TAIWANESE JOURNAL OF MATHEMATICS Vol. 17, No. 5, pp. 1557-1574, October 2013 DOI: 10.11650/tjm.17.2013.2703 This paper is available online at http://journal.taiwanmathsoc.org.tw

CYCLIC ODD 3K-CYCLE SYSTEMS OF THE COMPLETE GRAPH

Shung-Liang Wu

Abstract. For any prime p and each admissible value n, a complete answer to the existence problem for cyclic 3p-cycle systems of the complete graph K_n is given.

1. INTRODUCTION

Let K_n be the complete graph of order n and let $C = (c_0, c_1, \dots, c_{m-1})$ denote an *m*-cycle or a closed *m*-trail. An *m*-cycle system of K_n is a pair (V, C) where V is the vertex set of K_n and C is a collection of *m*-cycles whose edges partition the edges of K_n . The necessary conditions for the existence of an *m*-cycle system of K_n are

(*)
$$n \equiv 1 \pmod{2}, 3 \leq m \leq n, \text{ and } n(n-1) \equiv 0 \pmod{2m}.$$

Given an integer $m \ge 3$, an integer n satisfying the conditions in (*) is said to be *admissible*.

The study of *m*-cycle systems of the complete graph has been one of the most interesting problems in graph decompositions. A survey on cycle decompositions is given in [4]. Alspach and Gavlas [1] in the case of m odd and Sajna [15] in the even case proved the necessary conditions in (*) are also sufficient.

Let \mathbb{Z}_n be the group of integers modulo n and $\mathbb{Z}_n^* = \mathbb{Z}_n \setminus \{0\}$. An *m*-cycle system (V, \mathbb{C}) of the complete graph K_n is said to be *cyclic* if $V = \mathbb{Z}_n$ and $C + 1 = (c_0+1, c_1+1, \dots, c_{m-1}+1) \pmod{n} \in \mathbb{C}$ whenever $C \in \mathbb{C}$. The necessary conditions in (*) however are not sufficient for the existence of a cyclic *m*-cycle system of K_n . A cyclic *n*-cycle system of the complete graph K_n is called a cyclic *Hamiltonian* cycle system.

In 1938, Peltesohn [10] proved that for each admissible $n (\neq 9)$, there exists a cyclic 3-cycle system of K_n . Since then, finding necessary and sufficient conditions for cyclic *m*-cycle systems of K_n has attracted much attention. Some partial solutions have been given by a number of authors [2, 3, 6-9, 11-13, 16, 17, 19].

Received November 28, 2012, accepted March 11, 2013.

Communicated by Gerard Jennhwa Chang.

²⁰¹⁰ Mathematics Subject Classification: 05C99.

Key words and phrases: Cycle system, Cyclic.

Theorem 1.1. ([3, 6, 7, 8, 16]).

- (1) Suppose $m \ge 3$ is a positive integer. Then there exists a cyclic m-cycle system of K_{2pm+1} for $p \ge 1$.
- (2) Suppose $m \ge 3$ is an odd integer. Then there exists a cyclic m-cycle system of K_{2pm+m} for $p \ge 0$ except when $(m, p) \in \{(3, 1), (15, 0), (q^{\alpha}, 0)\}$ where q is a prime and $\alpha > 1$.

Theorem 1.2. ([19]).

- (1) If $3 \le m \le 32$, then for each admissible value n, there exists a cyclic m-cycle system of K_n provided $(m, n) \ne (3, 9), (6, 9), (9, 9), (14, 21), (15, 15), (15, 21), (15, 25), (20, 25), (22, 33), (24, 33), (25, 25), (27, 27), and (28, 49).$
- (2) If m < n < 2m + 1 and gcd(m, n) is an odd prime power, then there does not exist a cyclic m-cycle system of K_n .

Theorem 1.3. ([17]). For each even integer $m \ge 4$ and each admissible value n with n > 2m, there exists a cyclic m-cycle system of K_n .

To construct a cyclic *m*-cycle system of K_n , it is crucial to further characterize the admissible values *n*. Assume m = de to be any positive integer, where *d* is odd, $e \ge 1$, and $\gcd(d, e) = 1$, and *n* to be an admissible value. If $\gcd(m, n) = d = 1$, then it is easy to check from (*) that n = 2pm + 1 for $p \ge 1$. Now, suppose $\gcd(m, n) = d > 1$. Then it is obvious that n = 2pm + ds, where *p* is a nonnegative integer and *s* is odd with $1 \le s < 2e$. Also, since $n(n-1) \equiv 0 \pmod{2m}$ and $\gcd(m, n) = d$, it follows that $n - 1 \equiv 0 \pmod{2e}$, or equivalently, n = 2pm + 2be + 1, where *p* is a nonnegative integer and $1 \le b < d$. In fact, since $n = 2pm + ds = 2pm + 2be + 1 \ge m$, we have $p \ge 1$, if $b < \frac{d-1}{2}$ or s < e, and $p \ge 0$, if $b \ge \frac{d-1}{2}$ or $s \ge e$. Moreover, we obtain ds = 2be + 1, where *s* is odd with $1 \le s < 2e$ and $1 \le b < d$.

Lemma 1.4. ([17]). Let m = de be any given integer (≥ 3) where d is odd, $e \geq 1$, and gcd(d, e) = 1, and let n be admissible with gcd(m, n) = d.

- (1) If d = 1, then n = 2pm + 1 for $p \ge 1$.
- (2) If d > 1 and $b < \frac{d-1}{2}$ or s < e, then n = 2pm + 2be + 1 = 2pm + ds for $p \ge 1$ where $1 \le b < d$ and s is odd with $1 \le s < 2e$.
- (3) If d > 1 and $b \ge \frac{d-1}{2}$ or $s \ge e$, then n = 2pm + 2be + 1 = 2pm + ds for $p \ge 0$ where $1 \le b < d$ and s is odd with $1 \le s < 2e$. In particular, if m is odd and e = 1, then n = 2pm + m for $p \ge 0$.

In view of Lemma 1.4, if we take $m = p^k$ where p is an odd prime and $k \ge 1$, then d = 1 or p^k . It implies that n = 2pm + 1 for $p \ge 1$ or n = 2pm + m for $p \ge 0$ and by utilizing Theorem 1.1, we obtain the following consequence.

Theorem 1.5. Let $m = p^k$ where p is an odd prime and $k \ge 1$. Then for each admissible value n, there exists a cyclic m-cycle system of K_n except when m = 3 and n = 9 or n = m.

In this paper, we focus our attention on the constructions of cyclic *m*-cycle systems of K_n where m = 3k is an odd integer with gcd(3, k) = 1. Note that by Theorem 1.2(1), it is enough to consider the *m*-cycles where $m \ge 33$. The methods used here involve difference constructions and circulant graphs, and it should be mentioned that some basic techniques used in this paper also occurred in [18]. The main result is:

Theorem 1.6. For any prime p and each admissible value n, there exist cyclic 3*p*-cycle systems of the complete graph K_n .

We remark that given an odd integer m = 3k with gcd(3, k) = 1, it follows by Lemma 1.4 that $n \equiv 1, 3, k$, or $3k \pmod{2m}$, and using Theorem 1.1, it suffices to consider only the cases when $n \equiv 3$ or $k \pmod{2m}$, that is, gcd(m, n) = 3 or k. Moreover, in the light of Theorem 1.2(2), if k is a prime, then there is no cyclic 3k-cycle system of K_n where n < 6k.

2. DEFINITIONS AND PRELIMINARIES

Let S be a subset of \mathbb{Z}_n^* such that S = -S; that is, $s \in S$ implies that $-s \in S$. The *circulant graph* of order n, X(n, S), is defined as the graph whose vertices are the elements of \mathbb{Z}_n , with an edge between vertices u and v if and only if v = u + sfor some $s \in S$. The set S is called the *connection set* of X(n, S). Since for each edge $\{u, v\}$ in X(n, S), there is an element s in S such that $\{u, v\} = \{u, u + s\} =$ $\{v + n - s, v\}$ (mod n), we will write -s for n - s when n is understood, and the elements $\pm s$ in S are said to be the *differences* of the edge $\{u, v\}$ in X(n, S), and we denote it by $d(u, v) = \pm s$. In what follows, we will use ||D(H)|| to denote the number of distinct differences of edges in H where H is the subgraph of X(n, S).

Given an *m*-cycle $C = (c_0, c_1, \dots, c_{m-1})$ in X(n, S) where m = de is an odd integer, the cycle *C* is of *type d* if its stabilizer under the natural action of \mathbb{Z}_n has order *d*. In other words, *d* is the common divisor of *n* and *m* such that $C = C + n/d \pmod{n}$. Following [5], the *list of partial differences* of *C* of type *d* is the multiset

$$\partial C = \{ \pm (c_{i+1} - c_i) : 0 \le i \le m/d - 1 \}.$$

An *m*-cycle *C* of type *d* on X(n, S) is called *full* if d = 1, otherwise *short*. The *cycle* orbit \mathcal{O} of *C* is the set of *m*-cycles in the collection $\{C + i : 0 \le i < n/d\}$. The *length* of a cycle orbit is its cardinality. A *base cycle* of a cycle orbit \mathcal{O} is a cycle $C \in \mathcal{O}$ that is chosen arbitrarily. Any cyclic *m*-cycle system of a graph of order *n* is generated from base cycles, and each full *m*-cycle corresponds to a cycle orbit with length *n*.

