TAIWANESE JOURNAL OF MATHEMATICS
Vol. 17, No. 5, pp. 1557-1574, October 2013
DOI: 10.11650/tjm.17.2013.2703
This paper is available online at http://journal.taiwanmathsoc.org.tw

CYCLIC ODD $3 K$-CYCLE SYSTEMS OF THE COMPLETE GRAPH

Shung-Liang Wu

Abstract

For any prime p and each admissible value n, a complete answer to the existence problem for cyclic $3 p$-cycle systems of the complete graph K_{n} is given.

1. Introduction

Let K_{n} be the complete graph of order n and let $C=\left(c_{0}, c_{1}, \cdots, c_{m-1}\right)$ denote an m-cycle or a closed m-trail. An m-cycle system of K_{n} is a pair (V, \boldsymbol{C}) where V is the vertex set of K_{n} and \boldsymbol{C} is a collection of m-cycles whose edges partition the edges of K_{n}. The necessary conditions for the existence of an m-cycle system of K_{n} are

$$
\begin{equation*}
n \equiv 1(\bmod 2), 3 \leq m \leq n, \text { and } n(n-1) \equiv 0(\bmod 2 m) \tag{*}
\end{equation*}
$$

Given an integer $m \geq 3$, an integer n satisfying the conditions in $\left(^{*}\right)$ is said to be admissible.

The study of m-cycle systems of the complete graph has been one of the most interesting problems in graph decompositions. A survey on cycle decompositions is given in [4]. Alspach and Gavlas [1] in the case of m odd and Sajna [15] in the even case proved the necessary conditions in $\left(^{*}\right)$ are also sufficient.

Let \mathbb{Z}_{n} be the group of integers modulo n and $\mathbb{Z}_{n}^{*}=\mathbb{Z}_{n} \backslash\{0\}$. An m-cycle system (V, \boldsymbol{C}) of the complete graph K_{n} is said to be cyclic if $V=\mathbb{Z}_{n}$ and $C+1=$ $\left(c_{0}+1, c_{1}+1, \cdots, c_{m-1}+1\right)(\bmod n) \in \boldsymbol{C}$ whenever $C \in \boldsymbol{C}$. The necessary conditions in $\left(^{*}\right)$ however are not sufficient for the existence of a cyclic m-cycle system of K_{n}. A cyclic n-cycle system of the complete graph K_{n} is called a cyclic Hamiltonian cycle system.

In 1938, Peltesohn [10] proved that for each admissible $n(\neq 9)$, there exists a cyclic 3 -cycle system of K_{n}. Since then, finding necessary and sufficient conditions for cyclic m-cycle systems of K_{n} has attracted much attention. Some partial solutions have been given by a number of authors $[2,3,6-9,11-13,16,17,19]$.

Received November 28, 2012, accepted March 11, 2013.
Communicated by Gerard Jennhwa Chang. 2010 Mathematics Subject Classification: 05C99. Key words and phrases: Cycle system, Cyclic.

Theorem 1.1. ([3, 6, 7, 8, 16]).
(1) Suppose $m \geq 3$ is a positive integer. Then there exists a cyclic m-cycle system of $K_{2 p m+1}$ for $p \geq 1$.
(2) Suppose $m \geq 3$ is an odd integer. Then there exists a cyclic m-cycle system of $K_{2 p m+m}$ for $p \geq 0$ except when $(m, p) \in\left\{(3,1),(15,0),\left(q^{\alpha}, 0\right)\right\}$ where q is a prime and $\alpha>1$.

Theorem 1.2. ([19]).
(1) If $3 \leq m \leq 32$, then for each admissible value n, there exists a cyclic m-cycle system of K_{n} provided $(m, n) \neq(3,9),(6,9),(9,9),(14,21),(15,15),(15,21)$, $(15,25),(20,25),(22,33),(24,33),(25,25),(27,27)$, and $(28,49)$.
(2) If $m<n<2 m+1$ and $\operatorname{gcd}(m, n)$ is an odd prime power, then there does not exist a cyclic m-cycle system of K_{n}.

Theorem 1.3. ([17]). For each even integer $m \geq 4$ and each admissible value n with $n>2 m$, there exists a cyclic m-cycle system of K_{n}.

To construct a cyclic m-cycle system of K_{n}, it is crucial to further characterize the admissible values n. Assume $m=d e$ to be any positive integer, where d is odd, $e \geq$ 1 , and $\operatorname{gcd}(d, e)=1$, and n to be an admissible value. If $\operatorname{gcd}(m, n)=d=1$, then it is easy to check from (${ }^{*}$) that $n=2 p m+1$ for $p \geq 1$. Now, suppose $\operatorname{gcd}(m, n)=d>1$. Then it is obvious that $n=2 p m+d s$, where p is a nonnegative integer and s is odd with $1 \leq s<2 e$. Also, since $n(n-1) \equiv 0(\bmod 2 m)$ and $\operatorname{gcd}(m, n)=d$, it follows that $n-1 \equiv 0(\bmod 2 e)$, or equivalently, $n=2 p m+2 b e+1$, where p is a nonnegative integer and $1 \leq b<d$. In fact, since $n=2 p m+d s=2 p m+2 b e+1 \geq m$, we have $p \geq 1$, if $b<\frac{d-1}{2}$ or $s<e$, and $p \geq 0$, if $b \geq \frac{d-1}{2}$ or $s \geq e$. Moreover, we obtain $d s$ $=2 b e+1$, where s is odd with $1 \leq s<2 e$ and $1 \leq b<d$.

