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WEIGHTED HARDY SPACES ASSOCIATED WITH OPERATORS
SATISFYING REINFORCED OFF-DIAGONAL ESTIMATES

The Anh Bui, Jun Cao, Luong Dang Ky, Dachun Yang* and Sibei Yang

Abstract. Let L be a nonnegative self-adjoint operator on L2(Rn) satisfying
the reinforced (pL, p

′
L) off-diagonal estimates, where pL ∈ [1, 2) and p′L denotes

its conjugate exponent. Assume that p ∈ (0, 1] and the weight w satisfies the
reverse Hölder inequality of order (p′L/p)′. In particular, if the heat kernels of the
semigroups {e−tL}t>0 satisfy the Gaussian upper bounds, then pL = 1 and hence
w ∈ A∞(Rn). In this paper, the authors introduce the weighted Hardy spaces
Hp

L, w(Rn) associated with the operator L, via the Lusin area function associ-
ated with the heat semigroup generated by L. Characterizations of Hp

L, w(Rn), in
terms of the atom and the molecule, are obtained. As applications, the bounded-
ness of singular integrals such as spectral multipliers, square functions and Riesz
transforms on weighted Hardy spaces Hp

L, w(Rn) are investigated. Even for the
Schrödinger operator −Δ + V with 0 ≤ V ∈ L1

loc(R
n), the obtained results in

this paper essentially improve the known results by extending the narrow range
of the weights into the whole A∞(Rn) weights.

1. INTRODUCTION

Since the famous works on Hardy spaces by Stein and Weiss [43] and Fefferman
and Stein [26] were published, the theory of Hardy spaces has played an important
role in modern harmonic analysis and has extensive applications in partial differential
equations. When studying the boundedness of singular integral operators with smooth
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kernel, the Hardy spaces Hp(Rn) with p ∈ (0, 1] are good substitutes of Lp(Rn),
for example, the classical Riesz transform ∇(−Δ)−1/2 is bounded on Hp(Rn) with
p ∈ (0, 1] but not on Lp(Rn). Moreover, a key characterization of the Hardy spaces
Hp(Rn) is their atomic decomposition, which was obtained by Coifman [11] when
n = 1 and by Later [37] when n > 1. Later, Coifman and Weiss [14, 15] used the
“atomic method” to extend and develop the theory of Hardy spaces to the far more
general setting, the so-called spaces of homogeneous type. However, it is nowadays
understood that there are important situations in which the classical Coifman-Weiss
theory and the classical Calderón-Zygmund theory are not applicable. For example,
the Riesz transform ∇L−1/2 needs not be bounded from H1(Rn) to L1(Rn) when
L := −div(A∇) is a second order divergence elliptic operator with complex L∞-
coefficients; see, for example, [31, 32]. Hence, to characterize the boundedness of
these Riesz transforms, we need some new Hardy spaces.
In the last ten years or so, there are a lot of studies which pay attention to the theory

of Hardy spaces associated with operators. Let us give a brief overview of this research
direction. In [4, 23], Auscher el al. introduced the theory on Hardy spaces associated
with operators L under the assumption of Gaussian upper bounds of the heat kernels
associated with the semigroup {e−tL}t>0. Recently, Auscher, McIntosh and Russ
[5] investigated the Hardy spaces associated with Hodge Laplacian on a Riemannian
manifold with doubling measure. Moreover, Hofmann and Mayboroda [32] studied
the theory of Hardy spaces associated with divergence form elliptic operators L. It is
important to notice that in [32], the pointwise estimates on the kernels associated with
the semigroup {e−tL}t>0 are not required. Furthermore, the theory of Hardy spaces
associated with nonnegative self-adjoint operators satisfying Davies-Gaffney estimates
was investigated in [30]. For further information on this research direction, we refer
the reader to [4, 9, 22, 23, 5, 32, 30, 35] and the references therein.
The weighted Hardy space associated with operators therefore is the natural ex-

tension of the Hardy space associated with operators. Song and Yan [42] treated the
weighted Hardy spaceH1

L,w(Rn) associated with Schrödinger operators L := −Δ+V ,
where the weight w ∈ A1(Rn)∩RH2(Rn) and 0 ≤ V ∈ L1

loc (Rn). Here and in what
follows, Ap(Rn) with p ∈ [1,∞] and RHq(Rn) with q ∈ (1,∞], respectively, denote
the class of Muckenhoupt weights and the reverse Hölder class (see also Subsec-
tion 2.1). Then, the results in [42] were extended by the first author of this paper
and Duong [8] in which weighted Hardy spaces Hp

L, w(X) associated with nonnega-
tive self-adjoint operators satisfying Davies-Gaffney estimates were investigated, where
p ∈ (0, 1], w ∈ A1(X)∩RH2/(2−p)(X) and X is a space of homogeneous type. More-
over, D. Yang and S. Yang [45] studied Musielak-Orlicz-Hardy spaces associated with
nonnegative self-adjoint operators. In some circumstances, the Musielak-Orlicz-Hardy
spaces in [45] turn out to be the weighted Hardy spaces Hp

L,w(X) with p ∈ (0, 1] and
w ∈ A∞(X)∩RH2/(2−p)(X). In other words, the best range for the weight w studied
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in [42, 8, 45] is w ∈ RH2/(2−p)(X). Also, it should be pointed out that in the proof
of the atomic decomposition theorem of [42], the condition w ∈ A1(Rn) is necessary.
Hence, it is natural to ask the following question:

Question. When can we extend the range of weights w to A∞(Rn)?

On the other hand, an important property of the classical Hardy spaces Hp(Rn)
with p ∈ (0, 1] is that Lq(Rn) ∩ Hp(Rn) is dense in Hp(Rn) for all q ∈ (1,∞). In
the setting of (both unweighted and weighted) Hardy spaces associated with operators
Hp
L,w(Rn), it was proved, in [4, 9, 22, 23, 5, 32, 30, 35, 42, 8, 45], only that L2(Rn)∩

Hp
L,w(Rn) is dense in Hp

L, w(Rn). Recall that in [32, 30, 35, 42, 8, 45] the Hardy
space Hp

L, w(Rn) was defined as the completion of
{
f ∈ L2(Rn) : SL(f) ∈ Lpw(Rn)

}
in the norm ‖f‖Hp

L, w(Rn) := ‖SL(f)‖Lp
w(Rn), where, for all x ∈ R

n,

SL(f)(x) :=

{∫ ∞

0

∫
|x−y|<t

∣∣∣t2Le−t2L(f)(y)
∣∣∣2 dy dt
tn+1

}1/2

.

A natural question is that what happen if we replace L2(Rn) by Lq(Rn) with q �= 2.
The main aim of the present paper is to give answers to the above two questions.

In this paper, we always assume that the operator L is nonnegative self-adjoint and
satisfies the reinforced (pL, p′L) off-diagonal estimates, where pL ∈ [1, 2) and p′L de-
notes its conjugate exponent; see Section 3 below for the definition of the reinforced
(pL, p′L) off-diagonal estimates. Let w ∈ A∞(Rn) and p ∈ (0, 1]. We introduce the
weighted Hardy space Hp

L,w(Rn) associated with L via the Lusin area function as-
sociated with L. Then, we establish the atomic and the molecular characterizations
of Hp

L,w(Rn) when w ∈ A∞(Rn) ∩ RH(p′L/p)′(R
n), where (p′L/p)

′ denotes the con-
jugate exponent of p′L/p. Obviously, the inclusion RH(2/p)′(Rn) ⊂ RH(p′L/p)′

(Rn)
holds whenever pL ∈ [1, 2). In the particular case when pL = 1 or, equivalently, the
Gaussian upper bounds are imposed on the heat kernels of the semigroup e−tL, we can
extend all the known results on weighted Hardy spaces Hp

L,w(Rn) to all w ∈ A∞(Rn).
As applications of the atomic and the molecular characterizations of Hp

L, w(Rn), the
boundedness of singular integrals such as spectral multipliers, square functions and
Riesz transforms on weighted Hardy spaces Hp

L, w(Rn) are investigated. The obtained
results in this paper essentially improve the known results in [42, 8, 45] by quite enlarg-
ing the range of the weights w. Moreover, we show that Hp

L, w(Rn) does not change
if we replace L2(Rn) by Lq(Rn) with q ∈ (pL, p′L) in the definition of Hp

L, w(Rn).
As a consequence, we see that Lq(Rn) ∩Hp

L,w(Rn) is dense in Hp
L,w(Rn) whenever

q ∈ (pL, p′L). These give answers to the above two questions.
The main new ingredient appeared in this paper is the introduction of the notion

of the reinforced (pL, p′L) off-diagonal estimates, which leads us to essentially extend
the range of the considered weights. Another innovation of this paper appears in
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the definition of the atom under the Lq(Rn) norms with q ∈ (2, p′L). Moreover, in
the construction of the atomic Hardy spaces Hp

L, w, at (R
n), the convergent sense of

the series in the atomic representation is more flexible than those in previous papers
[32, 30, 45]; see Theorem 3.8 below. Precisely, the series in the atomic representation
in our construction is required to converge in Lr(Rn)-norm for some r ∈ (pL, p′L), not
in L2(Rn)-norm, disregarding the Lq(Rn)-norm of each atom. This flexibility brings
some advantages to obtain the atomic decomposition and the boundedness of singular
integrals on Hardy spaces; see Theorem 3.8 and Section 4 below.
The organization of this paper is as follows. In Section 2, we first recall the

definition of the weight class A∞(Rn) and some of their properties; and then we address
some properties of the weighted tent spaces. In Section 3, we introduce the weighted
Hardy space Hp

L,w(Rn) via the Lusin area function associated with the operator L and
establish its atomic and molecular characterizations. Section 4 is dedicated to studying
the boundedness of some singular integrals such as the square functions, the spectral
multipliers and the Riesz transforms on the weighted Hardy space Hp

L, w(Rn). More
precisely, in Subsection 4.1, we prove that the spectral multiplier F (L) is bounded on
the space Hp

L,w(Rn) with p ∈ (0, 1] and w ∈ RH(p′L/p)′(R
n) (see Theorem 4.2 below).

It is worth pointing out that in [8, Theorem 4.9], the Hp
L, w(Rn)-boundedness of F (L)

was established when p ∈ (0, 1] and w ∈ A1(Rn) ∩RH2/(2−p)(Rn). Obviously,

A1(Rn) ∩ RH2/(2−p)(Rn) ⊂ RH(p′L/p)′(R
n).

Thus, Theorem 4.2 essentially improves [8, Theorem 4.9] (see Remark 4.3 below).
In Subsection 4.2, we show that the square function GL,k (see (4.9) below for its
definition) with k ∈ N is bounded from Hp

L,w(Rn) to Lpw(Rn) when p ∈ (0, 1] and w ∈
RH(p′L/p)′(R

n) which improves [45, Theorem 6.3] in this setting by extending the range
of the weight w (see Remark 4.8 below). Finally, in Subsection 4.3, for the Schrödinger
operator L := −Δ + V with 0 ≤ V ∈ L1

loc (Rn), we first prove that the Riesz
transform ∇L−1/2 is bounded from Hp

L, w(Rn) to Lpw(Rn) when p ∈ (0, 1] and w ∈
RH(p0/p)′(R

n), where p0 ∈ (2,∞) satisfies that, for all r ∈ (1, p0), ∇L−1/2 is bounded
on Lr(Rn) (see Theorem 4.9 below). We remark that Theorem 4.9 essentially improves
[8, Theorem 4.1] and [45, Theorem 7.11] by extending the assumptions w ∈ A1(Rn)∩
RH2/(2−p)(Rn) in [8, Theorem 4.1] and w ∈ RH2/(2−p)(Rn) in [45, Theorem 7.11]
to the assumption w ∈ RH(p0/p)′(R

n) (see Remark 4.10 below). Moreover, we also
prove in Subsection 4.3 that ∇L−1/2 is bounded from Hp

L,w(Rn) to the weighted
Hardy space Hp

w(Rn) when p ∈ ( n
n+1 , 1] and w ∈ Aq0(R

n) ∩ RH(p0/q0)′(R
n) with

some q0 ∈ [1, p(n+1)
n ) (see Theorem 4.13 below), which essentially improves [42,

Theorem 1.1(ii)], [44, Theorem 1.1] and [45, Theorem 7.15] by extending the range of
the weight w (see Remark 4.14 below for the details). We would like to emphasize that
the results obtained in this paper can be considered as extensions to those in previous
works [42, 8, 45].
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Finally we make some conventions on notation. Throughout the whole paper, C
denotes a positive geometric constant which is independent of the main parameters, but
may change from line to line. We also use C(γ, β, . . .) to denote a positive constant
depending on the indicated parameters γ , β, . . .. The symbol A � B means that
A ≤ CB. If A � B and B � A, then we write A ∼ B. The symbol �s� for s ∈ R

denotes the maximal integer not more than s. We often just use B for B(xB , rB) :=
{x ∈ Rn : |x − xB| < rB}. Also given λ > 0, we write λB for the λ-dilated
ball, which is the ball with the same center as B and with radius rλB = λrB. For
each ball B ⊂ Rn, we set S0(B) := B and Sj(B) := 2jB \ 2j−1B for j ∈ N.