Since n is odd, the connection set S can be partitioned into subsets A, -A such that for every element s in A, s = i or -i for $1 \le i \le \frac{n-1}{2}$, so we may assume $S = \pm A$. It is evident that the complete graph K_n is isomorphic to the circulant graph X(n, S) with $S = \mathbb{Z}_n^* = \pm \{1, 2, \dots, \frac{n-1}{2}\}$, so $\|D(K_n)\| = n - 1$.

By [a, b] we mean the set of consecutive integers $a, a + 1, \dots, b$ where $1 \le a < b \le \frac{n-1}{2}$. Given an odd integer m, the connection set $S = \{d_i, d_i + j_i : j_i = 1 \text{ or } 2, 1 \le i \le k\}$ is called *proper* if all elements in it are pairwise distinct, $1 \le d_1 < d_2 < \dots < d_k < \frac{n-1}{2}$, and $d_i + j_i < d_{i+1}$ for $1 \le i \le k - 1$. Note that |S| = 2k. If $j_1 = \dots = j_k = 1$ (resp. $j_1 = j_k = 2$, $j_2 = \dots = j_{k-1} = 1$), we say the proper set S is of *type* 1 (resp. *type* 2); if $j_1 = 2$ and $j_2 = \dots = j_k = 1$ (resp. $j_1 = \dots = j_{k-1} = 1$ and $j_k = 2$), the proper set S is said to be of *type* 3 (resp. *type* 4). By S_i we mean the proper set S of type i for $1 \le i \le 4$.

A Skolem sequence of order p is a collection of ordered pairs $\{(s_i, t_i) : t_i - s_i = i, 1 \le i \le p\}$ with $\bigcup_{i=1} \{s_i, t_i\} = \{1, 2, \dots, 2p\}$ or $\{1, 2, \dots, 2p-1, 2p+1\}$. In the second case one usually speaks of a *hooked* Skolem sequence.

Theorem 2.1. ([14]).

- (1) A Skolem sequence of order p exists if and only if $p \equiv 0$ or 1 (mod 4).
- (2) A hooked Skolem sequence of order p exists if and only if $p \equiv 2$ or $3 \pmod{4}$.

A set $\{r, s_r + r, t_r + r\}$ where r is a positive integer with $1 \le r \le p$ is called a *r-Skolem set*, denoted T_r , if (s_r, t_r) is an ordered pair in a Skolem sequence of order p.

Corollary 2.2.

- (1) If $p \equiv 0$ or $1 \pmod{4}$, then [1, 3p] can be partitioned into the union of r-Skolem subsets for $1 \leq r \leq p$.
- (2) If $p \equiv 2 \text{ or } 3 \pmod{4}$, then $[1, 3p+1] \setminus \{3p\}$ can be partitioned into the union of *r*-Skolem subsets for $1 \leq r \leq p$.

Given a r-Skolem set T_r and a proper set of type $i S_i$ where $1 \le r \le p$ and $1 \le i \le 4$, the connection set $S = T_r \bigcup S_i$ is said to be *i*-proper if $T_r \bigcap S_i = \emptyset$.

The following two consequences will be used as the main tools to construct the full base cycles on circulant graphs. In what follows, we shall assume $C = (c_0 = 0, c_1, \dots, c_{m-1})$ to be a closed *m*-trail and $T_r = \{r, s_r + r, t_r + r\}$ to be a *r*-Skolem set.

Proposition 2.3. Suppose the connection set S is 1-proper or 2-proper. Then for m = 4k + 3 with $k \ge 1$, there exists a cyclic m-cycle system of $X(n, \pm S)$.

Proof. Suppose $S = T_r \bigcup S_1$ is 1-proper where $S_1 = \{e_i, e_i + 1 : 1 \le i \le 2k\}$ is a proper set of type 1. Let us define the vertices c_i in C for $1 \le i \le m - 1$ as

$$c_{i} = \begin{cases} e_{k+1-j} + j, & \text{if } i = 2j - 1 \text{ for } 1 \leq j \leq k; \\ j, & \text{if } i = 2j \text{ for } 1 \leq j \leq k; \\ r+k, & \text{if } i = 2k + 1; \\ s_{r} + 2r + k, & \text{if } i = 2k + 2; \\ -e_{2k} + t_{r} + r + k - 1, & \text{if } i = 2k + 2; \\ -e_{2k} + k - j, & \text{if } i = 2k + 2 + 2j \text{ for } 1 \leq j \leq k; \text{ and} \\ -e_{2k} + e_{k+j} + k - j, & \text{if } i = 2k + 3 + 2j \text{ for } 1 \leq j \leq k - 1. \end{cases}$$

Let $\langle C \rangle = \langle c_0 = 0, c_2, c_4, \cdots, c_{2k}, c_{2k+1}, c_{2k+2}, c_{2k-1}, c_{2k-3}, \cdots, c_1, c_{4k+2}, c_{4k}, \cdots, c_{2k+4}, c_{2k+3}, c_{2k+5}, \cdots, c_{4k+1} \rangle$ be a sequence obtained from the vertices c_i in C where $c_{4k+1} = n - e_2 + t_r + r$ if k = 1 and $c_{4k+1} = n - e_{2k} + e_{2k-1} + 1$ if $k \ge 2$. Since $\langle C \rangle$ is increasing, it means that C is an m-cycle, and since $d(c_{2i}, c_{2i+1}) = \pm (e_{k-i} + 1)$ and $d(c_{2i+1}, c_{2i+2}) = \pm e_{k-i}$ for $0 \le i \le k - 1$, $d(c_{2k}, c_{2k+1}) = \pm r$, $d(c_{2k+1}, c_{2k+2}) = \pm (s_r + r)$, $d(c_{2k+2}, c_{2k+3}) = \pm (e_{2k} + 1)$, $d(c_{2k+3}, c_{2k+4}) = \pm (t_r + r)$, $d(c_{2k+2+2i}, c_{2k+3+2i}) = \pm e_{k+i}$ for $1 \le i \le k - 1$, $d(c_{2k+3+2i}, c_{2k+4+2i}) = \pm (e_{k+i} + 1)$ for $1 \le i \le k - 1$, and $d(c_0, c_{4k+2}) = \pm e_{2k}$, we have that C is indeed an m-cycle with $\partial C = \pm S$.

The similar proof can be used for the case when $S = T_r \bigcup S_2$ is 2-proper, i.e., replacing c_i in C with $c_i + 1$ for $2k - 1 \le i \le 2k + 2$. We leave it to the reader.

Proposition 2.4. Suppose the connection set S is 3-proper or 4-proper. Then for m = 4k + 5 with $k \ge 1$, there exists a cyclic m-cycle system of $X(n, \pm S)$.

Proof. The proof is divided into two cases according as whether S is 3-proper or 4-proper.

Suppose $S = T_r \bigcup S_3$ is 3-proper where $S_3 = \{e_1, e_1 + 2\} \bigcup \{e_i, e_i + 1 : 2 \le i \le 2k + 1\}$. The vertices c_i in C for $1 \le i \le m - 1$ are given by

$$c_{i} = \begin{cases} e_{k+1-j} + j, & \text{if } i = 2j - 1 \text{ for } 1 \leq j \leq k - 1; \\ j, & \text{if } i = 2j \text{ for } 1 \leq j \leq k - 1; \\ e_{1} + k + 1, & \text{if } i = 2k - 1; \\ k + 1, & \text{if } i = 2k; \\ r + k + 1, & \text{if } i = 2k; \\ r + k + 1, & \text{if } i = 2k + 1; \\ s_{r} + 2r + k + 1, & \text{if } i = 2k + 2; \\ -e_{2k+1} + t_{r} + r + k, & \text{if } i = 2k + 2; \\ -e_{2k+1} + k + 1 - j, & \text{if } i = 2k + 2 + 2j \text{ for } 1 \leq j \leq k + 1; \text{ and} \\ -e_{2k+1} + e_{k+j} + k + 1 - j, & \text{if } i = 2k + 3 + 2j \text{ for } 1 \leq j \leq k. \end{cases}$$

Suppose $S = T_r \bigcup S_4$ is 4-proper where $S_4 = \{e_i, e_i + 1 : 1 \le i \le 2k\} \bigcup \{e_{2k+1}, e_{2k+1} + 2\}$. For $1 \le i \le m - 1$, the vertices c_i in C are defined as

$$c_{i} = \begin{cases} e_{k+2-j} + j, & \text{if } i = 2j - 1 \text{ for } 1 \leq j \leq k+1; \\ j, & \text{if } i = 2j \text{ for } 1 \leq j \leq k+1; \\ r+k+1, & \text{if } i = 2k+3; \\ s_{r} + 2r + k + 1, & \text{if } i = 2k+4; \\ -e_{2k+1} + t_{r} + r + k - 1, & \text{if } i = 2k+4; \\ -e_{2k+1} + k - j, & \text{if } i = 2k+4 + 2j \text{ for } 1 \leq j \leq k; \text{ and} \\ -e_{2k+1} + e_{k+1+j} + k - j, & \text{if } i = 2k+5 + 2j \text{ for } 1 \leq j \leq k-1. \end{cases}$$

The rest of the proof is analogous to those in Proposition 2.3, and we omit the details.