Lemma 1.4. ([17]). Let $m=d e$ be any given integer (≥ 3) where d is odd, $e \geq 1$, and $\operatorname{gcd}(d, e)=1$, and let n be admissible with $\operatorname{gcd}(m, n)=d$.
(1) If $d=1$, then $n=2 p m+1$ for $p \geq 1$.
(2) If $d>1$ and $b<\frac{d-1}{2}$ or $s<e$, then $n=2 p m+2 b e+1=2 p m+d s$ for $p \geq 1$ where $1 \leq b<d$ and s is odd with $1 \leq s<2 e$.
(3) If $d>1$ and $b \geq \frac{d-1}{2}$ or $s \geq e$, then $n=2 p m+2 b e+1=2 p m+d s$ for $p \geq 0$ where $1 \leq b<d$ and s is odd with $1 \leq s<2 e$. In particular, if m is odd and $e=1$, then $n=2 p m+m$ for $p \geq 0$.

In view of Lemma 1.4, if we take $m=p^{k}$ where p is an odd prime and $k \geq 1$, then $d=1$ or p^{k}. It implies that $n=2 p m+1$ for $p \geq 1$ or $n=2 p m+m$ for $p \geq 0$ and by utilizing Theorem 1.1, we obtain the following consequence.

Theorem 1.5. Let $m=p^{k}$ where p is an odd prime and $k \geq 1$. Then for each admissible value n, there exists a cyclic m-cycle system of K_{n} except when $m=3$ and $n=9$ or $n=m$.

In this paper, we focus our attention on the constructions of cyclic m-cycle systems of K_{n} where $m=3 k$ is an odd integer with $\operatorname{gcd}(3, k)=1$. Note that by Theorem $1.2(1)$, it is enough to consider the m-cycles where $m \geq 33$. The methods used here involve difference constructions and circulant graphs, and it should be mentioned that some basic techniques used in this paper also occurred in [18]. The main result is:

Theorem 1.6. For any prime p and each admissible value n, there exist cyclic $3 p$-cycle systems of the complete graph K_{n}.

We remark that given an odd integer $m=3 k$ with $\operatorname{gcd}(3, k)=1$, it follows by Lemma 1.4 that $n \equiv 1,3, k$, or $3 k(\bmod 2 m)$, and using Theorem 1.1 , it suffices to consider only the cases when $n \equiv 3$ or $k(\bmod 2 m)$, that is, $\operatorname{gcd}(m, n)=3$ or k. Moreover, in the light of Theorem 1.2(2), if k is a prime, then there is no cyclic $3 k$-cycle system of K_{n} where $n<6 k$.

2. Definitions and Preliminaries

Let S be a subset of \mathbb{Z}_{n}^{*} such that $S=-S$; that is, $s \in S$ implies that $-s \in S$. The circulant graph of order $n, X(n, S)$, is defined as the graph whose vertices are the elements of \mathbb{Z}_{n}, with an edge between vertices u and v if and only if $v=u+s$ for some $s \in S$. The set S is called the connection set of $X(n, S)$. Since for each edge $\{u, v\}$ in $X(n, S)$, there is an element s in S such that $\{u, v\}=\{u, u+s\}=$ $\{v+n-s, v\}(\bmod n)$, we will write $-s$ for $n-s$ when n is understood, and the elements $\pm s$ in S are said to be the differences of the edge $\{u, v\}$ in $X(n, S)$, and we denote it by $d(u, v)= \pm s$. In what follows, we will use $\|D(H)\|$ to denote the number of distinct differences of edges in H where H is the subgraph of $X(n, S)$.

Given an m-cycle $C=\left(c_{0}, c_{1}, \cdots, c_{m-1}\right)$ in $X(n, S)$ where $m=d e$ is an odd integer, the cycle C is of type d if its stabilizer under the natural action of \mathbb{Z}_{n} has order d. In other words, d is the common divisor of n and m such that $C=C+n / d(\bmod$ n). Following [5], the list of partial differences of C of type d is the multiset

$$
\partial C=\left\{ \pm\left(c_{i+1}-c_{i}\right): 0 \leq i \leq m / d-1\right\}
$$

An m-cycle C of type d on $X(n, S)$ is called full if $d=1$, otherwise short. The cycle orbit \mathcal{O} of C is the set of m-cycles in the collection $\{C+i: 0 \leq i<n / d\}$. The length of a cycle orbit is its cardinality. A base cycle of a cycle orbit \mathcal{O} is a cycle $C \in \mathcal{O}$ that is chosen arbitrarily. Any cyclic m-cycle system of a graph of order n is generated from base cycles, and each full m-cycle corresponds to a cycle orbit with length n.