For any measurable subset E of Rn, we denote by E� the set Rn \ E and by χE its
characteristic function. We also set N := {1, 2, . . .} and Z+ := {0} ∪ N. For any
θ := (θ1, . . . , θn) ∈ Zn+, let |θ| := θ1 + . . .+ θn. For any subsets E , F ⊂ Rn and
z ∈ R

n, let d(E, F ) := infx∈E,y∈F |x − y| and dist (z, E) := infx∈E |z − x|. For
1 ≤ q ≤ ∞, we denote by q′ its conjugate exponent, namely, 1/q + 1/q′ = 1. Finally,
we use the notation −∫B h(x)dx := 1

|B|
∫
B h(x) dx.

2. PRELIMINARIES

In this section, we first recall the definition of the weight class A∞(Rn) and some
of their properties; and then we address some properties of the weighted tent spaces.

2.1. Muckenhoupt weights

Let q ∈ [1,∞). A nonnegative locally integrable function w on Rn is said to
belong to the Muckenhoupt class Aq(Rn), namely, w ∈ Aq(Rn), if there exists a
positive constant C such that, for all balls B ⊂ Rn, when q ∈ (1,∞),

(2.1) −
∫
B

w(x)dx
{
−
∫
B

[w(x)]−1/(q−1)dx

}q−1

≤ C

and, when q = 1,

−
∫
B
w(x)dx ≤ C ess inf

x∈B
w(x).

Moreover, let A∞(Rn) := ∪q∈[1,∞)Aq(Rn). Remark that this kind of weights was first
introduced by Muckenhoupt [40]. For the sake of convenience, in what follows, we
denote by w(E) the integral

∫
E w(x)dx for any measurable set E ⊂ Rn.

The reverse Hölder classes are defined in the following way. Let r ∈ (1,∞). A
nonnegative locally integrable function w is said to belong to the reverse Hölder class
RHr(Rn), namely, w ∈ RHr(Rn), if there exists a positive constant C such that, for
all balls B ⊂ Rn, {

−
∫
B
[w(x)]r dx

}1/r

≤ C−
∫
B
w(x)dx.
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Moreover, when r = ∞, a nonnegative locally integrable function w is said to belong
to the reverse Hölder class RH∞(Rn), if there exists a positive constant C such that,
for all balls B ⊂ Rn and almost every x ∈ B,

w(x) ≤ C−
∫
B
w(y)dy.

Let w ∈ A∞(Rn) and p ∈ (0,∞). The weighted Lebesgue space Lpw(Rn) is
defined to be the space of all measurable functions f such that

‖f‖Lp
w(Rn) :=

{∫
Rn

|f(x)|pw(x)dx
}1/p

<∞.

We recall some properties of the Muckenhoupt classes and the reverse Hölder
classes in the following two lemmas (see, for example, [20] for the proofs).

Lemma 2.1. (i) A1(Rn) ⊂ Ap(Rn) ⊂ Aq(Rn) for 1 ≤ p ≤ q ≤ ∞.
(ii) RH∞(Rn) ⊂ RHq(Rn) ⊂ RHp(Rn) for 1 < p ≤ q ≤ ∞.
(iii) If w ∈ Ap(Rn) with p ∈ (1,∞), then there exists q ∈ (1, p) such that w ∈

Aq(Rn).

(iii) If w ∈ RHq(Rn) with q ∈ (1,∞), then there exists p ∈ (q,∞) such that
w ∈ RHp(Rn).

(iv) A∞(Rn) = ∪p∈[1,∞)Ap(Rn) = ∪p∈(1,∞]RHp(Rn).

Lemma 2.2. Let q ∈ [1,∞) and r ∈ (1,∞]. Suppose thatw ∈ Aq(Rn)∩RHr(Rn).
Then there exists a constant C ∈ (1,∞) such that, for all balls B ⊂ Rn and any
measurable subset E of B, C−1( |E|

|B|)
q ≤ w(E)

w(B) ≤ C( |E|
|B|)

r−1
r .

In what follows, for any given w ∈ A∞(Rn), let

(2.2)
qw := inf{q ∈ [1,∞) : w ∈ Aq(Rn)} and

rw := sup{r ∈ (1,∞] : w ∈ RHr(Rn)}.
We remark that if qw ∈ (1,∞), then by Lemma 2.1(iii), we conclude that w �∈

Aqw(Rn). Moreover, there exists w �∈ A1(Rn) such that qw = 1 (see, for example,
[36]). Similarly, if rw ∈ (1,∞), then w �∈ RHrw(Rn) and there exists w �∈ RH∞(Rn)
such that rw = ∞ (see, for example, [16]).

2.2. Weighted tent spaces

For simplicity, in what follows we write R
n+1
+ instead of Rn × (0,∞). For any

given x ∈ R
n, we let

Γ(x) := {(y, t) ∈ R
n+1
+ : |x− y| < t}.
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For any closed set F ⊂ Rn, we set R(F ) := ∪x∈FΓ(x). If O is an open subset of
R
n, the tent over O is defined by Ô := {(x, t) ∈ R

n+1
+ : dist(x, O�) ≥ t}. It is easy

to verify that Ô = [R(O�)]�.
Let F ⊂ R

n be a closed set and O := R
n \ F . For any fixed γ ∈ (0, 1), the set of

points with global γ-density with respect to F is defined by

(2.3) F ∗ :=
{
x ∈ R

n :
|B(x, r) ∩ F |
|B(x, r)| ≥ γ for all r ∈ (0,∞)

}
.

The following result is taken from [13, Lemma 2] which is used in the sequel.

Lemma 2.3. There exist positive constants γ ∈ (0, 1) and C(γ) so that, for any
closed set F ⊂ R

n with |F�| < ∞ and any nonnegative measurable function H on
R
n+1
+ , ∫

R(F∗)
H(y, t)tndy dt ≤ C(γ)

∫
F

{∫
Γ(x)

H(y, t)dydt

}
dx.

For all measurable functions f on R
n+1
+ and x ∈ Rn, let

A(f)(x) :=

{∫
Γ(x)

|f(y, t)|2dy dt
tn+1

}1/2

.

For p ∈ (0,∞) and w ∈ A∞(Rn), the tent space T pw(Rn+1
+ ) is defined to be the

space of all measurable functions f such that ‖f‖T p
w(Rn) := ‖A(f)‖Lp

w(Rn) <∞.
Notice that the weighted tent space T pw(Rn+1

+ ) can be considered as an extension
of those in [13] when w ≡ 1. In this case, we write T p(Rn+1

+ ) instead of T pw(Rn+1
+ ).

For the tent space T pw(Rn+1
+ ), we have the following simple observation, which is used

in what follows.

Remark 2.4. (i) If supp f ⊂ B̂ for some ball B ⊂ Rn, then suppA(f) ⊂ B.
(ii) If f is a measurable function on R

n+1
+ supported in a compact set K, then there

exists a positive constant C(K, p, w), depending on K, p and w, such that∫
K

|f(x, t)|2dx dt ≤ C(K, p, w)‖A(f)‖2
L

p
w(Rn).

For the tent space T q(Rn+1
+ ) with q ∈ (1,∞), we have the following conclusion,

which is just [13, Theorem 2].

Theorem 2.5. Let q ∈ (1,∞). Then, the dual of T q(Rn+1
+ ) is T q′(Rn+1

+ ). More
precisely, the pairing 〈f, g〉 :=

∫
R

n+1
+

f(x, t)g(x, t)dxdtt , realizes T
q′(Rn+1

+ ) as equiv-
alent with the dual of T q(Rn+1

+ ).
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Let p ∈ (0, 1] and w ∈ A∞(Rn). A measurable function a on R
n+1
+ is called a

(w, p, ∞)-atom if there exists a ball B ⊂ R
n, such that

(i) supp a ⊂ B̂;
(ii) for any q ∈ (1,∞),

(2.4) ‖a‖T q(Rn+1
+ ) ≤ |B| 1q [w(B)]−

1
p .

It is worth noticing that any (w, p, ∞)-atom belongs to T pw(Rn+1
+ ). Indeed, since

w ∈ A∞(Rn), there exists q ∈ (1,∞) such that w ∈ RHq′(Rn) and pq > 1. Then, by
Remark 2.4 and Hölder’s inequality, we know that

‖A(a)‖Lp
w(Rn) =

⎧⎨⎩
∫
B

[∫
Γ(x)

|a(y, t)|2dy dt
tn+1

]p/2
w(x)dx

⎫⎬⎭
1/p

≤
⎧⎨⎩
∫
B

[∫
Γ(x)

|a(y, t)|2dy dt
tn+1

]pq
2

dx

⎫⎬⎭
1
pq {∫

B
[w(x)]q

′
} 1

pq′

� ‖a‖T pq(Rn+1
+ )|B| 1

pq′−
1
p [w(B)]1/p

� |B| 1
pq [w(B)]−1/p|B| 1

pq′−
1
p [w(B)]1/p � 1.

An important result concerning weighted tent spaces is that each function in T pw(Rn+1
+ )

has an atomic decomposition. More precisely, we have the following result.

Theorem 2.6. Let p ∈ (0, 1], w ∈ A∞(Rn) and F ∈ T pw(Rn+1
+ ). Then, there exist

a sequence of (w, p, ∞)-atoms, {aj}j , and a sequence of numbers, {λj}j ⊂ C, such
that

(2.5) F =
∑
j

λjaj

almost everywhere. Moreover, there exists a positive constant C such that, for all
F ∈ T pw(Rn+1

+ ),

(2.6)

⎧⎨⎩∑
j

|λj|p
⎫⎬⎭

1/p

≤ C‖F‖T p
w(Rn+1

+ ).

Furthermore, if F ∈ T pw(Rn+1
+ ) ∩ T 2(Rn+1

+ ), then the series in (2.5) converges in
both T pw(Rn+1

+ ) and T 2(Rn+1
+ ).
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Proof. We exploit some ideas from [13] to our situation (see also [29, 8, 35]).
Let γ be as in Lemma 2.3. For each k ∈ Z, let Ek := {x ∈ R

n : A(F )(x) > 2k}
and Ωk := {x ∈ Rn : M(χEk

)(x) > 1 − γ}, where M denotes the standard Hardy-
Littlewood maximal function on R

n, namely, for all x ∈ R
n,

M(f)(x) := sup
x∈B

1
|B|
∫
B
|f(y)| dy,

where the supremum is taken over all balls B � x. Then, Ek ⊂ Ωk and, it follows,
from the fact that M is of weak type (1, 1), that |Ωk| � |Ek| for all k ∈ Z, which,
together with w ∈ A∞(Rn) and Lemmas 2.1(v) and 2.2, implies that

(2.7) w(Ωk) � w(Ek).

Moreover, it can be showed that suppF ⊂ ∪k∈ZΩ̂k.
For each k, due to the Whitney covering lemma (see, for example, [14]), we pick

a family {B̃jk}j of balls and positive constants 1 < c∗ < c∗∗ satisfying the following
three conditions:

(i) the family {B̃jk}j is pairwise disjoint;
(ii) Ωk = ∪jc∗B̃jk;
(iii) c∗∗B̃jk ∩ (Ωk)� �= ∅.
Taking c1 := 4c∗∗ and setting Bjk := c1B̃

j
k , then we have Ω̂k \ Ω̂k+1 ⊂ ∪jAjk with

Ajk := B̂jk ∩ (c∗B̃jk × (0,∞)) ∩ (Ω̂k \ Ω̂k+1).

Define ajk := 2−(k+1)[w(Bjk)]
−1/pFχ

Aj
k
and λjk := 2(k+1)[w(Bjk)]

1/p. Then F =∑
k, j λ

j
ka
j
k almost everywhere.

For any given q ∈ (1,∞), let h ∈ T q
′
(Rn+1

+ ) satisfying ‖h‖T q′(Rn+1
+ ) = 1. Notice

that Ajk ⊂ (Ω̂k+1)� = R(F ∗
k+1), where Fk+1 := (Ek+1)� and F ∗

k+1 is as in (2.3).
Then, thanks to Lemma 2.3, Hölder’s inequality and suppA(ajk) ⊂ B

j
k , we conclude

that

|〈ajk, h〉| ≤
∫

R
n+1
+

∣∣∣(ajkχAj
k

)
(y, t)h(y, t)

∣∣∣ dy dt
t

≤
∫
Fk+1

∫
Γ(x)

∣∣∣ajk(y, t)h(y, t)∣∣∣ dy dttn+1
dx �
∫
Fk+1

A(ajk)(x)A(h)(x)dx

� 2−(k+1)[w(Bjk)]
−1/p

{∫
Fk+1∩Bj

k

|A(F )(x)|qdx
}1/q

� |Bjk|1/q[w(Bjk)]
−1/p,

which implies that, for any given q ∈ (1,∞), ‖ajk‖T q(Rn+1
+ ) � |Bjk|1/q[w(Bjk)]

−1/p.