Establishing a cyclic *m*-cycle system of K_n , the vital key is to construct short base *m*-cycles in it. Lemma 2.5 provides a useful method for constructing short *m*-cycles on circulant graphs. For the convenience of notation, by $[c_0, c_1, \dots, c_{e-1}]_{k \cdot n/d}$ we mean an *m*-cycle (or a closed *m*-trail) of the form $(c_0, c_1, \dots, c_{m-1}) \pmod{n}$ where $c_{i+j \cdot e} = c_i + j \cdot k \cdot n/d$ for $0 \le i \le e - 1$ and $0 \le j \le d - 1$.

Lemma 2.5. Let m = de be an odd integer where $d \ge 3$, $e \ge 1$, and gcd(d, e) = 1, and let n be admissible with gcd(m, n) = d. If there exists an m-cycle $C = [c_0, c_1, \dots, c_{e-1}]_{k \cdot n/d}$ with gcd(k, d) = 1 on a circulant graph $X(n, \pm S)$ satisfying (1) for $0 \le i \ne j \le e - 1$, $c_i \ne c_j \pmod{n/d}$ and

(2) the differences $d(c_{i-1}, c_i) = \pm d_i$ for $1 \le i \le e$ are all distinct,

then there exists a cyclic m-cycle system of $X(n, \partial C)$ where $\partial C = \pm \{d_1, d_2, \cdots, d_e\}$.

Note that the set $\{C + i : 0 \le i < n/d\}$ forms a cycle orbit of C with length n/d, and the cycle C can be regarded as a short base cycle of this cycle orbit. For convenience, the cycle $C = [c_0, c_1, \dots, c_{e-1}]_{k \cdot n/d}$ in Lemma 2.5 is said to be an *m*-cycle of *index* $k \cdot n/d$. The *m*-cycle C itself, of course, is of type d on $X(n, \partial C)$.

The circulant graphs will also play a crucial role for constructing a cyclic *m*-cycle system of K_n .

Theorem 2.6. There exists a cyclic m-cycle system of K_n if and only if there are cyclic m-cycle systems of the circulant graphs $X(n, \partial C_i)(1 \le i \le t)$ such that $\bigcup_{i=1}^t \partial C_i = \mathbb{Z}_n^*$ and $\partial C_i \bigcap \partial C_j = \emptyset$ for $i \ne j$.

By virtue of Lemma 1.4, for each specified integer m = de, we have n = 2pm + 2be + 1 = 2pm + ds = d(2pe + s) and so n/d = 2pe + s. To construct a cyclic *m*-cycle system of K_n , it is natural that we will try to set up *p* full base *m*-cycles and *b* short

base *m*-cycles *C* of index $k \cdot n/d$ for some positive integer *k* with gcd(k, d) = 1 and ||D(C)|| = 2e each since $||D(K_n)|| = n - 1 = 2(pm + be)$.

3.
$$Gcd(m, n) = 3$$

In this section, we shall assume that d = 3, i.e., m = 3e with gcd(3, e) = 1, and let n be admissible with gcd(m, n) = 3. Recall that it suffices to consider $m = 3e \ge 33$, that is, $e \ge 11$. Since gcd(3, e) = 1, it follows that e = 12a + 11, 12a + 13, 12a + 17, or 12a + 19 for $a \ge 0$. By virtue of Lemma 1.4, we have:

if e = 12a + 11, then b = 2, s = 16a + 15, and n = 6pe + 48a + 45 for $p \ge 0$; if e = 12a + 13, then b = 1, s = 8a + 9, and n = 6pe + 24a + 27 for $p \ge 1$; if e = 12a + 17, then b = 2, s = 16a + 23, and n = 6pe + 48a + 69 for $p \ge 0$; and if e = 12a + 19, then b = 1, s = 8a + 13, and n = 6pe + 24a + 39 for $p \ge 1$.

That is, if e = 12a + 13 or 12a + 19 (resp. 12a + 11 or 12a + 17), then we will construct p full base m-cycles and a short base m-cycle (resp. two short base m-cycles).

Next, consider an *e*-set $W = \{w_1, w_2, \ldots, w_e\}$ where $w_i \in \mathbb{Z}_n^*$. The set W is called *strong* if $1 \le w_1 < w_2 < \ldots < w_e < n/3$ and $\sum_{i=1}^{\frac{e-1}{2}} (w_{2i} - w_{2i-1}) + w_e = n/3$. The strong *e*-set will be used to establish the short base *m*-cycles of index n/3.

Lemma 3.1. If $W = \{w_1, w_2, ..., w_e\}$ is a strong e-set, then there exists a cyclic *m*-cycle system of $X(n, \pm W)$.

Proof. Let $C = [c_0 = 0, c_1, \dots, c_{e-1}]_{n/3}$ be a closed *m*-trail defined as

$$c_{2i-1} = w_{e-2i+1} + \sum_{j=1}^{i-1} (w_{e-2j+1} - w_{e-2j}) \text{ and}$$
$$c_{2i} = \sum_{j=1}^{i} (w_{e-2j+1} - w_{e-2j}) \text{ for } 1 \le i \le \frac{e-1}{2}.$$

Consider the sequence $\langle C \rangle = \langle c_0 = 0, c_2, c_4, \cdots, c_{e-1}, c_{e-2}, c_{e-4}, \cdots, c_1 = w_{e-1} \rangle$ from the vertices $c_i \ (0 \le i \le e-1)$ in C. Since the sequence $\langle C \rangle$ is increasing and $c_i \ne c_j \pmod{n/3}$ for $0 \le i < j \le e-1$, we have that C is an m-cycle of index n/3, and since $d(c_i, c_{i+1}) = \pm w_{e-1-i}$ for $0 \le i \le e-2$ and $d(c_{e-1}, c_e) = \pm w_e$, it follows that C is an m-cycle with $\partial C = \pm W$.

The thesis follows by Lemma 2.5.

By $[a, b] = \bigcup_{i=1}^{t} A_i$ we mean that the set [a, b] can be partitioned into the union of disjoint subsets A_i for $1 \le i \le t$. A set U is *even* if $|U| \equiv 0 \pmod{2}$. Throughout we will use $T_r \biguplus S_i$, $T_r \biguplus S_{i,r}$ as *i*-proper connection sets where $1 \le r \le p$ and $1 \le i \le 4$.

Proposition 3.2. Suppose m = 3e where e = 12a + 13 or 12a + 19 for $a \ge 0$ and let n be admissible with gcd(m, n) = 3. Then there exists a cyclic m-cycle system of K_n .

Proof. It is clear that $m \equiv 3 \pmod{4}$ if e = 12a + 13 and $m \equiv 1 \pmod{4}$ if e = 12a + 19. Recall that $[1, 3p] = \bigcup_{i=1}^{p} T_i$ if $p \equiv 0$ or 1 (mod 4) and $[1, 3p+1] \setminus \{3p\} = \bigcup_{i=1}^{p} T_i$ if $p \equiv 2$ or 3 (mod 4) by Corollary 2.2. The proof is split into the following 4 cases.

Case 1. e = 12a + 13 and $p \equiv 1 \pmod{4}$ or e = 12a + 19 and $p \equiv 0 \pmod{4}$. $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \oiint W$ where $U = \{3p + 1, 3p + 3\} \oiint [3p + e + 2, \frac{n}{3} - \frac{e+3}{2}] \oiint [\frac{n}{3} - \frac{e-1}{2}, \frac{n-1}{2}]$ and $W = \{3p + 2, 3p + 4, 3p + 5, \dots, 3p + e + 1, \frac{n}{3} - \frac{e+1}{2}\}$. If e = 12a + 13, then partition the set $[1, 3p] \bigcup U$ into a 2-proper subset $T_p \oiint S_2$ and p - 1 1-proper subsets $T_i \oiint S_{1,i}$ for $1 \le i \le p - 1$, i.e., $[1, 3p] \bigcup U = (\biguplus_{i=1}^{p-1} T_i \oiint S_{1,i}) \oiint (T_p \oiint S_2)$.

If e = 12a + 19, then $[1, 3p] \bigcup U = (\biguplus_{i=1}^{p-1} T_i \biguplus S_{3,i}) \biguplus (T_p \oiint S_4)$. Note that the elements $\frac{n-3}{2}$, $\frac{n+1}{2}$ are included in S_2 , S_4 , respectively.

Case 2. e = 12a + 13 and $p \equiv 0 \pmod{4}$ or e = 12a + 19 and $p \equiv 1 \pmod{4}$. $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \oiint W$ where $U = [3p + e, \frac{n}{3} - \frac{e+1}{2}] \oiint [\frac{n}{3} - \frac{e-3}{2}, \frac{n-1}{2}]$ and $W = \{3p + 1, 3p + 2, \cdots, 3p + e - 1, \frac{n}{3} - \frac{e-1}{2}\}$. If e = 12a + 13, then $[1, 3p] \bigcup U = \biguplus_{i=1}^{p} T_i \oiint S_{1,i}$. If e = 12a + 19, then $[1, 3p] \bigcup U = (\biguplus_{i=1}^{p-1} T_i \oiint S_{3,i}) \oiint (T_p \oiint S_4)$.