Since n is odd, the connection set S can be partitioned into subsets $A,-A$ such that for every element s in $A, s=i$ or $-i$ for $1 \leq i \leq \frac{n-1}{2}$, so we may assume S $= \pm A$. It is evident that the complete graph K_{n} is isomorphic to the circulant graph $X(n, S)$ with $S=\mathbb{Z}_{n}^{*}= \pm\left\{1,2, \cdots, \frac{n-1}{2}\right\}$, so $\left\|D\left(K_{n}\right)\right\|=n-1$.

By $[a, b]$ we mean the set of consecutive integers $a, a+1, \cdots, b$ where $1 \leq a<$ $b \leq \frac{n-1}{2}$. Given an odd integer m, the connection set $S=\left\{d_{i}, d_{i}+j_{i}: j_{i}=1\right.$ or $2,1 \leq i \leq k\}$ is called proper if all elements in it are pairwise distinct, $1 \leq d_{1}<$ $d_{2}<\cdots<d_{k}<\frac{n-1}{2}$, and $d_{i}+j_{i}<d_{i+1}$ for $1 \leq i \leq k-1$. Note that $|S|=2 k$. If $j_{1}=\cdots=j_{k}=1$ (resp. $j_{1}=j_{k}=2, j_{2}=\cdots=j_{k-1}=1$), we say the proper set S is of type 1 (resp. type 2); if $j_{1}=2$ and $j_{2}=\cdots=j_{k}=1$ (resp. $j_{1}=\cdots=j_{k-1}=1$ and $j_{k}=2$), the proper set S is said to be of type 3 (resp. type 4). By S_{i} we mean the proper set S of type i for $1 \leq i \leq 4$.

A Skolem sequence of order p is a collection of ordered pairs $\left\{\left(s_{i}, t_{i}\right): t_{i}-s_{i}=\right.$ $i, 1 \leq i \leq p\}$ with $\bigcup_{i=1}\left\{s_{i}, t_{i}\right\}=\{1,2, \cdots, 2 p\}$ or $\{1,2, \cdots, 2 p-1,2 p+1\}$. In the second case one usually speaks of a hooked Skolem sequence.

Theorem 2.1. ([14]).
(1) A Skolem sequence of order p exists if and only if $p \equiv 0$ or $1(\bmod 4)$.
(2) A hooked Skolem sequence of order p exists if and only if $p \equiv 2$ or $3(\bmod 4)$.

A set $\left\{r, s_{r}+r, t_{r}+r\right\}$ where r is a positive integer with $1 \leq r \leq p$ is called a r-Skolem set, denoted T_{r}, if $\left(s_{r}, t_{r}\right)$ is an ordered pair in a Skolem sequence of order p.

Corollary 2.2.

(1) If $p \equiv 0$ or $1(\bmod 4)$, then $[1,3 p]$ can be partitioned into the union of r-Skolem subsets for $1 \leq r \leq p$.
(2) If $p \equiv 2$ or $3(\bmod 4)$, then $[1,3 p+1] \backslash\{3 p\}$ can be partitioned into the union of r-Skolem subsets for $1 \leq r \leq p$.
Given a r-Skolem set T_{r} and a proper set of type $i S_{i}$ where $1 \leq r \leq p$ and $1 \leq i \leq 4$, the connection set $S=T_{r} \bigcup S_{i}$ is said to be i-proper if $T_{r} \bigcap S_{i}=\emptyset$.

The following two consequences will be used as the main tools to construct the full base cycles on circulant graphs. In what follows, we shall assume $C=\left(c_{0}=\right.$ $\left.0, c_{1}, \cdots, c_{m-1}\right)$ to be a closed m-trail and $T_{r}=\left\{r, s_{r}+r, t_{r}+r\right\}$ to be a r-Skolem set.

Proposition 2.3. Suppose the connection set S is 1-proper or 2-proper. Then for $m=4 k+3$ with $k \geq 1$, there exists a cyclic m-cycle system of $X(n, \pm S)$.