As a consequence, we see that ajk is a multiple of a (w, p, ∞)-atom.
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Furthermore, from the definition of λjk and Lemma 2.2, we deduce that∑
k,j

|λjk|p =
∑
k, j

2p(k+1)w(Bjk) �
∑
k, j

2p(k+1)w(B̃jk).

By this, the above properties (i) and (ii), and (2.7), we know that∑
k, j

|λjk|p �
∑
k

2p(k+1)w(Ωk) �
∑
k

2p(k+1)w(Ek)

�
∑
k

2p(k+1)w
({
x ∈ R

n : A(F )(x) > 2k
})

� ‖A(F )‖p
Lp

w(Rn)
� ‖F‖p

T p
w(Rn+1

+ )
.

Moreover, similar to the proof of [35, Proposition 3.1], we further know that, if
F ∈ T pw(Rn+1

+ ) ∩ T 2(Rn+1
+ ), then (2.5) holds true in both T pw(Rn+1

+ ) and T 2(Rn+1
+ ).

This finishes the proof of Theorem 2.6.

Let T pw, c(Rn+1
+ ) and T qc (Rn+1

+ ) denote, respectively, the sets of all functions in
T pw(Rn+1

+ ) and T q(Rn+1
+ ) with compact support, where p, q ∈ (0,∞). The following

result plays an important role in the sequel.

Lemma 2.7. Let w ∈A∞(Rn) and p ∈ (0, 1]. Then, T pw, c(Rn+1
+ )⊂ T 2

c (Rn+1
+ ) as

sets.

Proof. We first observe that [13, (1.3)] says that

(2.8) T qc (R
n+1
+ ) ⊂ T 2

c (Rn+1
+ )

holds for all q ∈ (0,∞). Since w ∈ A∞(Rn), we can pick r ∈ (0, p) such that
w ∈ Ap/r(Rn).
Let f ∈ T pw, c(Rn+1

+ ) with supp f ⊂ K for some compact set K . Assume that B is
the ball satisfying K ⊂ B̂. Then it follows, from Lemma 2.4(i), that suppA(f) ⊂ B.
Thus, by this, Hölder’s inequality, w ∈ Ap/r(Rn) and (2.1), we see that

‖f‖r
T r(Rn+1

+ )
= ‖A(f)‖rLr(Rn) =

∫
B
|A(f)(x)|r dx

=
∫
B
|A(f)(x)|r[w(x)]r/p[w(x)]−r/p dx

≤
{∫

B
|A(f)(x)|pw(x) dx

}r/p{∫
B
[w(x)](−r/p)(p/r)

′
dx

} 1
(p/r)′

� ‖f‖r
T

p
w(Rn+1

+ )

|B|
[w(B)]r/p

<∞,

which, together with (2.8), implies that T pw, c(Rn+1
+ ) ⊂ T rc (Rn+1

+ ) ⊂ T 2
c (Rn+1

+ ). This
finishes the proof of Lemma 2.7.
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3. WEIGHTED HARDY SPACES ASSOCIATED WITH OPERATORS

In this section, we introduce the weighted Hardy space Hp
L, w(Rn) via the Lusin

area function associated with the operator L and then establish its atomic and molecular
characterizations.
Throughout the whole paper, we always suppose that the considered operator L

satisfies the following assumptions:

Assumption (H1). L is a non-negative self-adjoint operator on L2(Rn).

Assumption (H2). There exists a constant pL ∈ [1, 2) so that the semigroup
{e−tL}t>0 satisfies the reinforced (pL, p′L) off-diagonal estimates, namely, for all
r, q ∈ (pL, p′L) with r ≤ q, there exist two positive constants C and c such that

(3.1) ‖e−tLf‖Lq(F ) ≤ Ct
−n

2
( 1

r
− 1

q
)
e−

[d(E,F )]2

ct ‖f‖Lr(E)

holds true for every closed sets E, F ⊂ R
n, t ∈ (0,∞), f ∈ Lr(E) and supp f ⊂ E ,

where d(E, F ) := inf{|x− y| : x ∈ E, y ∈ F} and ‖f‖Lr(E) :=
{∫

E |f(x)|r dx}1/r.
Remark 3.1. The notion of the off-diagonal estimates (or the so called Davies-

Gaffney estimates) of the semigroup {e−tL}t>0 are first introduced by Gaffney [27]
and Davies [19], which serves as good substitutes of the Gaussian upper bound of the
associated heat kernel; see also [6, 3] and their references. The reinforced off-diagonal
estimate requires that the off-diagonal estimates hold for all the associated exponents
p and q in some interval of [1, ∞], which are stronger than the off-diagonal estimates.
We also point out that an assumption similar to the reinforced off-diagonal estimate
which required the off-diagonal estimates satisfied for all p, q ∈ (p−(L), p+(L)) with
p ≤ q has also been given out in [10]. More precisely, let (p−(L), p+(L)) be the range
of exponents p ∈ [1, ∞] such that the semigroup {e−tL}t>0 is bounded on Lp(Rn).
Then [10, Assumption (L)4] required that for all p−(L) < p ≤ q < p+(L), {e−tL}t>0

satisfies (3.1) with t−
n
2
( 1

p
− 1

q
)e−

[d(E,F )]2

ct replaced by t−
n
2k

( 1
p
− 1

q
)e

− [d(E,F )]2k/(2k−1)

ct1/(2k−1) , where
k ∈ N.

According to [5], we define

H2(Rn) := H2
L(Rn) := R(L) := {Lu ∈ L2(Rn) : u ∈ D(L)},

where D(L) is the domain of L.
It is well known that L2(Rn) = H2(Rn)⊕N (L), where N (L) denotes the kernel

of L, and the summation is orthogonal. Moreover, it was proved in [30] that in our
situation H2(Rn) = L2(Rn).
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For all f ∈ L2(Rn) and x ∈ Rn, the Lusin area function SL(f) of f is defined by

SL(f)(x) =

{∫
Γ(x)

∣∣∣t2Le−t2Lf(y)
∣∣∣2 dy dt
tn+1

}1/2

.

For the Lusin area function SL, we have the following useful result.

Proposition 3.2. The operator SL, initially defined on L2(Rn), can be extended
to a bounded operator on Lq(Rn) for all q ∈ (pL, p′L), where pL is as in (3.1).

Proof. The proof is similar to that for vertical square function in [1]. Hence, we
omit the details here.

Now we introduce the weighted Hardy space Hp, q
L, w(Rn) associated with L, via the

Lusin area function SL.

Definition 3.3. Let w ∈ A∞(Rn), p ∈ (0, 1] and q ∈ (pL, p′L), where pL is
as in (3.1). The weighted Hardy space Hp, q

L,w(Rn) is defined as the completion of
{f ∈ Lq(Rn) : SL(f) ∈ Lpw(Rn)} in the norm ‖f‖Hp, q

L, w(Rn) := ‖SL(f)‖Lp
w(Rn) <∞.

For the weighted Hardy space Hp, q
L,w(Rn), we have the following result.

Theorem 3.4. Let p ∈ (0, 1] and w ∈ RH(p′L/p)′(R
n), where pL is as in (3.1). Then

Hp,2
L,w(Rn) and Hp,s

L,w(Rn) coincide with equivalent norms, whenever s ∈ (pL, p′L).

The proof of Theorem 3.4 is given in Subsection 3.2 below.
It is worth pointing out that Theorem 3.4 enables us to define the space Hp

L, w(Rn),
for p ∈ (0, 1] and w ∈ RH(p′L/p)′(R

n), to be any one of the spaces Hp, q
L, w(Rn) for

q ∈ (pL, p′L).

3.1. Atomic and molecular characterizations of Hp
L,w(Rn)

In this subsection, we establish the atomic and molecular characterizations of
H
p
L,w(Rn). We begin with the notions of (p, q, M, w)-atoms and (p, q, M, w, ε)-

molecules associated with the operator L.

Definition 3.5. Let w ∈ A∞(Rn), p ∈ (0, 1], q ∈ (0,∞) and M ∈ N. A function
a ∈ Lq(Rn) is called a (p, q, M, w)-atom associated with the operator L if there exists
a function b ∈ D(LM), the domain of LM , and a ball B ⊂ R

n such that

(i) a = LMb;

(ii) suppLkb ⊂ B, k ∈ {0, . . . , M};
(iii) ‖(r2BL)kb‖Lq(Rn) ≤ r2MB |B|1/q[w(B)]−1/p, k ∈ {0, . . . , M}.
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We remark that the above definition of L-adapted atom is rather standard, which first
appeared in [30] in the unweighted case and [42] in the weighted case. Now, let f be
a function on Rn, f is said to belong to the set H

p, q,M
L,w, at (Rn) if it can be written as

(3.2) f =
∞∑
j=1

λjaj ,

where {λj}∞j=1 ∈ �p, each aj is a (p, q, M, w)-atom, and the summation converges
in Lr(Rn) for some r ∈ (pL, p′L). The space Hp, q,M

L,w, at (R
n) is then defined as the

completion of H
p, q,M
L,w, at (R

n) in the norm

‖f‖
Hp, q, M

L, w, at (Rn)
:= inf

⎧⎪⎨⎪⎩
⎛⎝ ∞∑
j=1

|λj|p
⎞⎠1/p

: f =
∞∑
j=1

λjaj

⎫⎪⎬⎪⎭ ,
where the infimum is taken over all decompositions of f as in (3.2).

Definition 3.6. Let w ∈ A∞(Rn), p ∈ (0, 1],M ∈ N, ε ∈ (0,∞) and q ∈ (0,∞).
A function m ∈ Lq(Rn) is called a (p, q, M, w, ε)-molecule associated with the
operator L, if there exists a function b ∈ D(LM ) and a ball B ⊂ Rn such that

(i) m = LMb;
(ii) ‖(r2BL)kb‖Lq(Sj(B)) ≤ 2−jεr2MB |2jB|1/q[w(2jB)]−1/p, k ∈ {0, . . . , M} and

j ∈ Z+.

Moreover, the space Hp,q,M, ε
L,w,mol (R

n) is defined as Hp, q,M
L,w, at (R

n) with (p, q, M, w)-
atoms replaced by (p, q, M, w, ε)-molecules.

For (p, q, M, w)-atoms and (p, q, M, w, ε)-molecules, we have the following ob-
servation.

Remark 3.7. (i) If q1, q2 ∈ (r′w,∞) with q1 ≥ q2, then any (p, q1, M, w)-atom
is also a (p, q2, M, w)-atom.
(ii) Let p, q, M, w and ε be as in Definition 3.6. If a is a (p, q, M, w)-atom

related to the ball B, then it is also a (p, q, M, w, ε)-molecule related to the same ball
B.

We are ready to state the main results of this section.

Theorem 3.8. Let p ∈ (0, 1] and w ∈ RH(p′L/p)′(R
n), where pL is as in (3.1).

Then, the spaces Hp
L, w(Rn) = Hp, q,M

L,w, at (R
n) with equivalent norms whenever q ∈

[2,∞) ∩ (pr′w, p′L) and M ∈ N with M > n
2 ( qwp − 1

2 ), where qw and rw are as in
(2.2). Furthermore, in this case, the series in (3.2) converges in Hp

L,w(Rn).
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Theorem 3.9. Let p, w, q and M be as in Theorem 3.8 and ε ∈ (n,∞). Then,
the spaces Hp

L,w(Rn) = Hp, q,M, ε
L,w,mol (R

n) with equivalent norms.

The proofs of Theorems 3.8 and 3.9 are given in Subsection 3.2 below.

Remark 3.10. Observe that when the operator L has the kernel pt satisfying the
Gaussian upper bound estimate or, equivalently, p′L = ∞, the condition of the weights
w in Theorem 3.8 is just w ∈ A∞(Rn). This answers the question mentioned in the
introduction.

3.2. Proofs of Theorems 3.4, 3.8 and 3.9

In this subsection, we give the proofs of Theorems 3.4, 3.8 and 3.9. Before going
into details, we need to recall some notation and results from [30]. Let Kcos(t

√
L) be

the integral kernel of the operator cos(t
√
L). By [30, Proposition 3.4] (see also [18]

and related references), we know that there exists a positive constant c0 such that

(3.3) suppKcos(t
√
L) ⊂ Dt := {(x, y) ∈ R

n × R
n : |x− y| ≤ c0t}.

We now recall a useful result which is just [30, Lemma 3.5].

Lemma 3.11. Let ϕ ∈ C∞
c (R) be even and suppϕ ⊂ (−c−1

0 , c−1
0 ), where c0 is as

in (3.3). Let Φ denote the Fourier transform of ϕ. Then, for all k ∈ N and t ∈ (0,∞),

suppK(t2L)kΦ(t
√
L) ⊂ {(x, y) ∈ R

n × R
n : |x− y| ≤ t}.

Moreover, the following lemma gives self-improving properties of the reinforced
(pL, p′L) off-diagonal estimates.

Lemma 3.12. Let L satisfy Assumptions (H1) and (H2), and pL be as in (3.1).
Then, for every k ∈ N, the family {(tL)ke−tL}t>0 also satisfies the reinforced (pL, p′L)
off-diagonal estimates.