Case 3. e = 12a + 13 and $p \equiv 2 \pmod{4}$ or e = 12a + 19 and $p \equiv 3 \pmod{4}$. $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \oiint W$ where $U = \{3p, 3p+2\} \biguplus [3p+e+2, \frac{n}{3} - \frac{e+1}{2}] \oiint [\frac{n}{3} - \frac{e-3}{2}, \frac{n-1}{2}]$ and $W = \{3p+3, 3p+4, \cdots, 3p+e+1, \frac{n}{3} - \frac{e-1}{2}\}$. If e = 12a + 13, then $([1, 3p+1] \setminus \{3p\}) \bigcup U = (\biguplus_{i=1}^{p-1} T_i \oiint S_{1,i}) \oiint (T_p \oiint S_2)$. If e = 12a + 19, then $([1, 3p+1] \setminus \{3p\}) \bigcup U = (\biguplus_{i=1}^{p-1} T_i \oiint S_{3,i})$.

 $\begin{array}{l} \textbf{Case 4. } e = 12a + 13 \text{ and } p \equiv 3 \pmod{4} \text{ or } e = 12a + 19 \text{ and } p \equiv 2 \pmod{4}.\\ [1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \biguplus W \text{ where } U = [3p+e, \frac{n}{3} - \frac{e+3}{2}] \biguplus [\frac{n}{3} - \frac{e-1}{2}, \frac{n-1}{2}] \text{ and } W = \{3p, 3p+2, 3p+3, \cdots, 3p+e-1, \frac{n}{3} - \frac{e+1}{2}\}.\\ \text{If } e = 12a + 13, \text{ then } ([1, 3p+1] \setminus \{3p\}) \bigcup U = (\biguplus_{i=1}^{p} T_{i} \biguplus S_{1,i}).\\ \text{If } e = 12a + 19, \text{ then } ([1, 3p+1] \setminus \{3p\}) \bigcup U = (\biguplus_{i=1}^{p} T_{i} \biguplus S_{3,i}). \end{array}$

Note that in each case, U is an even p(m-3)-set and W is a strong e-set. By virtue of Lemma 3.1, there is a cyclic m-cycle system of $X(n, \pm W)$. Moreover, if e = 12a + 13 (resp. e = 12a + 19), by Proposition 2.3 (resp. Proposition 2.4), there exist cyclic m-cycle systems of $X(n, \pm([1, 3p] \cup U))$ and $X(n, \pm(([1, 3p+1] \setminus \{3p\}) \cup U))$.

Since for each case, $\mathbb{Z}_n^* = \pm([1, 3p] \biguplus U \biguplus W)$ or $\pm(([1, 3p+1] \setminus \{3p\}) \biguplus U \biguplus W)$, by Theorem 2.6, there is a cyclic *m*-cycle system of K_n .

Proposition 3.3. Suppose m = 3e where e = 12a + 11 or 12a + 17 for $a \ge 0$ and let n be admissible with gcd(m, n) = 3 and n > 2m. Then there exists a cyclic m-cycle system of K_n .

Proof. Obviously, $m \equiv 1 \pmod{4}$ if e = 12a + 11 and $m \equiv 3 \pmod{4}$ if e = 12a + 17. We divide the proof into 4 cases as follows.

Case 1. e = 12a + 11 and $p \equiv 1 \pmod{4}$ or e = 12a + 17 and $p \equiv 0 \pmod{4}$. $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \oiint W_1 \oiint W_2$ where $U = \{3p + 4, 3p + 6\} \oiint [3p + 2e + 2e]$ $1, \frac{n}{3} - \frac{e+5}{2}] \biguplus [\frac{n}{3} - \frac{e-1}{2}, \frac{n-1}{2}], W_1 = \{3p+2, 3p+5, 3p+7, \cdots, 3p+e+3, \frac{n}{3} - \frac{e+3}{2}\}, and W_2 = \{3p+1, 3p+3, 3p+e+4, \cdots, 3p+2e, \frac{n}{3} - \frac{e+1}{2}\}.$ If e = 12a + 11, then $[1, 3p] \bigcup U = \biguplus_{i=1}^p T_i \biguplus S_{3,i}$. If e = 12a + 17, then $[1, 3p] \bigcup U = (\biguplus_{i=1}^{p-1} T_i \biguplus S_{1,i}) \biguplus (T_p \biguplus S_2)$. **Case 2.** e = 12a + 11 and $p \equiv 0 \pmod{4}$ or e = 12a + 17 and $p \equiv 1 \pmod{4}$.
$$\begin{split} &[1,\frac{n-1}{2}] = [1,3p] \biguplus U \oiint W_1 \oiint W_2 \text{ where } U = \{3p+1,3p+3\} \biguplus [3p+2e+1,\frac{n}{3}-\frac{e+3}{2}] \oiint [\frac{n}{3}-\frac{e-3}{2},\frac{n-1}{2}], W_1 = \{3p+2,3p+4,3p+5,\cdots,3p+e+1,\frac{n}{3}-\frac{e+1}{2}\},\\ &\text{and } W_2 = \{3p+e+2,3p+e+3,\cdots,3p+2e,\frac{n}{3}-\frac{e-1}{2}\}.\\ &\text{If } e = 12a+11, \text{ then } [1,3p] \bigcup U = (\biguplus_{i=1}^{p-1}T_i \biguplus S_{3,i}) \oiint (T_p \oiint S_4).\\ &\text{If } e = 12a+17, \text{ then } [1,3p] \bigcup U = (\biguplus_{i=1}^{p-1}T_i \biguplus S_{1,i}) \oiint (T_p \oiint S_2). \end{split}$$
Case 3. e = 12a + 11 and $p \equiv 2 \pmod{4}$ or e = 12a + 17 and $p \equiv 3 \pmod{4}$. $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \biguplus W_1 \biguplus W_2$ where $U = [3p+2e-1, \frac{n}{3} - 1]$ $\underbrace{\frac{e+3}{2}}_{=} [\biguplus [\frac{n}{3} - \frac{e-3}{2}, \frac{n-1}{2}], W_1 = \{3p, 3p+2, 3p+3, \cdots, 3p+e-1, \frac{n}{3} - \frac{e+1}{2}\}, \text{ and } W_2 = \{3p+e, 3p+e+1, \cdots, 3p+2e-2, \frac{n}{3} - \frac{e-1}{2}\}.$ If e = 12a + 11, then $([1, 3p + 1] \setminus \{\tilde{3}p\}) \cup U = \biguplus_{i=1}^p T_i \biguplus S_{3,i}$. If e = 12a + 17, then $([1, 3p + 1] \setminus \{3p\}) \bigcup U = (\biguplus_{i=1}^{p} T_i \biguplus S_{1,i})$. **Case 4.** e = 12a + 11 and $p \equiv 3 \pmod{4}$ or e = 12a + 17 and $p \equiv 2 \pmod{4}$. $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \biguplus W_1 \biguplus W_2$ where $U = [3p+2e-1, \frac{n}{3} - 1]$ $\begin{array}{l} \underbrace{e+5}{2}] \bigoplus [\frac{n}{3} - \frac{e-1}{2}, \frac{n-1}{2}], W_1 = \{3p+2, 3p+4, 3p+5, \cdots, 3p+e+1, \frac{n}{3} - \frac{e+1}{2}\}, \text{ and } \\ W_2 = \{3p, 3p+3, 3p+e+2, 3p+e+3, \cdots, 3p+2e-2, \frac{n}{3} - \frac{e+3}{2}\}. \end{array}$ If e = 12a + 11, then $([1, 3p + 1] \setminus \{3p\}) \cup U = (\biguplus_{i=1}^{p-1} T_i \biguplus S_{3,i}) \biguplus (T_p \biguplus S_4).$ If e = 12a + 17, then $([1, 3p + 1] \setminus \{3p\}) \bigcup U = \biguplus_{i=1}^p T_i \biguplus S_{1,i}$.

It can be checked in each case that U is an even p(m-3)-set and both W_1 and W_2 are strong e-subsets.

Similarly to Proposition 3.2, the proof follows by virtue of Lemma 3.1, Propositions 2.3, 2.4, and Theorem 2.6.

Together with Propositions 3.2 and 3.3, we obtain the first main consequence.

Theorem 3.4. Suppose m = 3e is an odd integer with gcd(3, e) = 1, and let n be admissible with gcd(m, n) = 3 and n > 2m. Then there exists a cyclic m-cycle system of K_n .

Example 1. A cyclic 69-cycle system of K_{507} is presented. Given d = 3, e = 23, and p = 3, we have m = 69, b = 2, s = 31, and n = 507 where gcd(m, n) = 3 and so $\frac{n-1}{2} = 253$ and n/d = 169.

Taking $U = [54, 155] \biguplus [158, 253], W_1 = \{11, 13, \dots, 33, 157\}$, and $W_2 = \{9, 12, 34, \dots, 53, 156\}$, it follows that $[1, \frac{n-1}{2}] = ([1, 10] \setminus \{9\}) \biguplus U \oiint W_1 \oiint W_2$. Note that both W_1 and W_2 are strong 23-sets.

Let $T_1 \biguplus S_{3,1}, T_2 \oiint S_{3,2}, T_3 \oiint S_4$ be respectively connection sets defined as

- $T_1 \biguplus S_{3,1} = \{1, 4, 5\} \biguplus \{54, 56\} \biguplus [58, 121],$
- $T_2 \biguplus S_{3,2} = \{2,6,8\} \biguplus \{55,57\} \biguplus [122,155] \biguplus [158,187], \text{ and }$

$$T_3 \biguplus S_4 = \{3, 7, 10\} \biguplus [188, 251] \biguplus \{252, 254\}.$$

It is clear that both $T_1 \biguplus S_{3,1}$ and $T_2 \oiint S_{3,2}$ are 3-proper and $T_3 \oiint S_4$ is 4-proper.