Proof. Suppose $S=T_{r} \bigcup S_{1}$ is 1-proper where $S_{1}=\left\{e_{i}, e_{i}+1: 1 \leq i \leq 2 k\right\}$ is a proper set of type 1 . Let us define the vertices c_{i} in C for $1 \leq i \leq m-1$ as

$$
c_{i}= \begin{cases}e_{k+1-j}+j, & \text { if } i=2 j-1 \text { for } 1 \leq j \leq k ; \\ j, & \text { if } i=2 j \text { for } 1 \leq j \leq k ; \\ r+k, & \text { if } i=2 k+1 ; \\ s_{r}+2 r+k, & \text { if } i=2 k+2 ; \\ -e_{2 k}+t_{r}+r+k-1, & \text { if } i=2 k+3 ; \\ -e_{2 k}+k-j, & \text { if } i=2 k+2+2 j \text { for } 1 \leq j \leq k ; \text { and } \\ -e_{2 k}+e_{k+j}+k-j, & \text { if } i=2 k+3+2 j \text { for } 1 \leq j \leq k-1 .\end{cases}
$$

Let $\langle C\rangle=\left\langle c_{0}=0, c_{2}, c_{4}, \cdots, c_{2 k}, c_{2 k+1}, c_{2 k+2}, c_{2 k-1}, c_{2 k-3}, \cdots, c_{1}, c_{4 k+2}, c_{4 k}\right.$, $\left.\cdots, c_{2 k+4}, c_{2 k+3}, c_{2 k+5}, \cdots, c_{4 k+1}\right\rangle$ be a sequence obtained from the vertices c_{i} in C where $c_{4 k+1}=n-e_{2}+t_{r}+r$ if $k=1$ and $c_{4 k+1}=n-e_{2 k}+e_{2 k-1}+1$ if $k \geq 2$. Since $\langle C\rangle$ is increasing, it means that C is an m-cycle, and since $d\left(c_{2 i}, c_{2 i+1}\right)$ $= \pm\left(e_{k-i}+1\right)$ and $d\left(c_{2 i+1}, c_{2 i+2}\right)= \pm e_{k-i}$ for $0 \leq i \leq k-1, d\left(c_{2 k}, c_{2 k+1}\right)= \pm r$, $d\left(c_{2 k+1}, c_{2 k+2}\right)= \pm\left(s_{r}+r\right), d\left(c_{2 k+2}, c_{2 k+3}\right)= \pm\left(e_{2 k}+1\right), d\left(c_{2 k+3}, c_{2 k+4}\right)= \pm\left(t_{r}+r\right)$, $d\left(c_{2 k+2+2 i}, c_{2 k+3+2 i}\right)= \pm e_{k+i}$ for $1 \leq i \leq k-1, d\left(c_{2 k+3+2 i}, c_{2 k+4+2 i}\right)= \pm\left(e_{k+i}+1\right)$ for $1 \leq i \leq k-1$, and $d\left(c_{0}, c_{4 k+2}\right)= \pm e_{2 k}$, we have that C is indeed an m-cycle with $\partial C= \pm S$.

The similar proof can be used for the case when $S=T_{r} \bigcup S_{2}$ is 2-proper, i.e., replacing c_{i} in C with $c_{i}+1$ for $2 k-1 \leq i \leq 2 k+2$. We leave it to the reader.

Proposition 2.4. Suppose the connection set S is 3 -proper or 4 -proper. Then for $m=4 k+5$ with $k \geq 1$, there exists a cyclic m-cycle system of $X(n, \pm S)$.

Proof. The proof is divided into two cases according as whether S is 3 -proper or 4-proper.

Suppose $S=T_{r} \bigcup S_{3}$ is 3-proper where $S_{3}=\left\{e_{1}, e_{1}+2\right\} \bigcup\left\{e_{i}, e_{i}+1: 2 \leq\right.$ $i \leq 2 k+1\}$. The vertices c_{i} in C for $1 \leq i \leq m-1$ are given by

$$
c_{i}= \begin{cases}e_{k+1-j}+j, & \text { if } i=2 j-1 \text { for } 1 \leq j \leq k-1 ; \\ j, & \text { if } i=2 j \text { for } 1 \leq j \leq k-1 ; \\ e_{1}+k+1, & \text { if } i=2 k-1 ; \\ k+1, & \text { if } i=2 k ; \\ r+k+1, & \text { if } i=2 k+1 ; \\ s_{r}+2 r+k+1, & \text { if } i=2 k+2 ; \\ -e_{2 k+1}+t_{r}+r+k, & \text { if } i=2 k+3 ; \\ -e_{2 k+1}+k+1-j, & \text { if } i=2 k+2+2 j \text { for } 1 \leq j \leq k+1 ; \text { and } \\ -e_{2 k+1}+e_{k+j}+k+1-j, & \text { if } i=2 k+3+2 j \text { for } 1 \leq j \leq k .\end{cases}
$$