Proof. The proof of this lemma is very standard. However, for the completeness,
we sketch its proof here.
Fix θ ∈ (0, π/2). By the Cauchy integral formula, it suffices to show that there exist

positive constants C and c such that, for all closed sets E and F of Rn, pL < r ≤ q <

p′L, f ∈ Lr(E) with supp f ⊂ E , t ∈ (0,∞) and z ∈ Sθ := {z ∈ C : | argz| < θ},

(3.4) ‖e−zLf‖Lq(F ) ≤ C|z|−n
2
( 1

r
− 1

q
) exp
{
− [d(E, F )]2

c|z|
}
‖f‖Lr(E).

Notice that if (3.4) holds for such r and q, (3.4) also holds for r̃ ≤ q̃ with pL <
r ≤ r̃ ≤ q̃ ≤ q < p′L. Hence, we need only to prove (3.4) for r ≤ 2 ≤ q.
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We now assume that z = 2s + it with s ∈ (0,∞) and t ∈ R. Then by z ∈ Sθ ,
we conclude that s ≈ |z|. Moreover, it is easy to see that e−zL = e−sLe−itLe−sL.
Therefore, the reinforced (pL, p′L) off-diagonal property of {e−tL}t>0 gives that, for
all r, q ∈ (pL, p′L) with r ≤ q,

‖e−zLf‖Lq(F ) = ‖e−sLe−itLe−sLf‖Lq(F )

≤ ‖e−sL‖L2→Lq‖e−itL‖L2→L2‖e−sLf‖L2(F )

� s
−n

2
( 1
2
− 1

q
)
s−

n
2
( 1

r
− 1

2
) exp
{
− [d(E, F )]2

cs

}
‖f‖Lr(E)

� |z|−n
2
( 1

r
− 1

q
) exp
{
− [d(E, F )]2

c|z|
}
‖f‖Lr(E),

which proves (3.4), and hence completes the proof of Lemma 3.12.

In what follows, denote by f ∈ L2
c(R

n+1
+ ) the set of all functions in L2(Rn+1

+ )
with compact support. Let Φ be as in Lemma 3.11. Then, for all f ∈ L2

c(R
n+1
+ ) and

x ∈ R
n, define

πΦ, L,M(f)(x) := cΦ,M

∫ ∞

0
(t2L)M+1Φ(t

√
L)(f(·, t))(x)dt

t
,

where cΦ,M is a constant such that

1 = cΦ,M

∫ ∞

0
t2(M+1)Φ(t)t2e−t

2 dt

t
.

For any N ∈ N, let

ÕN :=
{
(x, t) ∈ R

n+1
+ : |x| < N and N−1 < t < N

}
.

Then, by the L2(Rn)-functional calculus associated with L (see, for example, [39]),
we see that, for all f ∈ L2(Rn) and x ∈ R

n,

(3.5)

f(x) = πΦ, L,M

(
t2Le−t

2Lf
)

(x)

= cΦ,M

∫ ∞

0
(t2L)M+1Φ(t

√
L)
((
t2Le−t

2Lf
)

(·, t)
)

(x)
dt

t

= lim
N→∞

cΦ,M

∫ ∞

0

(t2L)M+1Φ(t
√
L)
((
t2Le−t

2Lf
)

(·, t)χ
ÕN

)
(x)

dt

t
,

where the integral converges in L2(Rn).
To prove Theorems 3.4, 3.8 and 3.9, we need the following key lemmas.

Lemma 3.13. Let p, w, q, M be as in Theorem 3.8 and ε as in Theorem 3.9. Then,
there exists a positive constant C such that
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(i) for every (p, q, M, w)-atom a related to the ball B, ‖SL(a)‖Lp
w(Rn) ≤ C;

(ii) for every (p, q, M, w, ε)-molecule m related to the ball B, ‖SL(m)‖Lp
w(Rn) ≤

C.

Proof. (i) By the hypothesis of p, w and q, we know that w ∈ RH(q/p)′(Rn).
Let a be a (p, q, M, w)-atom related to the ball B. Then we have

‖SL(a)‖p
Lp

w(Rn)
=

∞∑
j=0

∫
Sj (B)

|SL(a)(x)|pw(x) dx =:
∞∑
j=0

Ij .

When j ∈ {0, 1, 2}, by Hölder’s inequality, Proposition 3.2, w ∈ RH(q/p)′(Rn)
and Lemma 2.2, we see that

Ij ≤ ‖SLa‖pLq(Rn)

{∫
Sj (B)

[w(x)](q/p)
′
dx

} 1
(q/p)′

� |2jB|−p/qw(2jB)‖a‖p
Lq(Rn)

� |2jB|−p/qw(2jB)|B|p/q[w(B)]−1 � 1.

When j ∈ N with j ≥ 3, from Hölder’s inequality and w ∈ RH(q/p)′(Rn), it
follows that

Ij ≤ ‖SL(a)‖p
Lq(Sj (B))

{∫
Sj(B)

[w(x)](q/p)
′
dx

} 1
(q/p)′

� ‖SL(a)‖pLq(Sj (B))|2jB|−p/qw(2jB).

To estimate ‖SL(a)‖pLq(Sj(B)), we write

‖SL(a)‖q
Lq(Sj (B))

=
∫
Sj (B)

{[∫ d(x,xB )

4

0

+
∫ ∞

d(x,xB )

4

]∫
B(x,t)

∣∣∣t2Le−t2La(y)∣∣∣2 dy dt
tn+1

}q/2
dx

�
∫
Sj (B)

{∫ d(x,xB )

4

0

∫
B(x,t)

∣∣∣(t2L)M+1e−t
2Lb(y)
∣∣∣2 dy dt

tn+4M+1

}q/2
dx

+
∫
Sj (B)

{∫ ∞
d(x,xB )

4

∫
B(x,t)

· · ·
}q/2

dx =: IIj + IIIj,

where b satisfies a = LMb. Let Fj(B) := {y ∈ R
n : |x − y| < d(x,xB)

4 for some
x ∈ Sj(B)}. Then d(B, Fj(B)) ≥ 2j−2rB. By M > n

2 ( qwp − 1
2 ) and the definition of

qw, we know that there exists q̃ ∈ (qw,∞) such that w ∈ Aq̃(Rn) and M > n
2 ( q̃p − 1

2 ).
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Moreover, by Assumption (H2) and Hölder’s inequality, together with Lemma 2.2, we
conclude that

IIj ≤
∫
Sj(B)

{∫ 2jrB

0

∫
Fj(B)

∣∣∣(t2L)M+1e−t
2Lb(y)
∣∣∣2 dy dt

tn+4M+1

}q/2
dx

� ‖b‖q
L2(B)

∫
Sj (B)

{∫ 2jrB

0
e−

[d(B,Fj (B))]2

ct2
dy dt

tn+4M+1

}q/2
dx

� r
2qM
B |B|q/2[w(B)]−q/p

∫
Sj (B)

{∫ 2jrB

0

(
t

2jrB

)n+4M+1 dy dt

tn+4M+1

}q/2
dx

� r2qMB |B|q/2[w(B)]−q/p|2jB|(2jrB)−2qM |2jB|−q/2
� 2−jq(2M+n/2−nq̃/p)|2jB|[w(2jB)]−q/p.

Similarly, for the term IIIj , we have

IIIj ≤
∫
Sj (B)

{∫ ∞

2j−3rB

∫
Rn

∣∣∣(t2L)M+1e−t
2Lb(y)
∣∣∣2 dy dt

tn+4M+1

}q/2
dx

� ‖b‖q
L2(B)

∫
Sj (B)

{∫ ∞

2j−3rB

dt

tn+4M+1

}q/2
dx

� 2−jq(2M+n/2−nq̃/p)|2jB|[w(2jB)]−q/p.

Combining the above estimates of IIj and IIIj , by M > n
2 ( q̃p − 1

2), we know that

‖SLa‖pLp
w(Rn)

=
2∑
j=0

Ij +
∞∑
j=3

Ij � 1 +
∞∑
j=3

2−jp(2M+n/2−nq̃/p) � 1.

(ii) The proof of (ii) is similar to that of (i). The main difference is that the support
of the (p, q, M, w, ε)-molecule is not the ball B. However, we can overcome this
difficulty by decomposing Rn into annuli associated with the ball B. We omit the
details here.

Lemma 3.14. Let p, w, q and M be as in Theorem 3.8. Then,

(i) the operator πΦ, L,M , initially defined on T 2
c (Rn+1

+ ), extends to a bounded linear
operator from T 2(Rn+1

+ ) to L2(Rn);

(ii) the operator πΦ, L,M , initially defined on T pw, c(Rn+1
+ ), extends to a bounded

linear operator from T pw(Rn+1
+ ) to Hp,2

L,w(Rn).
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Proof. (i) For the proof of (i), we refer to the proof of [34, Proposition 4.1(i)].
(ii) Let f ∈ T pw, c(Rn+1

+ ). Then by Lemma 2.7, we know that f ∈ T 2
c (Rn+1

+ ). This,
together Theorem 2.6 and (i), implies that

πΦ, L,M (f) =
∞∑
j=1

λjπΦ, L,M (aj)

in L2(Rn), where {λj}j and {aj}j satisfy (2.5) and (2.6), which, together with the
L2(Rn)-boundedness of SL, implies that

SL(πΦ, L,Mf)(x) ≤
∞∑
j=1

|λj|SL(πΦ, L,M(aj))(x)

for almost every x ∈ Rn. From this and Lemma 3.13, it follows that, to show (ii), we
only need to prove that πΦ, L,M(aj) is a constant multiple of a (p, q, M, w)-atom for
each j.
Indeed, we have πΦ, L,M(aj) = LM bj , where

bj := cΦ,M

∫ ∞

0
t2M t2LΦ(t

√
L)(aj(·, t))dt

t
.

Notice that, for each j, there exists some ball Bj such that supp aj ⊂ B̂j . Therefore,
by Lemma 3.11, we see that supp (Lkbj) ⊂ Bj for all k ∈ {0, . . . ,M}. Moreover, for
any h ∈ L2(Rn) ∩ Lq′(Rn) supported in Bj , from Hölder’s inequality and Theorem
2.5, we deduce that∣∣∣∣∫

Rn

(r2Bj
L)kbj(x)h(x) dx

∣∣∣∣
= r2kBj

∣∣∣∣∫
Rn

∫ ∞

0
aj(y, t)t2M+2Lk+1Φ(t

√
L)h(y)dy

dt

t

∣∣∣∣
= r2kBj

∣∣∣∣∫
Rn

∫ rBj

0
aj(y, t)t2M+2Lk+1Φ(t

√
L)h(y) dy

dt

t

∣∣∣∣
≤ r2MBj

∫
Rn

∫ ∞

0
|aj(y, t)|

∣∣∣(t2L)k+1Φ(t
√
L)h(y)

∣∣∣ dy dt
t

≤ r2MBj

∫
Rn

{∫
Γ(x)

|aj(y, t)|
∣∣∣(t2L)k+1Φ(t

√
L)h(y)

∣∣∣ dydt
tn+1

}
dx

≤ r2MBj

∫
Rn

A(aj)(x)S̃kL(h)(x) dx

≤ r2MBj
‖A(aj)‖Lq(Rn)

∥∥∥S̃kL(h)
∥∥∥
Lq′(Rn)

� r2MBj
|Bj |1/q[w(Bj)]−1/p‖h‖Lq′(Rn),

where in the last inequality, we used the fact that the operator

(3.6) S̃kL(g)(x) :=

{∫
Γ(x)

∣∣∣(t2L)k+1Φ(t
√
L)(g)(y)

∣∣∣2 dy dt
tn+1

}1/2



Weighted Hardy Spaces Associated with Operators 1145

is bounded on Lr(Rn) for all r ∈ (pL, p′L) (see Lemma 5.3 below), which implies that∥∥∥(r2Bj
L)kbj
∥∥∥
Lq(Rn)

� r2MBj
|Bj|1/q[w(Bj)]−1/p,

and hence πΦ, L,M(aj) is a constant multiple of a (p, q, M, w)-atom. This finishes
the proof of Lemma 3.14.

Lemma 3.15. Let p and w be as in Theorem 3.8. Then Hp,s
L,w(Rn) ⊂ H

p,2
L,w(Rn)

whenever s ∈ (pL, p′L), where pL is as in (3.1).

Proof. Let s ∈ (pL, p′L) and f ∈ Hp, s
L, w(Rn)∩Ls(Rn). Then by the definition of

Hp, s
L,w(Rn), we see that t2Le−t2Lf ∈ T pw(Rn+1

+ ). For each N ∈ Z+ and all x ∈ Rn,
we define

fN (x) := πΦ, L,M

(
t2Le−t

2Lfχ
ÕN

)
= cΦ,M

∫ ∞

0

(t2L)M+1Φ(t
√
L)
((
t2Le−t

2Lf
)

(·, t)χ
ÕN

)
(x)

dt

t
.