By Proposition 2.4, there are cyclic 69-cycle systems of $X(507, \pm(T_i \biguplus S_{3,i}))$ $(1 \le i \le 2)$ and $X(507, \pm(T_3 \oiint S_4))$, and by Lemma 3.1, there exist cyclic 69-cycle systems of $X(507, \pm W_i)$ $(1 \le i \le 2)$.

Now, by virtue of Theorem 2.6, we obtain a cyclic 69-cycle system of K_{507} .

4.
$$\operatorname{Gcd}(m,n) = d$$

Finally, assume gcd(m, n) = d, that is, e = 3 and m = 3d where gcd(3, d) = 1. Note that we just consider $d \ge 11$ because $m \ge 33$. Since d is odd with gcd(d, 3) = 1, we have d = 6a + 5 or 6a + 7 for $a \ge 1$. If d = 6a + 5, by Lemma 1.4.(3), s = 5, b = 5a + 4, and n = 2pm + 30a + 25 for $p \ge 0$; in this case, $m \equiv 3$ (resp. 1) (mod 4) if $a \equiv 0$ (resp. 1) (mod 2). Analogously, by Lemma 1.4(2), if d = 6a + 7, then s = 1, b = a + 1, and n = 2pm + 6a + 7 for $p \ge 1$, and it follows that $m \equiv 1$ (resp. 3) (mod 4) if $a \equiv 0$ (resp. 1) (mod 2).

Lemma 4.1. Let m = 3d where d = 6a + 5 or 6a + 7 for $a \ge 1$ and n admissible with gcd(m, n) = d.

- (1) If d = 6a + 5, then s = 5, b = 5a + 4, n = 2pm + 30a + 25 for $p \ge 0$, and $m \equiv 3$ (resp. 1) (mod 4) if $a \equiv 0$ (resp. 1) (mod 2).
- (2) If d = 6a + 7, then s = 1, b = a + 1, n = 2pm + 6a + 7 for $p \ge 1$, and $m \equiv 1$ (resp. 3) (mod 4) if $a \equiv 0$ (resp. 1) (mod 2).

Hence, besides p full base cycles, 5a + 4 (resp. a + 1) short base cycles C with ||D(C)|| = 2e will be constructed if d = 6a + 5 (resp. d = 6a + 7). Recall that n = 2pm + 2be + 1 = 2pm + ds = d(2pe + s). Assume b = 4q + r where $q \ge 0$ and $0 \le r \le 3$ to be the Euclidean division of b by 4. Let Q, A, B, D, and F be subsets of $[1, \frac{n-1}{2}]$ defined by

$$Q = \begin{cases} [1,3p] \bigcup [3p+1,n/d-2], & \text{if } p \equiv 1 \pmod{4}, \\ ([1,3p+1] \setminus \{3p\}) \bigcup \{3p,3p+2\} \bigcup [3p+3,n/d-3], & \text{if } p \equiv 2 \pmod{4}, \\ ([1,3p+1] \setminus \{3p\}) \bigcup \{3p,3p+2\} \bigcup [3p+3,n/d-2], & \text{if } p \equiv 3 \pmod{4}, \\ [1,3p] \bigcup [3p+1,n/d-3], & \text{if } p \equiv 0 \pmod{4}, \end{cases}$$

$$\begin{split} A &= \bigcup_{i=0}^{q-1} A_i, \text{where} \\ A_i &= \begin{cases} \{(2i+1) \cdot n/d - 1, (2i+1) \cdot n/d \\ +2, (2i+2) \cdot n/d - 2, (2i+2) \cdot n/d + 1\}, & \text{if } p \equiv 1 \text{ or } 3 \pmod{4}, \\ \{(2i+1) \cdot n/d - 2, (2i+1) \cdot n/d \\ +1, (2i+2) \cdot n/d - 1, (2i+2) \cdot n/d + 2\}, & \text{if } p \equiv 0 \text{ or } 2 \pmod{4}, \end{cases} \end{split}$$

$$B = \bigcup_{i=0}^{q-1} B_i$$
, where

$$B_{i} = \begin{cases} \{(2i+1) \cdot n/d, (2i+1) \cdot n/d \\ +1, (2i+2) \cdot n/d - 1, (2i+2) \cdot n/d \}, & \text{if } p \equiv 1 \text{ or } 3 \pmod{4}, \\ \{(2i+1) \cdot n/d - 1, (2i+1) \cdot n/d, \\ (2i+2) \cdot n/d, (2i+2) \cdot n/d + 1\}, & \text{if } p \equiv 0 \text{ or } 2 \pmod{4}, \end{cases}$$

$$D = \bigcup_{i=0}^{q-1} D_i$$
, where

$$D_{i} = \begin{cases} [(2i+1) \cdot n/d + 3, (2i+2) \cdot n/d - 3] \bigcup [(2i+2) \cdot n/d \\ +2, (2i+3) \cdot n/d - 2], & \text{if } p \equiv 1 \text{ or } 3 \pmod{4}, \\ [(2i+1) \cdot n/d + 2, (2i+2) \cdot n/d - 2] \bigcup [(2i+2) \cdot n/d \\ +3, (2i+3) \cdot n/d - 3], & \text{if } p \equiv 0 \text{ or } 2 \pmod{4}, \end{cases}$$

$$F = \begin{cases} [(2q+1) \cdot n/d - 1, \frac{n-1}{2}], & \text{if } p \equiv 1 \text{ or } 3 \pmod{4}, \text{and} \\ [(2q+1) \cdot n/d - 2, \frac{n-1}{2}], & \text{if } p \equiv 0 \text{ or } 2 \pmod{4}. \end{cases}$$

It is easy to see that if $p \equiv 1$ or 3 (mod 4), then $A \bigcup B \bigcup D = [n/d - 1, (2q + 1)n/d - 2]$, and if $p \equiv 0$ or 2 (mod 4), then $A \bigcup B \bigcup D = [n/d - 2, (2q+1)n/d - 3]$. Moreover, F is not empty. An easy verification shows that the union of subsets Q, A, B, D, and F forms a partition of $[1, \frac{n-1}{2}]$.

Lemma 4.2. The interval $[1, \frac{n-1}{2}]$ can be partitioned into the union of subsets Q, A, B, D, and F.

In view of the subsets D_i $(0 \le i \le q-1)$ in D, we can partition it into the union of subsets $D_{i,1}$, $D_{i,2}$, and $D_{i,3}$ and set $D_i^* = \bigcup_{i=0}^{q-1} D_{i,3}$ as follows.

If $p \equiv 1$ or 3 (mod 4), then

$$\begin{cases} D_{i,1} = [(2i+1) \cdot n/d + 3, (2i+1) \cdot n/d + 6]; \\ D_{i,2} = [(2i+2) \cdot n/d + 2, (2i+2) \cdot n/d + 5]; \text{ and} \\ D_{i,3} = [(2i+1) \cdot n/d + 7, (2i+2) \cdot n/d - 3] \bigcup [(2i+2) \cdot n/d + 6, (2i+3) \cdot n/d - 2]. \end{cases}$$

If $p \equiv 0$ or 2 (mod 4), then

$$\begin{cases} D_{i,1} = [(2i+1) \cdot n/d + 2, (2i+1) \cdot n/d + 5]; \\ D_{i,2} = [(2i+2) \cdot n/d + 3, (2i+2) \cdot n/d + 6]; \text{ and} \\ D_{i,3} = [(2i+1) \cdot n/d + 6, (2i+2) \cdot n/d - 2] \bigcup [(2i+2) \cdot n/d + 7, (2i+3) \cdot n/d - 3]. \end{cases}$$

To prove the second main result, we need some auxiliary lemmas. Throughout we will assume d to be an odd prime (≥ 11).

Lemma 4.3. For each *i* with $1 \le i \le 3$, there exists a cyclic *m*-cycle system of $X(n, \pm W_i)$ where $W_1 = \{(2q+1) \cdot n/d - 1, (2q+1) \cdot n/d + 2, (2q+1) \cdot n/d + 3\}$, $W_2 = \{3p+1, 3p+3, (2q+1) \cdot n/d - 2\}$, and $W_3 = \{3p, 3p+2, (2q+1) \cdot n/d - 2\}$.

Proof. Let C_i $(1 \le i \le 3)$ be closed *m*-trails defined as

 $\begin{array}{l} C_1 = [0,(2q+1)\cdot n/d-1,(4q+2)\cdot n/d+2]_{(2q+1)\cdot n/d},\\ C_2 = [0,(2q+1)\cdot n/d-2,(2q+1)\cdot n/d+3p+1]_{(2q+1)\cdot n/d}, \text{ and }\\ C_3 = [0,(2q+1)\cdot n/d-2,(2q+1)\cdot n/d+3p]_{(2q+1)\cdot n/d}. \end{array}$

It can be checked that each C_i $(1 \le i \le 3)$ is an *m*-cycle of index $(2q+1) \cdot n/d$ with $\partial C_i = \pm W_i$. The thesis then follows from Lemma 2.5.

