2 + 2εC′

ε|un|4 +C′
ε
2|un|6)dx

)1
2

(∫
|x|≥R(ε)

|un − ũ|6dx
)
‖a(x)‖3,R3\Br(0)

≤ C15ε.

This and the compactness of embeddingH1(R3) ↪→ L2
loc(R

3) imply (38). Combining
(35), (36), (37), (38), (39) and (41), we have∫

R3
(|∇un|2 + u2

n)dx−
∫

R3
(|∇ũ|2 + |ũ|2)dx = o(1).

This yields that ‖un‖ → ‖ũ‖ as n → ∞ and ũ is a nonzero critical point of I in
H1(R3) and I(ũ) = c̃ > 0 by Mountain Pass Theorem in [15]. Therefore, ũ is a
positive solution of problem (1).

Proof of Theorem 1.2. By the same method of Lemma 3.6, we can obtain system
(1) has a local minimum positive solution ũ0 and I(ũ0) < 0. By Lemmas 4.1-4.5, we
know that system (1) has a mountain pass solution and I(ũ) > 0. Thus this Theorem
is proved.
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