Suppose $S=T_{r} \bigcup S_{4}$ is 4-proper where $S_{4}=\left\{e_{i}, e_{i}+1: 1 \leq i \leq 2 k\right\} \cup$ $\left\{e_{2 k+1}, e_{2 k+1}+2\right\}$. For $1 \leq i \leq m-1$, the vertices c_{i} in C are defined as

$$
c_{i}= \begin{cases}e_{k+2-j}+j, & \text { if } i=2 j-1 \text { for } 1 \leq j \leq k+1 ; \\ j, & \text { if } i=2 j \text { for } 1 \leq j \leq k+1 ; \\ r+k+1, & \text { if } i=2 k+3 ; \\ s_{r}+2 r+k+1, & \text { if } i=2 k+4 ; \\ -e_{2 k+1}+t_{r}+r+k-1, & \text { if } i=2 k+5 ; \\ -e_{2 k+1}+k-j, & \text { if } i=2 k+4+2 j \text { for } 1 \leq j \leq k ; \text { and } \\ -e_{2 k+1}+e_{k+1+j}+k-j, & \text { if } i=2 k+5+2 j \text { for } 1 \leq j \leq k-1 .\end{cases}
$$

The rest of the proof is analogous to those in Proposition 2.3, and we omit the details.

Establishing a cyclic m-cycle system of K_{n}, the vital key is to construct short base m-cycles in it. Lemma 2.5 provides a useful method for constructing short m-cycles on circulant graphs. For the convenience of notation, by $\left[c_{0}, c_{1}, \cdots, c_{e-1}\right]_{k \cdot n / d}$ we mean an m-cycle (or a closed m-trail) of the form $\left(c_{0}, c_{1}, \cdots, c_{m-1}\right)(\bmod n)$ where $c_{i+j \cdot e}=c_{i}+j \cdot k \cdot n / d$ for $0 \leq i \leq e-1$ and $0 \leq j \leq d-1$.

Lemma 2.5. Let $m=d e$ be an odd integer where $d \geq 3, e \geq 1$, and $\operatorname{gcd}(d, e)=$ 1 , and let n be admissible with $\operatorname{gcd}(m, n)=d$. If there exists an m-cycle $C=$ $\left[c_{0}, c_{1}, \cdots, c_{e-1}\right]_{k \cdot n / d}$ with $\operatorname{gcd}(k, d)=1$ on a circulant graph $X(n, \pm S)$ satisfying (1) for $0 \leq i \neq j \leq e-1, c_{i} \not \equiv c_{j}(\bmod n / d)$ and
(2) the differences $d\left(c_{i-1}, c_{i}\right)= \pm d_{i}$ for $1 \leq i \leq e$ are all distinct,
then there exists a cyclic m-cycle system of $X(n, \partial C)$ where $\partial C= \pm\left\{d_{1}, d_{2}, \cdots, d_{e}\right\}$.
Note that the set $\{C+i: 0 \leq i<n / d\}$ forms a cycle orbit of C with length n / d, and the cycle C can be regarded as a short base cycle of this cycle orbit. For convenience, the cycle $C=\left[c_{0}, c_{1}, \cdots, c_{e-1}\right]_{k \cdot n / d}$ in Lemma 2.5 is said to be an m-cycle of index $k \cdot n / d$. The m-cycle C itself, of course, is of type d on $X(n, \partial C)$.

The circulant graphs will also play a crucial role for constructing a cyclic m-cycle system of K_{n}.

Theorem 2.6. There exists a cyclic m-cycle system of K_{n} if and only if there are cyclic m-cycle systems of the circulant graphs $X\left(n, \partial C_{i}\right)(1 \leq i \leq t)$ such that $\bigcup_{i=1}^{t} \partial C_{i}=\mathbb{Z}_{n}^{*}$ and $\partial C_{i} \bigcap \partial C_{j}=\emptyset$ for $i \neq j$.

By virtue of Lemma 1.4, for each specified integer $m=d e$, we have $n=2 p m+$ $2 b e+1=2 p m+d s=d(2 p e+s)$ and so $n / d=2 p e+s$. To construct a cyclic m-cycle system of K_{n}, it is natural that we will try to set up p full base m-cycles and b short
base m-cycles C of index $k \cdot n / d$ for some positive integer k with $\operatorname{gcd}(k, d)=1$ and $\|D(C)\|=2 e$ each since $\left\|D\left(K_{n}\right)\right\|=n-1=2(p m+b e)$.

$$
\text { 3. } \operatorname{Gcd}(m, n)=3
$$

In this section, we shall assume that $d=3$, i.e., $m=3 e$ with $\operatorname{gcd}(3, e)=1$, and let n be admissible with $\operatorname{gcd}(m, n)=3$. Recall that it suffices to consider $m=3 e \geq 33$, that is, $e \geq 11$. Since $\operatorname{gcd}(3, e)=1$, it follows that $e=12 a+11,12 a+13,12 a+17$, or $12 a+19$ for $a \geq 0$. By virtue of Lemma 1.4, we have:
if $e=12 a+11$, then $b=2, s=16 a+15$, and $n=6 p e+48 a+45$ for $p \geq 0$;
if $e=12 a+13$, then $b=1, s=8 a+9$, and $n=6 p e+24 a+27$ for $p \geq 1$;
if $e=12 a+17$, then $b=2, s=16 a+23$, and $n=6 p e+48 a+69$ for $p \geq 0$; and
if $e=12 a+19$, then $b=1, s=8 a+13$, and $n=6 p e+24 a+39$ for $p \geq 1$.
That is, if $e=12 a+13$ or $12 a+19$ (resp. $12 a+11$ or $12 a+17$), then we will construct p full base m-cycles and a short base m-cycle (resp. two short base m-cycles).