Lemma 4.4. For each *i* with $1 \le i \le 4$, there exists a cyclic *m*-cycle system of $X(n, \pm W_i)$ where $W_1 = \{3p + 1, 3p + 3, (2q + 1) \cdot n/d - 1, (2q + 1) \cdot n/d + 2, (2q + 1) \cdot n/d + 3, (2q + 1) \cdot n/d + 4\}$, $W_2 = \{3p + 1, 3p + 3, (2q + 1) \cdot n/d - 2, (2q + 1) \cdot n/d + 1, (2q + 1) \cdot n/d + 2, (2q + 1) \cdot n/d + 3\}$, $W_3 = \{3p, 3p + 2, (2q + 1) \cdot n/d - 1, (2q + 1) \cdot n/d + 2, (2q + 1) \cdot n/d + 3, (2q + 1) \cdot n/d + 4\}$, and $W_4 = \{3p, 3p+2, (2q+1) \cdot n/d - 2, (2q+1) \cdot n/d + 1, (2q+1) \cdot n/d + 3\}$.

Proof. For
$$1 \le i \le 4$$
, let C_i be the union of closed *m*-trails $C_{i,1}$, $C_{i,2}$ given by
 $C_{1,1} = C_{3,1} = [0, (2q+1) \cdot n/d - 1, (4q+2) \cdot n/d + 3]_{(2q+1) \cdot n/d},$
 $C_{1,2} = [0, (2q+1) \cdot n/d + 2, (2q+1) \cdot n/d + 3p + 3]_{(2q+1) \cdot n/d},$
 $C_{2,1} = C_{4,1} = [0, (2q+1) \cdot n/d + 1, (4q+2) \cdot n/d + 3]_{(2q+1) \cdot n/d},$
 $C_{2,2} = [0, (2q+1) \cdot n/d - 2, (2q+1) \cdot n/d + 3p + 1]_{(2q+1) \cdot n/d},$
 $C_{3,2} = [0, (2q+1) \cdot n/d + 2, (2q+1) \cdot n/d + 3p + 2]_{(2q+1) \cdot n/d},$ and
 $C_{4,2} = [0, (2q+1) \cdot n/d - 2, (2q+1) \cdot n/d + 3p]_{(2q+1) \cdot n/d}.$

Similarly, we have the thesis by Lemma 2.5 since $C_{i,1}$, $C_{i,2}$ $(1 \le i \le 4)$ are *m*-cycles of index $(2q+1) \cdot n/d$ and $\partial C_i = \partial (C_{i,1} \bigcup C_{i,2}) = \pm W_i$ for $1 \le i \le 4$.

Lemma 4.5. For each *i* with $1 \le i \le 3$, there exists a cyclic *m*-cycle system of $X(n, \pm W_i)$ where $W_1 = \{3p+1, 3p+3, (2q+1) \cdot n/d - 1, (2q+1) \cdot n/d + 2, \cdots, (2q+1) \cdot n/d + 7\}, W_2 = \{3p, 3p+2, (2q+1) \cdot n/d - 1, (2q+1) \cdot n/d + 2, \cdots, (2q+1) \cdot n/d + 7\},$ and $W_3 = \{(2q+1) \cdot n/d - 2, (2q+1) \cdot n/d + 1, \cdots, (2q+1) \cdot n/d + 8\}.$

Proof. The thesis follows from Lemma 2.5 by taking $C_i = \bigcup_{j=1}^3 C_{i,j}$ where each $C_{i,j}$ $(1 \le i, j \le 3)$ defined as follows is an *m*-cycle of index $(2q + 1) \cdot n/d$ and $\partial C_i = \pm W_i$ for $1 \le i \le 3$.

$$\begin{split} C_{1,1} &= C_{2,1} = [0, (2q+1) \cdot n/d - 1, (4q+2) \cdot n/d + 5]_{(2q+1) \cdot n/d}, \\ C_{1,2} &= [0, (2q+1) \cdot n/d + 2, (2q+1) \cdot n/d + 3p + 3]_{(2q+1) \cdot n/d}, \\ C_{2,2} &= [0, (2q+1) \cdot n/d + 2, (2q+1) \cdot n/d + 3p + 2]_{(2q+1) \cdot n/d}, \\ C_{1,3} &= C_{2,3} = [0, (2q+1) \cdot n/d + 3, (4q+2) \cdot n/d + 7]_{(2q+1) \cdot n/d}, \\ C_{3,1} &= [0, (2q+1) \cdot n/d + 1, (4q+2) \cdot n/d + 4]_{(2q+1) \cdot n/d}, \\ C_{3,2} &= [0, (2q+1) \cdot n/d + 2, (4q+2) \cdot n/d + 7]_{(2q+1) \cdot n/d}, \\ and \\ C_{3,3} &= [0, (2q+1) \cdot n/d - 2, (4q+2) \cdot n/d + 6]_{(2q+1) \cdot n/d}. \end{split}$$

Throughout assume $W = \bigcup_{i=0}^{q-1} (A_i \bigcup D_{i,1} \bigcup D_{i,2})$ and $\epsilon = 0$ or 1 according to whether $p \equiv 1, 3$ or 0, 2 (mod 4).

Lemma 4.6. There exists a cyclic m-cycle system of $X(n, \pm W)$.

Proof. For $0 \le i \le q-1$ and $1 \le j \le 4$, let $C_{i,j}$ be an *m*-cycle of index $(2i+1) \cdot n/d$ or $(2i+2) \cdot n/d$ defined as follows:

If $p \equiv 1$ or 3 (mod 4), then set $C_{i,1} = [0, (2i+1) \cdot n/d - 1, (4i+2) \cdot n/d + 3]_{(2i+1) \cdot n/d},$ $C_{i,2} = [0, (2i+1) \cdot n/d + 2, (4i+3) \cdot n/d + 4]_{(2i+1) \cdot n/d},$ $C_{i,3} = [0, (2i+2) \cdot n/d - 2, (4i+4) \cdot n/d + 3]_{(2i+2) \cdot n/d}, \text{ and}$ $C_{i,4} = [0, (2i+2) \cdot n/d + 1, (4i+3) \cdot n/d + 6]_{(2i+2) \cdot n/d}.$ If $p \equiv 0$ or 2 (mod 4), then set $C_{i,1} = [0, (2i+1) \cdot n/d - 2, (4i+3) \cdot n/d + 3]_{(2i+1) \cdot n/d},$ $C_{i,2} = [0, (2i+1) \cdot n/d + 1, (4i+2) \cdot n/d + 3]_{(2i+1) \cdot n/d},$ $C_{i,3} = [0, (2i+2) \cdot n/d - 1, (4i+3) \cdot n/d + 4]_{(2i+2) \cdot n/d}, \text{ and}$ $C_{i,4} = [0, (2i+2) \cdot n/d + 2, (4i+4) \cdot n/d + 6]_{(2i+2) \cdot n/d}.$ Let $C = \bigcup_{i=0}^{q-1} \bigcup_{j=1}^{4} C_{i,j}$ be the union of *m*-cycles $C_{i,j}$ ($0 \leq i \leq q - 1$ and $1 \leq j \leq 4$), we then obtain the thesis since in each case $\partial C = \pm W$.

Proposition 4.7. Suppose m = 3d where d = 6a + 5 for $a \ge 1$ and let n be admissible with gcd(m, n) = d. Then there exists a cyclic m-cycle system of K_n . *Proof.* Recall that $m \equiv 3$ (resp. 1) (mod 4) if $a \equiv 0$ (resp. 1) (mod 2). The proof is split into 4 cases according to whether $a \equiv 0, 1, 2, \text{ or } 3 \pmod{4}$.

Case 1. $a \equiv 0 \pmod{4}$.

If $p \equiv 0$ or 1 (mod 4), then $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \oiint W$ where $U = [3p+1, n/d - 2 - \epsilon] \oiint B \oiint D_i^* \oiint F$, and $[1, 3p] \bigcup U = \oiint_{i=1}^p (T_i \oiint S_{1,i})$.

If $p \equiv 2$ or 3 (mod 4), then $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \oiint W$ where $U = \{3p, 3p+2\} \biguplus [3p+3, n/d-2-\epsilon] \biguplus B \biguplus D_i^* \oiint F$, and $([1, 3p+1] \setminus \{3p\}) \bigcup U = \biguplus_{i=1}^{p-1}(T_i \oiint S_{1,i}) \oiint (T_p \oiint S_2).$

By Proposition 2.3, Lemma 4.6, and Theorem 2.6, for each subcase there is a cyclic m-cycle system of K_n .

Case 2. $a \equiv 1 \pmod{4}$.