By Remark 2.4(ii), we know that t2Le−t2Lfχ
ÕN

∈ T 2(Rn+1
+ )∩T pw(Rn+1

+ ), which,
together with Lemma 3.14, implies that fN ∈ Hp,2

L,w(Rn). Moreover, it follows, from
t2Le−t2Lf ∈ T pw(Rn+1

+ ), that

‖SL(fN − f)‖Lp
w(Rn) �

∥∥∥t2Le−t2Lfχ(ÕN )�

∥∥∥
T p

w(Rn+1
+ )

→ 0,

as N → ∞. This allows us to conclude that Hp, s
L, w(Rn) ⊂ Hp,2

L,w(Rn).

Now we prove Theorems 3.4, 3.8 and 3.9 by using Lemmas 3.13, 3.14 and 3.15.

Proofs of Theorems 3.4, 3.8 and 3.9. Thanks to Lemma 3.15, the following three
steps suffice to prove these theorems.

Step 1. Hp,2
L,w(Rn) = Hp, q,M

L,w,at (Rn) with equivalent norms.

Step 2. Hp,2
L,w(Rn) ⊂ Hp, s

L, w(Rn) for all s ∈ (pL, p′L).

Step 3. Hp,2
L,w(Rn) = Hp, q,M, ε

L, w,mol (R
n) with equivalent norms.

Proof of Step 1. We first prove that Hp, q,M
L,w, at (R

n) ⊂ Hp,2
L,w(Rn) and the inclusion

is continuous. Indeed, by their definitions, it is sufficient to show that, for all f =∑∞
j=1 λjaj as in (3.2), where the summation converges in L

r(Rn) for some r ∈
(pL, p′L),

‖f‖Hp,2
L, w(Rn) � ‖f‖

Hp, q, M
L, w,at (Rn)

.
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By the Lr(Rn)-boundedness of SL, we see that, for each k ∈ N, SL(
∑k

j=1 λjaj −
f)(x) ≤∑∞

j=k+1 |λj|SL(aj)(x) for almost every x ∈ R
n, which, together with Lemma

3.13 and f ∈ Hp, q,M
L,w, at (Rn), implies that

∑k
j=1 λjaj − f ∈ Hp,2

L,w(Rn) for all k ∈ N.
Moreover,

‖f‖Hp,2
L, w(Rn) � ‖f‖

Hp,q, M
L, w, at (Rn)

and the series
∑k

j=1 λjaj converges to f in H
p,2
L,w(Rn) as k → ∞.

Conversely, to prove that Hp,2
L,w(Rn) ⊂ Hp, q,M

L,w, at (R
n), by their definitions, it is

sufficient to show that, for any f ∈ L2(Rn) ∩Hp,2
L,w(Rn),

‖f‖
Hp, q, M

L, w, at (Rn)
� ‖f‖

Hp,2
L, w(Rn)

.

Indeed, from the L2(Rn)-boundedness of SL and the definition ofHp,2
L,w(Rn), it follows

that t2Le−t2L ∈ T 2(Rn+1
+ ) ∩ T pw(Rn+1

+ ). Then, by Theorem 2.6, the proof of Lemma
3.14 and (3.5), we see that f = πΦ, L,M (t2Le−t2Lf) ∈ Hp, q,M

L,w, at (R
n). Moreover,

‖f‖
Hp, q, M

L, w, at (Rn)
�
∥∥∥t2Le−t2Lf∥∥∥

T p
w(Rn+1

+ )
� ‖f‖

Hp,2
L, w(Rn)

,

which ends the proof of Step 1.

Proof of Step 2. For any f ∈ L2(Rn) ∩Hp,2
L,w(Rn), by Step 1, we know that

f =
∞∑
j=1

λjaj ,

where {λj}j∈N ∈ �p, aj for each j ∈ N is a (p, q, M, w)-atom for some q ∈ (s, p′L),
and the summation converges inHp,2

L,w(Rn). From the definition of (p, q, M, w)-atoms
and q > s, it follows that, for each j ∈ N, aj is also a (p, s, M, w)-atom, and hence∑N

j=1 λjaj ∈ Ls(Rn) for all N ∈ N, which implies that f ∈ Hp, s
L, w(Rn) and hence

Hp,2
L,w(Rn) ⊂ Hp, s

L,w(Rn). This finishes the proof of Step 2.

Proof of Step 3. The proof of Step 3 is similar to that of Step 1. We omit the
details here and hence complete the proofs of Theorems 3.4, 3.8 and 3.9.

Furthermore, the proofs of Theorems 3.4, 3.8 and 3.9 give the following interesting
conclusion whose proof is similar to that of Step 2. We omit the details here again.

Corollary 3.16. Let L satisfy (H1) and (H2), p ∈ (0, 1] and w ∈ RH(p′L/p)′(R
n),

where pL is as in (3.1). Then, for all q ∈ (pL, p′L), the space Lq(Rn) ∩Hp
L,w(Rn) is

dense in Hp
L,w(Rn).
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Remark 3.17. Moreover, it is worth pointing out that when L has the kernel
satisfying the Gaussian estimate, Corollary 3.16 implies that Lq(Rn) ∩ Hp

L,w(Rn) is
dense in Hp

L,w(Rn) whenever w ∈ A∞(Rn) and q ∈ (1,∞).

4. SOME APPLICATIONS

In this section, we study the boundedness of some singular integrals on the weighted
Hardy spaces Hp

L, w(Rn). Before going into details, we need the following result.

Lemma 4.1. Let p ∈ (0, 1], q ∈ (pL, p′L), w ∈ RH(q/p)′(Rn) andM > n
2 ( qwp − 1

2 ),
where pL and qw are, respectively, as in (3.1) and (2.2).
(i) Suppose that T is a linear operator (or nonnegative sublinear operator), which

is bounded on Lr(Rn) for some r ∈ (pL, p′L). If there exists a positive constant C such
that, for all (p, q, M, w)-atoms a, ‖Ta‖Lp

w(Rn) ≤ C, then T extends to a bounded
operator from Hp

L,w(Rn) to Lpw(Rn).
(ii) Suppose that T is a linear operator which is bounded on Lr(Rn) for some

r ∈ (pL, p′L). If there exists a positive constantC such that, for all (p, q, M, w)-atoms
a,

‖Ta‖Hp
L, w(Rn) ≤ C,

then T extends to a bounded operator on Hp
L, w(Rn).

Since the proof of Lemma 4.1 is quite standard, we omit the details here; see, for
example, [35, Lemma 5.1].

4.1. Spectral multiplier theorem on Hp
L,w(Rn)

Let L satisfy Assumptions (H1) and (H2), and E(λ) be the spectral resolution of
L. For any bounded Borel function F : [0,∞) → C, by using the spectral theorem, it
is well known that the operator

F (L) :=
∫ ∞

0

F (λ) dE(λ)

is well defined and bounded on L2(Rn). Let φ be a nonnegative C∞
c function on R

such that
(4.1) suppφ ⊂ (1/4, 1) and

∑
l∈Z

φ(2−lλ) = 1 for all λ ∈ (0,∞).

Then the main result of this subsection is the following conclusion.

Theorem 4.2. Let L be an operator satisfying Assumptions (H1) and (H2), p ∈
(0, 1] and w ∈ RH(p′L/p)′(R

n), where pL is as in (3.1). Suppose that s ∈ (n( qwp −
1
r0

),∞) with qw as in (2.2) and r0 := max{pr′w, 2}. Then for any Borel function F
on R such that supt>0 ‖φδtF‖W∞

s (R) < ∞, where, φ is as in (4.1), δtF (λ) := F (tλ)
for all t ∈ (0,∞) and λ ∈ R, and ‖F‖W q

s (R) := ‖(I − d2/dx2)s/2F‖Lq(R) with
q ∈ (1,∞], the operator F (L) is bounded on Hp

L,w(Rn).
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Remark 4.3. Let p, L and F be as in Theorem 4.2. It was proved in [8, The-
orem 4.9] that the operator F (L) is bounded on Hp

L, w(Rn) for w ∈ A1(Rn) ∩
RH2/(2−p)(Rn). Moreover, by p′L ∈ (2,∞), we know that (p′L/p)

′ < (2/p)′ =
2/(2 − p), which, together with (ii) and (v) of Lemma 2.1, implies that A1(Rn) ∩
RH2/(2−p)(Rn) ⊂ RH(p′L/p)′(R

n). Thus, Theorem 4.2 essentially improves [8, Theo-
rem 4.9].

To prove Theorem 4.2, we need the following technical lemmas.

Lemma 4.4. Let R ∈ (0,∞) and F be a bounded Borel function with suppF ⊂
[R/4, R]. Assume that pL is as in (3.1). Then for any p ∈ (2, p′L), there exists a
positive constant C such that, for all balls B ⊂ Rn, f ∈ L2(B) and j ∈ Z+,∥∥∥F (

√
L)f
∥∥∥
Lq(Sj (B))

≤ CR
n( 1

2
− 1

q
)‖f‖L2(B)‖F‖L∞(Rn).

Proof. For all λ ∈ R, let G(λ) := eλ
2/R2

F (λ). Then by the functional calculus
of L, we know that F (

√
L) = G(

√
L)e−

1
R2L. Thus, for all f ∈ L2(B),∥∥∥F (

√
L)f
∥∥∥
Lq(Sj(B))

≤
∥∥∥G(

√
L)e−

1
R2 Lf
∥∥∥
Lq(Sj (B))

�
∥∥∥G(

√
L)e−

1
R2L
∥∥∥
L2→Lq

‖f‖L2(B)

�
∥∥∥G(

√
L)
∥∥∥
L2→L2

∥∥∥e− 1
R2 L
∥∥∥
L2→Lq

‖f‖L2(B)

� R
n( 1

2
− 1

q
)‖G‖L∞(R)‖f‖L2(B) ∼ R

n( 1
2
− 1

q
)‖F‖L∞(R)‖f‖L2(B),

which completes the proof of Lemma 4.4.

Lemma 4.5. Let pL be as in (3.1) and q ∈ [2, p′L). Then there exist two positive
constants C and c such that, for all closed sets E, F ⊂ Rn, f ∈ L2(Rn) with
supp f ⊂ E , and z ∈ C+ := {z ∈ C : Rez > 0},∥∥e−zLf∥∥

Lq(F )
≤ C(|z| cos θ)−

n
2
( 1
2
− 1

q
) exp
{
− [d(E, F )]2

c|z| cos θ
}
‖f‖L2(E),

where θ := arg z.

The proof of Lemma 4.5 depends on a Phragmén-Lindelöf type theorem (see, for
example, [41, Lemma 6.18]), which extends the estimates for the semigroup on real
times to complex times. For more details, we refer to the proof of (3.8) in [30] and
[19, 7].

Lemma 4.6. Let R, s ∈ (0,∞) and q ∈ [2, p′L), where p′L is as in (3.1). For any
ε ∈ (0,∞), there exists a positive constant C := C(ε, s), depending on ε and s, such
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that, for all balls B := B(xB, rB) ⊂ Rn, j ∈ N with j ≥ 3, f ∈ L2(B) and bounded
Borel functions F on R supported in [R/4, R],

(4.2)
∥∥∥F (

√
L)f
∥∥∥
Lq(Sj (B))

≤ C
R
n( 1

2
− 1

q
)

(2jrBR)s
‖δRF‖W∞

s+ε(R)‖f‖L2(B).

Proof. Using the Fourier inversion transform formula and the functional calculus
of L, we have

G(L/R2)e−
1

R2L = c

∫
R

e−
1−iτ
R2 LĜ(τ)dτ,

where the function G is defined by G(·) := [δRF ](
√·)e·, c is a positive constant and

Ĝ denotes the Fourier transform of G. Thus,

F (
√
L)f = c

∫
R

Ĝ(τ)e−
1−iτ
R2 Lfdτ.

Applying Lemma 4.5, we see that, for all f ∈ L2(Rn) with supp f ⊂ B and j ∈ N

with j ≥ 3, ∥∥∥F (
√
L)f
∥∥∥
Lq(Sj (B))

�
∫

R

∣∣∣Ĝ(τ)
∣∣∣ ∥∥∥e− 1−iτ

R2 Lf
∥∥∥
Lq(Sj (B))

dτ

� R
n( 1

2
− 1

q
)
∫

R

∣∣∣Ĝ(τ)
∣∣∣ exp
{
−c (2

jrBR)2

(1 + τ2)

}
dτ‖f‖L2(B)

� R
n( 1

2
− 1

q
)‖f‖L2(B)

∫
R

∣∣∣Ĝ(τ)
∣∣∣ (1 + τ2)s/2

(2jrBR)s
dτ

� R
n( 1

2
− 1

q
)

(2jrBR)s
‖f‖L2(B)

{∫
R

|Ĝ(τ)|2(1 + τ2)s+ε+1/2dτ

}1/2

×
{∫

R

(1 + τ2)−ε−1/2dτ

}1/2

� R
n( 1

2
− 1

q
)

(2jrBR)s
‖G‖W 2

s+ε+1/2
(R)‖f‖L2(B).