Next, consider an e-set $W=\left\{w_{1}, w_{2}, \ldots, w_{e}\right\}$ where $w_{i} \in \mathbb{Z}_{n}^{*}$. The set W is called strong if $1 \leq w_{1}<w_{2}<\ldots<w_{e}<n / 3$ and $\sum_{i=1}^{\frac{e-1}{2}}\left(w_{2 i}-w_{2 i-1}\right)+w_{e}=n / 3$. The strong e-set will be used to establish the short base m-cycles of index $n / 3$.

Lemma 3.1. If $W=\left\{w_{1}, w_{2}, \ldots, w_{e}\right\}$ is a strong e-set, then there exists a cyclic m-cycle system of $X(n, \pm W)$.

Proof. Let $C=\left[c_{0}=0, c_{1}, \ldots, c_{e-1}\right]_{n / 3}$ be a closed m-trail defined as

$$
\begin{aligned}
c_{2 i-1} & =w_{e-2 i+1}+\sum_{j=1}^{i-1}\left(w_{e-2 j+1}-w_{e-2 j}\right) \text { and } \\
c_{2 i} & =\sum_{j=1}^{i}\left(w_{e-2 j+1}-w_{e-2 j}\right) \text { for } 1 \leq i \leq \frac{e-1}{2} .
\end{aligned}
$$

Consider the sequence $\langle C\rangle=\left\langle c_{0}=0, c_{2}, c_{4}, \cdots, c_{e-1}, c_{e-2}, c_{e-4}, \cdots, c_{1}=\right.$ $\left.w_{e-1}\right\rangle$ from the vertices $c_{i}(0 \leq i \leq e-1)$ in C. Since the sequence $\langle C\rangle$ is increasing and $c_{i} \not \equiv c_{j}(\bmod n / 3)$ for $0 \leq i<j \leq e-1$, we have that C is an m-cycle of index $n / 3$, and since $d\left(c_{i}, c_{i+1}\right)= \pm w_{e-1-i}$ for $0 \leq i \leq e-2$ and $d\left(c_{e-1}, c_{e}\right)= \pm w_{e}$, it follows that C is an m-cycle with $\partial C= \pm W$.

The thesis follows by Lemma 2.5 .
By $[a, b]=\biguplus_{i=1}^{t} A_{i}$ we mean that the set $[a, b]$ can be partitioned into the union of disjoint subsets A_{i} for $1 \leq i \leq t$. A set U is even if $|U| \equiv 0(\bmod 2)$. Throughout we will use $T_{r} \biguplus S_{i}, T_{r} \biguplus S_{i, r}$ as i-proper connection sets where $1 \leq r \leq p$ and $1 \leq i \leq 4$.

Proposition 3.2. Suppose $m=3 e$ where $e=12 a+13$ or $12 a+19$ for $a \geq 0$ and let n be admissible with $\operatorname{gcd}(m, n)=3$. Then there exists a cyclic m-cycle system of K_{n}.

Proof. It is clear that $m \equiv 3(\bmod 4)$ if $e=12 a+13$ and $m \equiv 1(\bmod 4)$ if $e=12 a+19$. Recall that $[1,3 p]=\biguplus_{i=1}^{p} T_{i}$ if $p \equiv 0$ or $1(\bmod 4)$ and $[1,3 p+1] \backslash\{3 p\}$ $=\biguplus_{i=1}^{p} T_{i}$ if $p \equiv 2$ or $3(\bmod 4)$ by Corollary 2.2. The proof is split into the following 4 cases.

Case 1. $e=12 a+13$ and $p \equiv 1(\bmod 4)$ or $e=12 a+19$ and $p \equiv 0(\bmod 4)$.
$\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W$ where $U=\{3 p+1,3 p+3\} \biguplus\left[3 p+e+2, \frac{n}{3}-\right.$ $\left.\frac{e+3}{2}\right] \biguplus\left[\frac{n}{3}-\frac{e-1}{2}, \frac{n-1}{2}\right]$ and $W=\left\{3 p+2,3 p+4,3 p+5, \cdots, 3 p+e+1, \frac{n}{3}-\frac{e+3}{2}\right\}$.

If $e=12 a+13$, then partition the set $[1,3 p] \cup U$ into a 2-proper subset $T_{p} \biguplus S_{2}$ and $p-1$ 1-proper subsets $T_{i} \biguplus S_{1, i}$ for $1 \leq i \leq p-1$, i.e., $[1,3 p] \cup U=\left(\biguplus_{i=1}^{p-1} T_{i}\right.$ $\left.\biguplus S_{1, i}\right) \biguplus\left(T_{p} \biguplus S_{2}\right)$.