If $p \equiv 1 \pmod{4}$, then $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \oiint W \oiint W^*$ where $W^* = \{(2q+1) \cdot n/d - 1, (2q+1) \cdot n/d + 2, (2q+1) \cdot n/d + 3\}$ and $U = [3p+1, n/d - 2] \oiint B \oiint D_i^*$ $\biguplus (F \setminus W^*); [1, 3p] \bigcup U = \oiint_{i=1}^{p-1}(T_i \oiint S_{3,i}) \oiint (T_p \oiint S_4).$ If $p \equiv 2 \pmod{4}$, then $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \oiint U \oiint W \oiint W^*$ where W^*

If $p \equiv 2 \pmod{4}$, then $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \oiint W \oiint W^*$ where $W^* = \{3p, 3p+2, (2q+1) \cdot n/d - 2\}$ and $U = [3p+3, n/d - 3] \oiint B \oiint D_i^* \oiint (F \setminus W^*);$ $([1, 3p+1] \setminus \{3p\}) \bigcup U = \biguplus_{i=1}^p (T_i \oiint S_{3,i}).$

If $p \equiv 3 \pmod{4}$, then $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \oiint W \oiint W^*$ where $W^* = \{(2q+1) \cdot n/d - 1, (2q+1) \cdot n/d + 2, (2q+1) \cdot n/d + 3\}$ and $U = \{3p, 3p+2\} \biguplus [3p+3, n/d - 2] \biguplus B \oiint D_i^* \oiint (F \setminus W^*); ([1, 3p+1] \setminus \{3p\}) \bigcup U = \biguplus_{i=1}^p (T_i \oiint S_{3,i}).$

If $p \equiv 0 \pmod{4}$, then $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \oiint W \oiint W^*$ where $W^* = \{3p + 1, 3p + 3, (2q+1) \cdot n/d - 2\}$ and $U = \{3p+2, 3p+4\} \biguplus [3p+5, n/d - 3] \biguplus B \oiint D_i^*$ $\biguplus (F \setminus W^*); [1, 3p] \bigcup U = \biguplus_{i=1}^{p-1} (T_i \oiint S_{3,i}) \oiint (T_p \oiint S_4).$

By utilizing Proposition 2.4, Lemmas 4.3, 4.6, and Theorem 2.6, a cyclic *m*-cycle system of K_n exists.

Case 3. $a \equiv 2 \pmod{4}$.

If $p \equiv 0$ or 1 (mod 4), then $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \biguplus W \biguplus W^*$ where $W^* = \{3p+1, 3p+3, (2q+1) \cdot n/d - 1 - \epsilon, (2q+1) \cdot n/d + 2 - \epsilon, (2q+1) \cdot n/d + 3 - \epsilon, (2q+1) \cdot n/d + 4 - \epsilon\}$ and $U = \{3p+2, 3p+4\} \biguplus [3p+5, n/d - 2 - \epsilon] \biguplus B \biguplus D_i^* \biguplus (F \setminus W^*);$ $[1, 3p] \bigcup U = \biguplus_{i=1}^{p-1} (T_i \biguplus S_{1,i}) \biguplus (T_p \biguplus S_2).$

If $p \equiv 2$ or 3 (mod 4), then $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \oiint W \oiint W^*$ where $W^* = \{3p, 3p+2, (2q+1) \cdot n/d - 1 - \epsilon, (2q+1) \cdot n/d + 2 - \epsilon, (2q+1) \cdot n/d + 3 - \epsilon, (2q+1) \cdot n/d + 4 - \epsilon\}$ and $U = [3p+3, n/d - 2 - \epsilon] \oiint B \oiint D_i^* \biguplus (F \setminus W^*);$ $([1, 3p+1] \setminus \{3p\}) \bigcup U = \oiint_{i=1}^p (T_i \oiint S_{1,i}).$

By virtue of Proposition 2.3, Lemmas 4.4, 4.6, and Theorem 2.6, there is a cyclic m-cycle system of K_n .

Case 4. $a \equiv 3 \pmod{4}$.

If $p \equiv 1 \pmod{4}$, then $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \biguplus W \biguplus W^*$ where $W^* = \{3p + 1, 3p + 3\} \biguplus \{(2q + 1) \cdot n/d - 1, (2q + 1) \cdot n/d + 2, \cdots, (2q + 1) \cdot n/d + 7\}$ and $U = \{3p + 2, 3p + 4\} \biguplus [3p + 5, n/d - 2] \biguplus B \oiint D_i^* \biguplus (F \setminus W^*).$

If $p \equiv 0 \pmod{4}$, then $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \oiint W \oiint W^*$ where $W^* = \{(2q+1) \cdot n/d - 2, (2q+1) \cdot n/d + 1, \cdots, (2q+1) \cdot n/d + 8\}$ and $U = [3p+1, n/d - 3] \oiint B \oiint D_i^* \oiint (F \setminus W^*)$.

Then for each subcase, $[1, 3p] \bigcup U = \biguplus_{i=1}^{p} (T_i \biguplus S_{3,i}).$

If $p \equiv 2 \pmod{4}$, then $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \oiint W \oiint W^*$ where $W^* = \{(2q+1) \cdot n/d - 2, (2q+1) \cdot n/d + 1, \cdots, (2q+1) \cdot n/d + 8\}$ and $U = \{3p, 3p+2\} \biguplus [3p+3, n/d - 3] \oiint B \oiint D_i^* \biguplus (F \setminus W^*).$

If $p \equiv 3 \pmod{4}$, then $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \biguplus W \biguplus W^*$ where

Also, for each subcase, $([1, 3p+1] \setminus \{3p\}) \bigcup U = \bigcup_{i=1}^{p-1} (T_i \bigcup S_{3,i}) \bigcup (T_p \bigcup S_4)$. According to Proposition 2.4, Lemmas 4.5, 4.6, and Theorem 2.6, it follows that for each subcase, there is a cyclic *m*-cycle system of K_n .

Lemma 4.8. Suppose m = 3d where d = 6a + 7 and n = 42a + 49, $a \ge 1$. Then there exists a cyclic m-cycle system of K_n .

Proof. Note that if $a \equiv 1$ (resp. 0) (mod 2), then $m \equiv 3$ (resp. 1) (mod 4) and b = a + 1. Let $C_{1,i}, C_{2,i}, C_3$ be closed *m*-trails defined as

 $C_{1,i} = [0, 17 + 14i, 39 + 28i]_{14+14i},$ $C_{2,i} = [0, 19 + 14i, 37 + 28i]_{21+14i}, \text{ and }$ $C_3 = [0, \frac{n-5}{2}, \frac{n+3}{2}]_{\frac{n-7}{2}}.$

It can be checked that both $C_{1,i}$ and $C_{2,i}$ $(0 \le i \le \lfloor \frac{b}{2} \rfloor - 1)$ are *m*-cycles of index 14 + 14i or 21 + 14i, respectively, and C_3 is an *m*-cycle of index $\frac{n-7}{2}$. Moreover, $\partial C_{1,i} = \pm W_{1,i}$ where $W_{1,i} = \{17 + 14i, 22 + 14i, 25 + 14i\}$, $\partial C_{2,i} = \pm W_{2,i}$ where $W_{2,i} = \{16 + 14i, 18 + 14i, 19 + 14i\}$ and $\partial C_3 = \pm W_3$ where $W_3 = \{4, 5, \frac{n-5}{2}\}$.

 $W_{2,i} = \{16 + 14i, 18 + 14i, 19 + 14i\} \text{ and } \partial C_3 = \pm W_3 \text{ where } W_3 = \{4, 5, \frac{n-5}{2}\}.$ Now, set $U = [4, \frac{n-1}{2}] \setminus Y$ where $Y = \bigcup_{i=0}^{\lfloor \frac{b}{2} \rfloor - 1} (W_{1,i} \biguplus W_{2,i})$ if $a \equiv 1 \pmod{2}$ and $Y = \bigcup_{i=0}^{\lfloor \frac{b}{2} \rfloor - 1} (W_{1,i} \oiint W_{2,i}) \oiint W_3$ if $a \equiv 0 \pmod{2}$. A routine verification shows that $[1, 3] \bigcup U = T_1 \oiint S_1$ if $a \equiv 1 \pmod{2}$, and $[1, 3] \bigcup U = T_1 \oiint S_4$ if $a \equiv 0 \pmod{2}$.

The thesis follows by Propositions 2.3, 2.4, Lemma 2.5, and Theorem 2.6.

Proposition 4.9. Suppose m = 3d where d = 6a + 7 for $a \ge 1$ and let n be admissible with gcd(m, n) = d and n > 2m. Then there exists a cyclic m-cycle system of K_n .

Proof. Recall that n = 2pm + ds, so, by the hypothesis on d, we have n = (6a + 7)(6p + 1). If p = 1, i.e., n = 42a + 49, the proof is done by Lemma 4.8, so it is enough to consider the cases where p > 1. The proof is divided into 2 cases according to whether $a \equiv 0$ or 1 (mod 2). The proof here is similar to those in Proposition 4.7, and to simplify, we just provide the construction methods and leave the details to the reader.

Case 1. $a \equiv 0 \pmod{2}$. Then b = 4q + 1 or 4q + 3.

Subcase 1.1 b = 4q + 1.

If $p \equiv 1 \pmod{4}$, then $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \oiint W \oiint W^*$ where $W^* = \{(2q+1) \cdot n/d - 1, (2q+1) \cdot n/d + 2, (2q+1) \cdot n/d + 3\}$ and $U = [3p+1, n/d - 2] \biguplus B \oiint D_i^* \oiint (F \setminus W^*)$.

If $p \equiv 0 \pmod{4}$, then $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \oiint W \oiint W^*$ where $W^* = \{3p + 1, 3p + 3, (2q+1) \cdot n/d - 2\}$ and $U = \{3p+2, 3p+4\} \biguplus [3p+5, n/d - 3] \biguplus B \oiint D_i^* \oiint (F \setminus W^*).$

If $p \equiv 3 \pmod{4}$, then $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \oiint W \oiint W^*$ where $W^* = \{(2q+1) \cdot n/d - 1, (2q+1) \cdot n/d + 2, (2q+1) \cdot n/d + 3\}$ and $U = \{3p, 3p+2\} \oiint [3p+3, n/d-2] \oiint B \oiint D_i^* \oiint (F \setminus W^*).$

If $p \equiv 2 \pmod{4}$, then $\left[1, \frac{n-1}{2}\right] = \left(\left[1, 3p+1\right] \setminus \{3p\}\right) \biguplus U \oiint W \oiint W^*$ where $W^* = \{3p, 3p+2, (2q+1) \cdot n/d - 2\}$ and $U = \left[3p+3, n/d - 3\right] \oiint B \oiint D_i^* \oiint (F \setminus W^*)$.