Moreover, suppF ⊂ [R/4, R] implies that

‖G‖W 2
s+ε+1/2

(R) � ‖δRF‖W 2
s+ε+1/2

(R) � ‖δRF‖W∞
s+ε+1/2

(R),

and hence

(4.3)
∥∥∥F (

√
L)f
∥∥∥
Lq(Sj (B))

� Rn( 1
2
− 1

q
)

(2jrBR)s
‖δRF‖W∞

s+ε+1/2
(R)‖f‖L2(B).
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To replace W∞
s+ε+1/2(R) by W∞

s+ε(R) on the right-hand side of (4.3), we use the
interpolation arguments as in [38, 21] (see also [7]). Since the proof is very similar to
that in [21, 1]. We omit details here. This finishes the proof of Lemma 4.6.

Now we prove Theorem 4.2 by using Lemmas 4.4 through 4.6.

Proof of Theorem 4.2. By Lemma 2.1(iv), we know that there exists q ∈
[r0, p′L) such that w ∈ RH(q/p)′(Rn) and s > n( qwp − 1

q ). Since the condition
supt>0 ‖ηδtF‖W∞

s (R) < ∞ is invariant under the change of variable λ �→ √
λ and

independent of the choice of η, the Hp
L,w(Rn)-boundednesses of F (L) and F (

√
L) are

equivalent. Thus, instead of proving the Hp
L,w(Rn)-boundedness of F (L), we show

that F (
√
L) is bounded on Hp

L,w(Rn). Due to Theorem 3.9, it suffices to prove that
there exists ε ∈ (0,∞) such that, for any (p, q, 2M, w)-atom a = L2Mb withM ∈ N

and M > n
2 ( qwp − 1

2 ), the function

ã := F (
√
L)a = LM [F (

√
L)LMb]

is a multiple of a (p, q, M, w, ε)-molecule associated with the ball B. To this end, it
suffices to prove that, for all k ∈ Z+ and l ∈ {0, . . . , M},

(4.4)
∥∥∥(r2BL)lF (

√
L)LMb

∥∥∥
Lq(Sk(B))

� 2−kεr2MB |2kB|1/q[w(2kB)]−1/p.

When k ∈ {0, 1, 2}, by the Lq(Rn)-boundedness of F (
√
L) with q ∈ (pL, p′L)

(see [24]), we know that, for all l ∈ {0, . . . , M},∥∥∥(r2BL)lF (
√
L)LMb

∥∥∥
Lq(Sk(B))

�
∥∥∥(r2BL)lLMb

∥∥∥
Lq(Sk(B))

� 2−kεr2MB |2kB|1/q[w(2kB)]−1/p.

Now we prove (4.4) for all k ∈ N with k ≥ 3. To do this, using the argument as
in [8, 25], we fix a function φ ∈ C∞

c ( 1
4 , 1) such that, for all λ ∈ (0,∞),∑

j∈Z

φ(2−jλ) = 1.

Let j0 be the smallest integer such that 2j0rB ≥ 1. Then, for all l ∈ {0, . . . , M}, we
have

(r2BL)lF (
√
L)̃b = r2lB

∑
j≥j0

φ(2−j
√
L)F (

√
L)Ll+M b(4.5)

+r2lB
∑
j<j0

φ(2−j
√
L)LMF (

√
L)Llb,
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where b̃ := LM b.
Let b1 := Ll+M b, b2 := Llb and

Fj(λ) :=

⎧⎨⎩F (λ)φ(2−jλ), j ≥ j0,

F (λ)(2−jλ)2Mφ(2−jλ), j < j0.

Then, by Hölder’s inequality and the definitions of b1 and b2, we see that

‖b1‖L2(B) ≤ r2M−2l
B |B|1/2[w(B)]−1/p and ‖b2‖L2(B) ≤ r4M−2l

B |B|1/2[w(B)]−1/p.

Moreover, we can rewrite (4.5) as follows:

(4.6) (r2BL)lF (
√
L)̃b = r2lB

∑
j≥j0

Fj(
√
L)b1 + r2lB22jM

∑
j<j0

Fj(
√
L)b2,

which implies that, for all k ∈ N with k ≥ 3,∥∥∥(r2BL)lF (
√
L)̃b
∥∥∥
Lq(Sk(B))

≤ r2lB
∑
j≥j0

∥∥∥Fj(√L)b1
∥∥∥
Lq(Sk(B))

+ r2lB22jM
∑
j<j0

∥∥∥Fj(√L)b2
∥∥∥
Lq(Sk(B))

.

Take s̃ ∈ (n[ qwp − 1
q ], s) and ε ∈ (0, s̃− n[ qwp − 1

q ]). By the definition of qw , we know
that there exists q̃ ∈ (qw,∞) such that s̃ > n[ q̃p− 1

q ], ε < s̃−n[ q̃p− 1
q ] and w ∈ Aq̃(Rn).

We first estimate ‖Fj(
√
L)b1‖Lq(Sk(B)) for all j ≥ j0. Since suppFj ⊂ [R/4, R] with

R := 2j , from Lemma 4.6, it follows that, for all k ∈ N with k ≥ 3,

(4.7)

∥∥∥Fj(√L)b1
∥∥∥
Lq(Sk(B))

≤ 2jn(1/2−1/q)‖b1‖L2(B)(2
j+krB)−s̃ ‖δ2jFj‖W∞

s (R)

� r2M−2l
B 2jn(1/2−1/q)(2j+krB)−s̃|B|1/2[w(B)]−1/p ‖φδ2jF‖W∞

s (R)

� r2M−2l
B 2−ks̃|B|1/q[w(B)]−1/p(2jrB)−s̃+n(1/2−1/q),

which implies that, for all k ∈ N with k ≥ 3,

(4.8)

r2lB
∑
j≥j0

∥∥∥Fj(√L)b1
∥∥∥
Lq(Sk(B))

� 2−ks̃r2MB |B|1/q[w(B)]−1/p

� 2−k(s̃+
n
q
−nq̃

p
)r2MB |2kB|1/q[w(2kB)]−1/p

� 2−kεr2MB |2kB|1/q[w(2kB)]−1/p.
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For j ∈ Z with j < j0, repeating the argument above, we see that, for all k ∈ N

with k ≥ 3,

r2lB22jM
∑
j<j0

∥∥∥Fj(√L)b2
∥∥∥
Lq(Sk(B))

�
∑
j<j0

2−ks̃(2jrB)2M−s̃+n(1/2−1/q)r2MB |B|1/q[w(B)]−1/p

� 2−kεr2MB |B|1/q[w(B)]−1/p

� 2−k(s̃+
n
q
−nq̃

p
)r2MB |2kB|1/q[w(2kB)]−1/p

� 2−kεr2MB |2kB|1/q[w(2kB)]−1/p,

which, together with (4.6) and (4.8), implies that (4.4) holds true for all k ∈ N with
k ≥ 3. Thus, ã := F (

√
L)a is a multiple of a (p, q, w, ε)-molecule, which completes

the proof of Theorem 4.2.

4.2. Square functions

Let L satisfy Assumptions (H1) and (H2), and k ∈ N. For all functions f ∈
L2(Rn) and x ∈ R

n, define the square function Gk, L by

(4.9) Gk,L(f)(x) :=
{∫ ∞

0

∣∣∣(t2L)ke−t
2Lf(x)

∣∣∣2 dt
t

}1/2

.

It is well known that for every k ∈ N, Gk,L is bounded on Lp(Rn) for all p ∈ (pL, p′L)
(see, for example, [1]).
The main result of this subsection is the following.

Theorem 4.7. Let L satisfy Assumptions (H1) and (H2), and k ∈ N. Then, for
any p ∈ (0, 1] and w ∈ RH(p′L/p)′(R

n), where pL is as in (3.1), Gk,L is bounded from
H
p
L,w(Rn) into Lpw(Rn).

Proof. Let T := Gk, L. By [32, Theorem 3.3], we know that, for any closed
subsets E, F ⊂ Rn with d(E, F ) > 0, f ∈ L2(E) with supp f ⊂ E , M ∈ N and
t ∈ (0,∞), ∥∥T (I − e−tL)Mf

∥∥
L2(F )

�
{

t

[d(E, F )]2

}M
‖f‖L2(E)

and ∥∥T (tLe−tL)Mf
∥∥
L2(F )

�
{

t

[d(E, F )]2

}M
‖f‖L2(E).

From Assumptions (H1) and (H2), we deduce that, for any q ∈ [2, p′L), (I−e−tL)M

and (tLe−tL)M are bounded on Lq(Rn). Thus, T (I − e−tL)M and T (tLe−tL)M are
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also bounded on Lq(Rn) for all q ∈ [2, p′L). This, together with the interpolation,
implies that, for all closed sets E, F ⊂ R

n with d(E, F ) > 0, f ∈ Lr(E) with
supp f ⊂ E and r ∈ [2, p′L), and t ∈ (0,∞),

(4.10)
∥∥T (I − e−tL)Mf

∥∥
Lr(F )

�
{

t

[d(E, F )]2

}M
‖f‖Lr(E)

and

(4.11)
∥∥T (tLe−tL)Mf

∥∥
Lr(F )

�
{

t

[d(E, F )]2

}M
‖f‖Lr(E).

It is worth pointing out that the exponents of t
[d(E,F )]2

in (4.10) and (4.11) may not be
equal. However, without loss of generality, for simplicity, we may assume that these
two exponents are equal.
By Lemma 2.1(iv), we see that there exists q ∈ [2, p′L) such that w ∈ RH(q/p)′(Rn).

To end the proof of Theorem 4.7, due to Lemma 4.1, we need to prove that, for all
(p, q, M, w)-atoms a with M ∈ N and M > n

2 ( qwp − 1
2 ), ‖T (a)‖Lp

w(Rn) � 1.
Let a be a (p, q, M, w)-atom associated with a ball B := B(xB , rB). We write

‖Ta‖p
Lp

w(Rn)
≤
∫

Rn

∣∣∣∣T ([I − er
2
BL
]M

a

)
(x)
∣∣∣∣pw(x) dx

+
∫

Rn

∣∣∣T ([I − (I − er
2
BL)M
]
LMb
)

(x)
∣∣∣pw(x) dx =: I + II,

where a = LM b.
The remainder of the proof is standard; see, for example, [8, 32]. For the sake of

completeness, we sketch the proof here.
For the term I, by Hölder’s inequality and the fact that w ∈ RH(q/p)′(Rn), we

conclude that

(4.12)
I ≤

∞∑
k=0

∫
Sk(B)

∣∣∣∣T ([I − er
2
BL
]M

a

)
(x)
∣∣∣∣p w(x) dx

≤
∞∑
k=0

∥∥∥∥T ([I − er
2
BL
]M

a

)∥∥∥∥p
Lq(Sk(B))

|2kB|−q/pw(2kB) =:
∞∑
k=0

Ik.

When k ∈ {0, 1, 2}, from the Lq(Rn)-boundedness of T (I − er
2
BL)M and Lemma

2.2, it follows that

(4.13) Ik � ‖a‖p
Lq(B)

|2kB|−q/pw(2kB) � |B|p/q[w(B)]−1|2kB|−q/pw(2kB) � 1.

By M > n
2 ( qwp − 1

2 ) and the definition of qw , we know that there exists q̃ ∈ (qw,∞)

such that w ∈ Aq̃(Rn) and M > n
2 ( q̃p − 1

2 ). When k ∈ N and k ≥ 3, by (4.10), we
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see that∥∥∥∥T ([I − er
2
BL
]M

a

)∥∥∥∥
Lq(Sk(B))

� 2−2Mk‖a‖Lq(B) � 2−2Mk|B|1/q[w(B)]−1/p,

which, together with Lemma 2.2, implies that

Ik � 2−2Mpk|B|p/q[w(B)]−1|2kB|−p/qw(2kB) � 2−k(2Mp+np/q−nq̃).

From this, the fact thatM > n
2 ( q̃p− 1

q ), (4.12) and (4.13), it follows that I ≤
∑∞

k=0 Ik �
1.
For the term II, the same argument as above gives

II ≤∑∞
k=0

∥∥∥T ([I − (I − er
2
BL)M
]
LM b
)∥∥∥p

Lq(Sk(B))
|2kB|−p/qw(2kB) =:

∑∞
k=0 IIk.

Moreover, we have

I − (I − er
2
BL)M =

M∑
l=1

cle
−lr2BL,

where cl = (−1)l+1 M !
(M−l)!l! . Therefore,

IIk

� sup
1≤l≤M

∥∥∥Te−lr2BLLMb∥∥∥p
Lq(Sk(B))

|2kB|−p/qw(2kB)

� sup
1≤l≤M

∥∥∥∥∥T
(
l

M
r2BLe

− l
M
r2BL

)M
(r−2
B L−1)MLM b

∥∥∥∥∥
Lq(Sk(B))

|2kB|−p/qw(2kB).

At this point, by the same argument as in the estimate Ik , we also conclude that II � 1,
which completes the proof of Theorem 4.7.