If $e=12 a+19$, then $[1,3 p] \bigcup U=\left(\biguplus_{i=1}^{p-1} T_{i} \biguplus S_{3, i}\right) \biguplus\left(T_{p} \biguplus S_{4}\right)$.
Note that the elements $\frac{n-3}{2}, \frac{n+1}{2}$ are included in S_{2}, S_{4}, respectively.
Case 2. $e=12 a+13$ and $p \equiv 0(\bmod 4)$ or $e=12 a+19$ and $p \equiv 1(\bmod 4)$.
$\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W$ where $U=\left[3 p+e, \frac{n}{3}-\frac{e+1}{2}\right] \biguplus\left[\frac{n}{3}-\frac{e-3}{2}, \frac{n-1}{2}\right]$ and $W=\left\{3 p+1,3 p+2, \cdots, 3 p+e-1, \frac{n}{3}-\frac{e-1}{2}\right\}$.

If $e=12 a+13$, then $[1,3 p] \cup U=\biguplus_{i=1}^{p} T_{i} \biguplus S_{1, i}$.
If $e=12 a+19$, then $[1,3 p] \cup U=\left(\biguplus_{i=1}^{p-1} T_{i} \biguplus S_{3, i}\right) \biguplus\left(T_{p} \biguplus S_{4}\right)$.
Case 3. $e=12 a+13$ and $p \equiv 2(\bmod 4)$ or $e=12 a+19$ and $p \equiv 3(\bmod 4)$.
$\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W$ where $U=\{3 p, 3 p+2\} \biguplus[3 p+e+$ $\left.2, \frac{n}{3}-\frac{e+1}{2}\right] \biguplus\left[\frac{n}{3}-\frac{e-3}{2}, \frac{n-1}{2}\right]$ and $W=\left\{3 p+3,3 p+4, \cdots, 3 p+e+1, \frac{n}{3}-\frac{e-1}{2}\right\}$.

If $e=12 a+13$, then $([1,3 p+1] \backslash\{3 p\}) \bigcup U=\left(\biguplus_{i=1}^{p-1} T_{i} \biguplus S_{1, i}\right) \biguplus\left(T_{p} \biguplus S_{2}\right)$.
If $e=12 a+19$, then $([1,3 p+1] \backslash\{3 p\}) \cup U=\left(\biguplus_{i=1}^{p} T_{i} \biguplus S_{3, i}\right)$.
Case 4. $e=12 a+13$ and $p \equiv 3(\bmod 4)$ or $e=12 a+19$ and $p \equiv 2(\bmod 4)$.
$\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W$ where $U=\left[3 p+e, \frac{n}{3}-\frac{e+3}{2}\right] \biguplus\left[\frac{n}{3}-\right.$ $\left.\frac{e-1}{2}, \frac{n-1}{2}\right]$ and $W=\left\{3 p, 3 p+2,3 p+3, \cdots, 3 p+e-1, \frac{n}{3}-\frac{e+1}{2}\right\}$.

If $e=12 a+13$, then $([1,3 p+1] \backslash\{3 p\}) \cup U=\left(\biguplus_{i=1}^{p} T_{i} \biguplus S_{1, i}\right)$.
If $e=12 a+19$, then $([1,3 p+1] \backslash\{3 p\}) \bigcup U=\left(\biguplus_{i=1}^{p} T_{i} \biguplus S_{3, i}\right)$.
Note that in each case, U is an even $p(m-3)$-set and W is a strong e-set. By virtue of Lemma 3.1, there is a cyclic m-cycle system of $X(n, \pm W)$. Moreover, if $e=12 a+$ 13 (resp. $e=12 a+19$), by Proposition 2.3 (resp. Proposition 2.4), there exist cyclic m-cycle systems of $X(n, \pm([1,3 p] \cup U))$ and $X(n, \pm(([1,3 p+1] \backslash\{3 p\}) \cup U))$.

Since for each case, $\mathbb{Z}_{n}^{*}= \pm([1,3 p] \biguplus U \biguplus W)$ or $\pm(([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W)$, by Theorem 2.6, there is a cyclic m-cycle system of K_{n}.

Proposition 3.3. Suppose $m=3 e$ where $e=12 a+11$ or $12 a+17$ for $a \geq 0$ and let n be admissible with $\operatorname{gcd}(m, n)=3$ and $n>2 m$. Then there exists a cyclic m-cycle system of K_{n}.

Proof. Obviously, $m \equiv 1(\bmod 4)$ if $e=12 a+11$ and $m \equiv 3(\bmod 4)$ if $e=12 a+17$. We divide the proof into 4 cases as follows.