Subcase 1.2 b = 4q + 3.

If $p \equiv 1 \pmod{4}$, then $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \oiint W \oiint W^*$ where $W^* = \{3p + 1, 3p + 3, (2q + 1) \cdot n/d - 1, (2q + 1) \cdot n/d + 2, \cdots, (2q + 1) \cdot n/d + 7\}$ and $U = \{3p + 2, 3p + 4\} \biguplus [3p + 5, n/d - 2] \biguplus B \oiint D_i^* \biguplus (F \setminus W^*).$

If $p \equiv 0 \pmod{4}$, then $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \biguplus W \oiint W^*$ where $W^* = \{(2q+1) \cdot n/d - 2, (2q+1) \cdot n/d + 1, \cdots, (2q+1) \cdot n/d + 8\}$ and $U = [3p+1, n/d - 3] \biguplus B \oiint D_i^* \biguplus (F \setminus W^*)$.

If $p \equiv 3 \pmod{4}$, then $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \oiint W \oiint W^*$ where $W^* = \{3p, 3p+2, (2q+1) \cdot n/d - 1, (2q+1) \cdot n/d + 2, \cdots, (2q+1) \cdot n/d + 7\}$ and $U = [3p+3, n/d - 2] \oiint B \oiint D_i^* \oiint (F \setminus W^*).$

If $p \equiv 2 \pmod{4}$, then $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \oiint W \oiint W^*$ where $W^* = \{(2q+1) \cdot n/d - 2, (2q+1) \cdot n/d + 1, \dots, (2q+1) \cdot n/d + 8\}$ and $U = \{3p, 3p+2\} \biguplus [3p+3, n/d-3] \oiint B \oiint D_i^* \oiint (F \setminus W^*).$

Case 2. $a \equiv 1 \pmod{2}$. Then b = 4q or 4q + 2.

Subcase 2.1 b = 4q.

If $p \equiv 0$ or 1 (mod 4), then $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \oiint W$ where $U = [3p+1, n/d - 2 - \epsilon] \oiint B \oiint D_i^* \oiint F$.

If $p \equiv 2 \text{ or } 3 \pmod{4}$, then $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \biguplus W$ where $U = \{3p, 3p+2\} \biguplus [3p+3, n/d-2-\epsilon] \biguplus B \oiint D_i^* \biguplus F$.

Subcase 2.2 b = 4q + 2.

If $p \equiv 0$ or 1 (mod 4), then $[1, \frac{n-1}{2}] = [1, 3p] \biguplus U \biguplus W \biguplus W^*$ where $W^* = \{3p+1, 3p+3, (2q+1) \cdot n/d - 1 - \epsilon, (2q+1) \cdot n/d + 2 - \epsilon, (2q+1) \cdot n/d + 3 - \epsilon, (2q+1) \cdot n/d + 4 - \epsilon\}$ and $U = \{3p+2, 3p+4\} \biguplus [3p+5, n/d - 2 - \epsilon] \biguplus B \oiint D_i^* \biguplus (F \setminus W^*).$

If $p \equiv 2$ or 3 (mod 4), then $[1, \frac{n-1}{2}] = ([1, 3p+1] \setminus \{3p\}) \biguplus U \biguplus W \biguplus W^*$ where $W^* = \{3p, 3p+2, (2q+1) \cdot n/d - 1 - \epsilon, (2q+1) \cdot n/d + 2 - \epsilon, (2q+1) \cdot n/d + 3 - \epsilon, (2q+1) \cdot n/d + 4 - \epsilon\}$ and $U = [3p+3, n/d - 2 - \epsilon] \biguplus B \biguplus D_i^* \biguplus (F \setminus W^*)$.

Combining Propositions 4.7 and 4.9, we obtain the second main result.

Theorem 4.10. Suppose m = 3d with d a prime and let n be admissible with gcd(m, n) = d and n > 2m. Then there exists a cyclic m-cycle system of K_n .

Example 2. There is a cyclic 111-cycle system of K_{925} . Taking m = 111 with d = 37 and e = 3, by Lemma 4.1, we have that s = 1, b = 6, and n = 222p + 37, and letting p = 4, it follows that n = 925, n/d = 25, and $\frac{n-1}{2} = 462$. Note that in this situation, $q = \epsilon = 1$.

Then $[1, 462] = [1, 12] \biguplus U \oiint W \oiint W^*$ where $W = A_0 \oiint D_{0,1} \oiint D_{0,2} = \{23, 26, 49, 52\} \biguplus [27, 30] \biguplus [53, 56], W^* = \{13, 15, 73, 76, 77, 78\}, and <math>U = \{14, 16\}$ $\biguplus [17, 22] \oiint B \oiint D_0^* \oiint (F \setminus W^*)$ where $B = \{24, 25, 50, 51\}, D_0^* = [31, 48]$ $\biguplus [57, 72], and F \setminus W^* = [74, 75] \biguplus [79, 462].$ Since $[1, 12] \bigcup U = \bigcup_{i=1}^3 (T_i \oiint S_{1,i}) \oiint (T_4 \oiint S_2)$, by Proposition 2.3, a cyclic

Since $[1, 12] \cup U = \bigcup_{i=1}^{3} (T_i \biguplus S_{1,i}) \biguplus (T_4 \biguplus S_2)$, by Proposition 2.3, a cyclic 111-cycle system of $X(925, \pm([1, 12] \biguplus U))$ exists, and by virtue of Lemmas 4.4 and 4.6, we obtain cyclic 111-cycle systems of $X(925, \pm W^*)$ and $X(925, \pm W)$.

According to Theorem 2.6, a cyclic 111-cycle system of K_{925} does exist.

Now, by utilizing Theorems 3.4 and 4.10, the thesis of Theorem 1.6 follows.

References

- B. Alspach and H. Gavlas, Cycle decompositions of K_n and K_n I, J. Combin. Theory Ser. B, 81 (2001), 77-99.
- 2. A. Blinco, S. El-Zanati and C. Vanden Eynden, On the cyclic decomposition of complete graphs into almost-bipartite graphs, *Discrete Math.*, **284** (2004), 71-81.
- 3. D. Bryant, H. Gavlas and A. Ling, Skolem-type difference sets for cycle systems, *The Electron. J. Combin.*, **10** (2003), 1-12.
- D. Bryant and C. Rodger, Cycle decompositions, in: CRC Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz, eds., CRC Press, Boca Raton, FL, 2006, pp. 373-382.
- 5. M. Buratti, Cycle decompositions with a sharply vertex transitive automorphism group, *Matematiche (Catania)*, **59** (2004), 91-105.
- 6. M. Buratti and A. Del Fra, Existence of cyclic k-cycle systems of the complete graph, *Discrete Math.*, **261** (2003), 113-125.
- 7. M. Buratti and A. Del Fra, Cyclic Hamiltonian cycle systems of the complete graph, *Discrete Math.*, **279** (2004), 107-119.
- H. L. Fu and S. L. Wu, Cyclically decomposing the complete graph into cycles, *Discrete Math.*, 282 (2004), 267-273.
- 9. A. Kotzig, Decompositions of a complete graph into 4k-gons. (Russian) Mat. Fyz. Casopis Sloven. Akad. Vied, 15 (1965), 229-233.
- R. Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compositio Math., 6 (1938), 251-257.
- 11. A. Rosa, On cyclic decompositions of the complete graph into (4m + 2)-gons, *Mat. Fyz. Casopis Sloven. Akad. Vied*, **16** (1966), 349-352.

- 12. A. Rosa, On cyclic decompositions of the complete graph into polygons with odd number of edges (Slovak), *Casopis Pest. Mat.*, **91** (1966), 53-63.
- 13. A. Rosa, On decompositions of a complete graph into 4n-gons, *Mat. Casopis Sloven. Akad. Vied*, **17** (1967), 242-246 (in Russian).
- N. Shalaby, Skolem and Langford sequences, in: CRC Handbook of Combinatorial Designs, (C. J. Colbourn and J. H. Dinitz eds.), CRC Press, Boca Raton, FL, 2006, pp. 612-616.
- 15. M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, *J. Combin. Des.*, **10** (2002), 27-78.
- 16. A. Vietri, Cyclic k-cycle system of order 2km + k; a solution of the last open cases, J. Combin. Des., **12** (2004), 299-310.
- 17. S. L. Wu, Cyclic even cycle systems of the complete graph, *J. Combin. Des.*, **20** (2012), 23-39.
- 18. S. L. Wu and M. Buratti, A complete solution to the existence problem for 1-rotational *k*-cycle systems of *K_v*, *J. Combin. Des.*, **17** (2009), 283-293.
- 19. S. L. Wu and H. L. Fu, Cyclic *m*-cycle systems with $m \le 32$ or m = 2q with q a prime power, J. Combin. Des., 14 (2006), 66-81.

Shung-Liang Wu Department of computer science and information engineering National United University Miaoli 36003, Taiwan E-mail: slwu@nuu.edu.tw