Remark 4.8. Let p, L and G1, L be as in Theorem 4.7. It was proved in [45, Theo-
rem 6.3] that G1, L is bounded from Hp

L,w(Rn) to Lpw(Rn) when w ∈ RH2/(2−p)(Rn).
From p′L ∈ (2,∞), it follows that (p′L/p)

′ < (2/p)′ = 2/(2−p) and hence RH2/(2−p)
(Rn) ⊂ RH(p′L/p)′(R

n). Thus, Theorem 4.7 improves [45, Theorem 6.3] when p, L
and G1, L are as in Theorem 4.7.

4.3. Riesz transforms associated with Schrödinger operators

Let L := −Δ + V , where −Δ := −∑n
j=1

∂2

∂x2
j
is the Laplace operator on R

n and

0 ≤ V ∈ L1
loc(R

n).
It is well known that the kernels {pt}t>0 associated with the semigroup {e−tL}t>0

satisfy the Gaussian upper bounds estimates, namely, for almost every x, y ∈ R
n and

all t ∈ (0,∞),

0 ≤ pt(x, y) ≤ 1
(4πt)n/2

exp
{
−|x− y|2

4t

}
.



Weighted Hardy Spaces Associated with Operators 1155

It is easy to see that L satisfies Assumptions (H1) and (H2) with pL = 1.
We consider the Riesz transform associated with L defined by

∇L−1/2f :=
1

2
√
π

∫ ∞

0
∇e−tLf dt√

t

for all f ∈ L2(Rn). It was proved in [17] that the Riesz transform ∇L−1/2 is bounded
on L2(Rn) and of weak type (1, 1). Thus, by interpolation, ∇L−1/2 is bounded
on Lp(Rn) for all p ∈ (1, 2]. Moreover, if V ∈ A∞(Rn), then there exists some
p0 ∈ (2,∞) such that ∇L−1/2 is bounded on Lp(Rn) for all p ∈ (1, p0); see [2].
In this subsection, we concern the boundedness of ∇L−1/2 on the weighted Hardy

space Hp
L, w(Rn). Our first main results are formulated by the following theorem.

Theorem 4.9. Let L := −Δ+V , where 0 ≤ V ∈ L1
loc(R

n). Assume that ∇L−1/2

is bounded on Lr(Rn) for all r ∈ (1, p0) with some p0 ∈ (2,∞). Then, for any
p ∈ (0, 1] and w ∈ RH(p0/p)′(R

n), ∇L−1/2 is bounded from Hp
L, w(Rn) into Lpw(Rn).

Remark 4.10. In comparison with the results in [8, 45], the range of weights
w in Theorem 4.9 is larger than those in [8, Theorem 4.1] and [45, Theorem 7.11].
More precisely, let p and L be as in Theorem 4.9. It was proved, respectively, in
[8, Theorem 4.1] and [45, Theorem 7.11] that the operator ∇L−1/2 is bounded from
Hp
L,w(Rn) to Lpw(Rn) for w ∈ A1(Rn) ∩ RH2/(2−p)(Rn) and w ∈ RH2/(2−p)(Rn).

From the assumption p0 ∈ (2,∞), we deduce that (p0/p)′ < (2/p)′ = 2/(2− p) and
hence A1(Rn) ∩ RH2/(2−p)(Rn) ⊂ RH2/(2−p)(Rn) ⊂ RH(p0/p)′(R

n).

Proof of Theorem 4.9. By an argument similar to that of Theorem 4.7, it is
sufficient to show that, for any p ∈ (1, p0), M ∈ N, all closed sets E, F ⊂ R

n with
d(E, F )> 0, f ∈ L∞(Rn) with supp f ⊂ E , and t ∈ (0,∞),

(4.14)
∥∥∥∇L−1/2

(
I − e−tL

)M
f
∥∥∥
Lp(F )

�
{

t

[d(E, F )]2

}M
‖f‖Lp(E)

and

(4.15)
∥∥∥∇L−1/2

(
tLe−tL

)M
f
∥∥∥
Lp(F )

�
{

t

[d(E, F )]2

}M
‖f‖Lp(E).

It is well known that, for any M ∈ N, all closed sets E, F ⊂ R
n and t ∈ (0,∞),∥∥∥∇L−1/2(I − e−tL)Mf

∥∥∥
L2(F )

�
{

t

[d(E, F )]2

}M
‖f‖L2(E)

and ∥∥∥∇L−1/2(tLe−tL)Mf
∥∥∥
L2(F )

�
{

t

[d(E, F )]2

}M
‖f‖L2(E)
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(see, for example, [32, 8]).
From w ∈ RH(p0/p)′(R

n) and Lemma 2.1(iv), it follows that there exists q ∈ (1, p0)
such that w ∈ RH(q/p)′(Rn). Moreover, by the assumption that ∇L−1/2 is bounded
on Lr(Rn) for all r ∈ (1, p0), we know that ∇L−1/2 is bounded on Lq(Rn), which,
together with the facts that (I − e−tL)M and (tLe−tL)M are bounded on Lr(Rn) for
all r ∈ (1,∞), implies that ∇L−1/2(I − e−tL)M and ∇L−1/2(tLe−tL)M are bounded
on Lq(Rn). At this stage, using the interpolation, we see that (4.14) and (4.15) hold
true. This finishes the proof of Theorem 4.9.

Before going into the next result, we would like to recall the classical weighted
Hardy space Hp

w(Rn). In what follows, we denote by S(Rn) the space of all Schwartz
functions and by S ′(Rn) its dual space (namely, the space of all tempered distribu-
tions). Let ψ ∈ S(Rn) be a non-zero function satisfying the following properties:∫

Rn ψ(x) dx= 0 and ∫ ∞

0

∣∣∣ψ̂(tξ)
∣∣∣2 dt
t

= 1

for all ξ �= 0. For all x ∈ R
n and t ∈ (0,∞), let ψt(x) := t−nψ(x/t). For all

f ∈ S ′(Rn) and x ∈ Rn, define the Lusin area function Sψ(f) by

Sψ(f)(x) :=

{∫
Γ(x)

|ψt ∗ f(y)| dy dt
tn+1

}1/2

.

Then for p ∈ (0, 1] and w ∈ A∞(Rn), an f ∈ S ′(Rn) is said to belong to the
weighted Hardy space Hp

w(Rn), if Sψ(f) ∈ Lpw(Rn); moreover, define ‖f‖Hp
w(Rn) :=

‖Sψ(f)‖Lp
w(Rn).

It is interesting that the weighted Hardy spaces Hp
w(Rn) can be characterized in

terms of weighted atoms. Let us review the definition of (w, p, q, s)-atoms.

Definition 4.11. Let p ∈ (0, 1], q ∈ [1,∞] with q > p and w ∈ Aq(Rn). Assume
that s ∈ Z satisfies s ≥ �n(qw/p− 1)�, where qw is as in (2.2). A function a is called
a (w, p, q, s)-atom associated with the ball B, if the following hold:

(i) supp a ⊂ B;
(ii) ‖a‖Lq

w(Rn) ≤ [w(B)]1/q−1/p;
(iii) for all α ∈ Zn+ with |α| ≤ s,

∫
Rn a(x)xα dx = 0.

The atomic weighted Hardy space Hp, q, s
w (Rn) is defined to be the space of all

f ∈ S ′(Rn) satisfying that f =
∑

j λjaj in S ′(Rn), where {λj}j ⊂ C satisfies∑
j |λj|p < ∞ and {aj}j is a sequence of (w, p, q, s)-atoms; moreover, the norm of

f is defined by ‖f‖Hp, q, s
w (Rn) := inf{(∑j |λj|p)1/p}, where the infimum is taken over

all possible decompositions of f as above.
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Recall that for the classical weighted Hardy space Hp
w(Rn), we have the following

atomic characterization (see, for example, [28]).

Lemma 4.12. Let p, q, s and w be as in Definition 4.11. Then the spaces Hp
w(Rn)

and Hp, q, s
w (Rn) coincide with equivalent norms.

Now we state another main result of this subsection.

Theorem 4.13. Let L := −Δ + V , where 0 ≤ V ∈ L1
loc(R

n). Assume that
∇L−1/2 is bounded on Lr(Rn) for all r ∈ (1, p0) with some p0 ∈ (2,∞). Then,
for any p ∈ ( n

n+1 , 1] and w ∈ Aq0(R
n) ∩ RH(p0/q0)′(R

n) with any q0 ∈ [1, p(n+1)
n ),

∇L−1/2 is bounded from Hp
L, w(Rn) into Hp

w(Rn).

Remark 4.14. Let L be as in Theorem 4.13. In [42, Theorem 1.1(ii)], Song and
Yan proved that ∇L−1/2 is bounded from H1

L,w(Rn) into H1
w(Rn) for w ∈ A1(Rn)∩

RH2(Rn). Then, Wang [44, Theorem 1.1] proved that ∇L−1/2 is bounded from
Hp
L,w(Rn) into Hp

w(Rn) for w ∈ A1(Rn) ∩ RH2(Rn) and p ∈ ( n
n+1 , 1]. Moreover, it

was proved in [45, Theorem 7.15] that∇L−1/2 is bounded from Hp
L, w(Rn) toHp

w(Rn)

when p ∈ ( n
n+1 , 1] and w ∈ Aq0(R

n) ∩ RH(2/q0)′(R
n) with some q0 ∈ [1, p(n+1)

n ).
From the assumption p0 ∈ (2,∞), it follows that (p0/q0)′ < (2/q0)′ ≤ 2 when
q0 ∈ [1, p(n+1)

n ), which, together with (ii) and (v) of Lemma 2.1, implies that

A1(Rn) ∩RH2(Rn) ⊂ Aq0(R
n) ∩ RH(2/q0)′(R

n) ⊂ Aq0(R
n) ∩ RH(p0/q0)′(R

n).

Thus, Theorem 4.13 essentially improves these results in [44, 42, 45].

To prove Theorem 4.13, we need a variant notion of (p, q, w, ε)-molecules.

Definition 4.15. Let p ∈ (0, 1], q ∈ [1,∞] with q > p, w ∈ Aq(Rn) and ε ∈
(n,∞). A function m ∈ Lq(Rn) is called a (p, q, w, ε)-molecule associated with the
ball B if the following hold:

(i) for any j ∈ Z+, ‖m‖Lq(Sj(B)) ≤ 2−jε|2jB|1/q[w(2jB)]−1/p;
(ii)
∫

Rn m(x) dx = 0.

We have the following conclusion.

Proposition 4.16. Let p ∈ ( n
n+1 , 1] and q ∈ [2,∞]. If w ∈ Aq0(R

n)∩RH(q/q0)′(R
n)

with any q0 ∈ [1, p(n+1)
n ), then there exists a positive constant C such that, for all

(p, q, w, ε)-molecules m with ε ∈ (n,∞), ‖m‖Hp
w(Rn) ≤ C.

Proof. Let ε ∈ (n,∞) and m be a (p, q, w, ε)-molecule associated with the
ball B. To prove this result, we follow the structure as in [12] (see also [45]). For
completeness, we sketch the proof here.
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For each j ∈ Z+, let αj :=
∫
Sj (B)m(x) dx and χj := 1

|Sj(B)|χSj (B). Then, for
each j ∈ Z+ and x ∈ Rn, define

Mj(x) := m(x)χSj (B)(x) − αjχj(x).

Moreover, for each j ∈ Z+, let Nj =
∑∞

k=j αk. Then we have

m =
∞∑
j=0

Mj +
∞∑
j=0

Nj+1(χj+1 − χj) =:
∞∑
j=0

Mj +
∞∑
j=0

Pj.

For each j ∈ Z+, it is easy to see that
∫

Rn Mj(x) dx = 0, suppMj ⊂ B̃j := 2jB
and

‖Mj‖Lq(Rn) ≤ 2‖m‖Lq(Sj(B)) � 2−jε|B|1/q[w(B)]−1/p,

which, together with Hölder’s inequality, w ∈ RH(q/q0)′(R
n) and Lemma 2.2, implies

that

‖Mj‖Lq0
w (Rn) ≤ ‖Mj‖Lq(Rn)

{∫
Sj (B)

[w(x)](q/q0)
′
dx

} 1
q0(q/q0)′

(4.16)

� 2−jε[w(B)]1/q0−1/p.

Therefore, Mj is a multiple of a (w, p, q0, 0)-atom.
Moreover, we also have, for each j ∈ Z+,

∫
Rn Pj(x) dx = 0 and suppPj ⊂ B∗

j :=
2j+1B. Furthermore,

‖Pj‖Lq(Rn) ≤ |Nj+1|(|2jB|1/q−1 + |2j+1B|1/q−1) � |Nj+1||B∗
j |1/q−1.

Moreover, by Hölder’s inequality and ε ∈ (n,∞), we conclude that

|Nj+1| ≤
∑
k≥j

∫
Sk(B)

|m(x)| dx≤
∑
k≥j

|2kB|1−1/q‖m‖Lq(Sk(B))

≤
∑
k≥j

2−kε|2kB|[w(2kB)]−1/p ≤ 2−jε
∑
k≥j

2−(k−j)(ε−n)|2jB|[w(B∗
j )]

−1/p

� 2−jε|B∗
j |[w(B∗

j )]
−1/p.

Repeating the estimates in (4.16), we also see that, for each j ∈ Z+, Pj is a multiple of
a (w, p, q0, 0)-atom. Moreover, since the condition q0 ∈ [1, p(n+1)

n ) implies �n( q0p −
1)� = 0, as a direct consequence of Theorem 4.12, m ∈ Hp

w(Rn). Moreover, from
the above proof, we easily deduce that ‖m‖Hp

w(Rn) � 1, which completes the proof of
Proposition 4.16.
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Proof of Theorem 4.13. By [30, Lemma 6.2] and the argument used in Theorem
4.7, we know that, for any p ∈ (1, p0), M ∈ N, all closed sets E, F ⊂ R

n with
d(E, F )> 0, f ∈ L∞(Rn) with supp f ⊂ E , and t ∈ (0,∞),

(4.17)
∥∥∥√t∇e−tL(f)

∥∥∥
Lp(F )

�
{

t

[d(E, F )]2

}M
‖f‖Lp(E).

Let w ∈ Aq0(R
n) ∩ RH(p0/q0)′(R

n). From Lemma 2.1(iv), we deduce that there
exists q ∈ (1, p0) such that w ∈ Aq0(R

n) ∩ RH(q/q0)′(R
n). Let a be a (p, q, M, w)-

atom with 2M + n/q − nq0/p > n. By Proposition 4.16, it suffices to show that
∇L−1/2(a) is a (p, q, w, ε)-molecule with ε ∈ (n,∞).
Indeed, using an argument as in [30, Theorem 8.6], we have

(4.18)
∫

Rn
∇L−1/2(a)(x) dx= 0.

Thus, in order to prove that ∇L−1/2(a) is a (p, q, w, ε)-molecule, we need to show
that ∇L−1/2(a) satisfies Definition 4.15(i).
When j ∈ {0, . . . , 3}, by the Lq(Rn)-boundedness of ∇L−1/2, we see that

(4.19)

∥∥∥∇L−1/2(a)
∥∥∥
Lq(Sj(B))

� ‖a‖Lq(Rn) � |B|1/q[w(B)]1/p � 2−jε|2jB|1/q[w(2jB)]1/p.

When j ∈ N with j ≥ 4, we write

(4.20)

∥∥∥∇L−1/2(a)
∥∥∥
Lq(Sj (B))

�
∥∥∥∥∥
∫ r2B

0

√
t∇e−tLadt

t

∥∥∥∥∥
Lq(Sj(B)

+

∥∥∥∥∥
∫ ∞

r2B

√
t∇e−tLadt

t

∥∥∥∥∥
Lq(Sj(B)

=: I+II.

For the term I, from Minkowski’s inequality, (4.17) and Lemma 2.2, it follows that

(4.21)
I ≤
∫ r2B

0

∥∥∥√t∇e−tLa∥∥∥
Lq(Sj (B)

dt

t
� ‖a‖Lq(Rn)

∫ r2B
0

tM

(2jrB)2M
dt

t

� 2−2Mj|B|1/q[w(B)]−1/p � 2−j(2M+n/q−nq0/p)|2jB|1/q[w(2jB)]−1/p.

For II, by Minkowski’s inequality and the semigroup property of {e−tL}t>0, we know
that

(4.22)
II =

∥∥∥∥∥
∫ ∞

r2B

√
t∇e−tL/2(tL)Me−tL/2(b)

dt

tM+1

∥∥∥∥∥
Lq(Sj (B))

≤
∫ ∞

r2B

∥∥∥√t∇e−tL/2(tL)Me−tL/2(b)
∥∥∥
Lq(Sj (B))

dt

tM+1
.
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Notice that
√
t∇e−tL/2(tL)Me−tL/2 is bounded on Lq(Rn). This, together with (4.22)

and Lemma 2.2, implies that

(4.23)
II � ‖b‖Lq(Rn)

∫ ∞

r2B

dt

tM+1
� 2−j2M |B|1/q[w(B)]−1/p

� 2−j(2M+n/q−nq0/p)|2jB|1/q[w(2jB)]−1/p.

Then by (4.18) through (4.23), we know that∇L−1/2(a) is a multiple of a (p, q, w, ε)-
molecule with ε ∈ (n,∞), which completes the proof of Theorem 4.13.

5. APPENDIX

In this appendix, we prove that the square function S̃kL defined as in (3.6) is bounded
on Lp(Rn) with p ∈ (pL, p′L), where pL is as in (3.1).
Through this appendix, we always assume that L satisfies Assumptions (H1) and

(H2).
To begin with, we first recall the definition of Hardy spaces associated with the

operator L, introduced in [30]. For p ∈ [1,∞), the Hardy space Hp
L(Rn) is defined

as the completion of {f ∈ L2(Rn) : SLf ∈ Lp(Rn)} in the norm ‖f‖Hp
L(Rn) :=

‖SLf‖Lp(Rn), where SL is the Lusin area function defined as in Section 3.

Remark 5.1. By an argument similar to that used in [33, Section 9], we know that
Hp
L(Rn) = Lp(Rn) for all p ∈ (pL, p′L).

Now we recall the notion of (1, 2, M)-atoms associated with the operator L.

Definition 5.2. Let p ∈ (0, 1] and M ∈ N. A function a ∈ L2(Rn) is called
a (1, 2, M)-atom associated with the operator L, if there exists a function b which
belongs to D(LM), the domain of LM , and a ball B ⊂ Rn such that

(i) a = LMb;
(ii) supp (Lkb) ⊂ B, k ∈ {0, . . . , M};
(iii) ‖(r2BL)kb‖L2(B) ≤ r2MB |B|−1/2, k ∈ {0, . . . , M}.
In this section, we establish the following useful result.

Lemma 5.3. Let L satisfy Assumptions (H1) and (H2) and k ∈ N. Assume that
Φ is as in Lemma 3.11. For all f ∈ L2(Rn) and x ∈ R

n, define the square function
S̃kL(f) by

S̃kL(f)(x) :=

{∫
Γ(x)

∣∣∣(t2L)k+1Φ(t
√
L)(f)(y)

∣∣∣2 dy dt
tn+1

}1/2

.

Then, for all p ∈ (pL, p′L), S̃kL is bounded on Lp(Rn), where pL is as in (3.1).
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Before going into the proof of this lemma, we first recall the following useful
estimate.
Let ψ : C → C satisfy that there exist positive constants C and s such that, for all

z ∈ C,

|ψ(z)| ≤ C
|z|s

(1 + |z|)2s .

Then there exists a positive constant C such that, for all f ∈ L2(Rn),

(5.1)
∫ ∞

0

∫
Rn

|ψ(tL)f(y)|2dy dt
t

≤ C‖f‖2
L2(Rn);

see [30, p. 17].

Proof of Lemma 5.3. We first notice that by (5.1), we are easy to know that S̃kL is
bounded on L2(Rn). Now we claim that S̃kL is bounded from H1

L(Rn) into L1(Rn).
To this end, by [30, Lemma 4.3 and Theorem 4.14], it suffices to show that, for all
(1, 2, M)-atoms a associated with the ball B := B(xB , rB), ‖S̃kL(a)‖L1(Rn) � 1.
Indeed, we have∥∥∥S̃kL(a)

∥∥∥
L1(Rn)

=
∑
j∈Z+

∥∥∥S̃kL(a)
∥∥∥
L1(Sj(B))

.(5.2)

When j ∈ {0, . . . , 4}, it follows, from theL2(Rn)-boundedness of S̃kL and Hölder’s
inequality, that ∥∥∥S̃kL(a)

∥∥∥
L1(Sj(B))

�
∥∥∥S̃kL(a)

∥∥∥
L2(Sj(B))

|B|1/2 � 1.(5.3)

When j ∈ N with j ≥ 5, by Hölder’s inequality, we see that∥∥∥S̃kL(a)
∥∥∥
L1(Sj(B))

�
∥∥∥S̃kL(a)

∥∥∥
L2(Sj(B))

|2jB|1/2.(5.4)

Furthermore, we write

(5.5)

∥∥∥S̃k
L(a)
∥∥∥2

L2(Sj(B))

=
∫

Sj(B)

∫ |x−xB|/4

0

∫
B(x,t)

∣∣∣(t2L)k+1Φ(t
√
L)(a)(y)

∣∣∣2 dy dt
tn+1

dx

+
∫

Sj(B)

∫ ∞

|x−xB|/4

∫
B(x,t)

∣∣∣(t2L)k+M+1Φ(t
√
L)(b)(y)

∣∣∣2 dy dt

t4M+n+1
dx =: I1+I2,

where a = LM b.
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From supp a ⊂ B, j ≥ 5 and Lemma 3.11, it follows that, for all t ∈ (0, |x −
xB|/4), suppK(t2L)k+1Φ(t

√
L) ∩ supp a = ∅ and hence I1 = 0.

Now we deal with I2. By Fubini’s theorem and (5.1), we see that

I2 ≤ 1
(2jrB)4M

∫
Sj (B)

∫ ∞

|x−xB |/4

∫
B(x,t)

∣∣∣(t2L)k+M+1Φ(t
√
L)(b)(y)

∣∣∣2 dy dt
tn+1

dx

≤ 1
(2jrB)4M

∫
Rn

∫ ∞

0

∫
B(x,t)

∣∣∣(t2L)k+M+1Φ(t
√
L)(b)(y)

∣∣∣2 dy dt
tn+1

dx

≤ 1
(2jrB)4M

∫ ∞

0

∫
Rn

∣∣∣(t2L)k+M+1Φ(t
√
L)b(y)
∣∣∣2 dy dt

t

� 1
(2jrB)4M

‖b‖2
L2(Rn) � 2−4Mj|B|−1,

which, together with I1 = 0, (5.2), (5.3), (5.4) and (5.5), implies that∑
j∈Z+

∥∥∥S̃kL(a)
∥∥∥
L1(Sj (B))

�
∑
j∈Z+

2−j(2M−n/2) � 1

as long as M > n/4. Thus, S̃kL is bounded from H1
L(Rn) to L1(Rn). At this stage,

using the interpolation in [30, Theorem 9.7] and Remark 5.1, we conclude the Lp(Rn)-
boundedness of S̃kL for p ∈ (pL, 2].
To prove the Lp(Rn)-boundedness of S̃kL for p ∈ (2, p′L), we borrow some ideas

from [12]. Let h ∈ L(p/2)′(Rn). Then by Fubini’s theorem, we see that∫
Rn

∣∣∣∣[S̃kL(f)(x)
]2
h(x)
∣∣∣∣ dx

=
∫ ∞

0

∫
Rn

∣∣∣(t2L)k+M+1Φ(t
√
L)f(y)

∣∣∣2{ 1
tn

∫
B(y,t)

|h(x)| dx
}
dy dt

t
.

For each k ∈ Z, let

Ek :=

{
(y, t) ∈ R

n × (0,∞) : 2k <
1
tn

∫
B(y,t)

|h(x)| dx ≤ 2k+1

}
.

Obviously, if (y, t) ∈ Ek, thenM(h)(y) > 2k and

(t2L)k+M+1Φ(t
√
L)f(y) = (t2L)k+M+1Φ(t

√
L)
(
fχ{x∈Rn: M(h)(x)>2k}

)
(y),

whereM denotes the Hardy-Littlewood maximal function on R
n. From this and (5.1),
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we deduce that∫
Rn

∣∣∣∣[S̃kL(f)(x)
]2
h(x)
∣∣∣∣ dx

≤
∑
k∈Z

2k+1

∫
Ek

∣∣∣(t2L)k+M+1Φ(t
√
L)f(y)

∣∣∣2 dy dt
t

≤
∑
k∈Z

2k+1

∫
Ek

∣∣∣(t2L)k+M+1Φ(t
√
L)
(
fχ{x∈Rn: M(h)(x)>2k}

)
(y)
∣∣∣2 dy dt

t

≤
∑
k∈Z

2k+1

∫ ∞

0

∫
Rn

∣∣∣(t2L)k+M+1Φ(t
√
L)
(
fχ{x∈Rn: M(h)(x)>2k}

)
(y)
∣∣∣2 dy dt

t

�
∑
k∈Z

2k
∫

Rn
|f(y)|2χ{x∈Rn: M(h)(x)>2k}(y) dy,

which, together with Hölder’s inequality, implies that∫
Rn

∣∣∣∣[S̃kL(f)(x)
]2
h(x)
∣∣∣∣dx ≤

∑
k∈Z

2k+1

∫
Ek

∣∣∣(t2L)k+M+1Φ(t
√
L)f(y)

∣∣∣2 dy dt
t

� ‖f‖2
Lp(Rn)

∑
k∈Z

2k
∣∣∣{x ∈ R

n : M(h)(x) > 2k
}∣∣∣ 1

(p/2)′

� ‖f‖2
Lp(Rn)‖M(h)‖L(p/2)′(Rn) �‖f‖2

Lp(Rn)‖h‖L(p/2)′(Rn).

This further implies that ‖[S̃kL(f)]2‖Lp/2(Rn) � ‖f‖2
Lp(Rn) or, equivalently,

‖S̃kL(f)‖Lp(Rn)�‖f‖Lp(Rn), which completes the proof of Lemma 5.3.
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