Case 1. $e=12 a+11$ and $p \equiv 1(\bmod 4)$ or $e=12 a+17$ and $p \equiv 0(\bmod 4)$.
$\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W_{1} \biguplus W_{2}$ where $U=\{3 p+4,3 p+6\} \biguplus[3 p+2 e+$ $\left.1, \frac{n}{3}-\frac{e+5}{2}\right] \biguplus\left[\frac{n}{3}-\frac{e-1}{2}, \frac{n-1}{2}\right], W_{1}=\left\{3 p+2,3 p+5,3 p+7, \cdots, 3 p+e+3, \frac{n}{3}-\frac{e+3}{2}\right\}$, and $W_{2}=\left\{3 p+1,3 p+3,3 p+e+4, \cdots, 3 p+2 e, \frac{n}{3}-\frac{e+1}{2}\right\}$.

If $e=12 a+11$, then $[1,3 p] \cup U=\biguplus_{i=1}^{p} T_{i} \biguplus S_{3, i}$.
If $e=12 a+17$, then $[1,3 p] \bigcup U=\left(\biguplus_{i=1}^{p-1} T_{i} \biguplus S_{1, i}\right) \biguplus\left(T_{p} \biguplus S_{2}\right)$.
Case 2. $e=12 a+11$ and $p \equiv 0(\bmod 4)$ or $e=12 a+17$ and $p \equiv 1(\bmod 4)$.
$\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W_{1} \biguplus W_{2}$ where $U=\{3 p+1,3 p+3\} \biguplus[3 p+2 e+$ $\left.1, \frac{n}{3}-\frac{e+3}{2}\right] \biguplus\left[\frac{n}{3}-\frac{e-3}{2}, \frac{n-1}{2}\right], W_{1}=\left\{3 p+2,3 p+4,3 p+5, \cdots, 3 p+e+1, \frac{n}{3}-\frac{e+1}{2}\right\}$, and $W_{2}=\left\{3 p+e+2,3 p+e+3, \cdots, 3 p+2 e, \frac{n}{3}-\frac{e-1}{2}\right\}$.

If $e=12 a+11$, then $[1,3 p] \bigcup U=\left(\biguplus_{i=1}^{p-1} T_{i} \biguplus S_{3, i}\right) \biguplus\left(T_{p} \biguplus S_{4}\right)$.
If $e=12 a+17$, then $[1,3 p] \bigcup U=\left(\biguplus_{i=1}^{p-1} T_{i} \biguplus S_{1, i}\right) \biguplus\left(T_{p} \biguplus S_{2}\right)$.
Case 3. $e=12 a+11$ and $p \equiv 2(\bmod 4)$ or $e=12 a+17$ and $p \equiv 3(\bmod 4)$.
$\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W_{1} \biguplus W_{2}$ where $U=\left[3 p+2 e-1, \frac{n}{3}-\right.$ $\left.\frac{e+3}{2}\right] \biguplus\left[\frac{n}{3}-\frac{e-3}{2}, \frac{n-1}{2}\right], W_{1}=\left\{3 p, 3 p+2,3 p+3, \cdots, 3 p+e-1, \frac{n}{3}-\frac{e+1}{2}\right\}$, and W_{2} $=\left\{3 p+e, 3 p+e+1, \cdots, 3 p+2 e-2, \frac{n}{3}-\frac{e-1}{2}\right\}$.

If $e=12 a+11$, then $([1,3 p+1] \backslash\{3 p\}) \bigcup U=\biguplus_{i=1}^{p} T_{i} \biguplus S_{3, i}$.
If $e=12 a+17$, then $([1,3 p+1] \backslash\{3 p\}) \bigcup U=\left(\biguplus_{i=1}^{p} T_{i} \biguplus S_{1, i}\right)$.
Case 4. $e=12 a+11$ and $p \equiv 3(\bmod 4)$ or $e=12 a+17$ and $p \equiv 2(\bmod 4)$.
$\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W_{1} \biguplus W_{2}$ where $U=\left[3 p+2 e-1, \frac{n}{3}-\right.$ $\left.\frac{e+5}{2}\right] \biguplus\left[\frac{n}{3}-\frac{e-1}{2}, \frac{n-1}{2}\right], W_{1}=\left\{3 p+2,3 p+4,3 p+5, \cdots, 3 p+e+1, \frac{n}{3}-\frac{e+1}{2}\right\}$, and $W_{2}=\left\{3 p, 3 p+3,3 p+e+2,3 p+e+3, \cdots, 3 p+2 e-2, \frac{n}{3}-\frac{e+3}{2}\right\}$.

If $e=12 a+11$, then $([1,3 p+1] \backslash\{3 p\}) \bigcup U=\left(\biguplus_{i=1}^{p-1} T_{i} \biguplus S_{3, i}\right) \biguplus\left(T_{p} \biguplus S_{4}\right)$.
If $e=12 a+17$, then $([1,3 p+1] \backslash\{3 p\}) \bigcup U=\biguplus_{i=1}^{p} T_{i} \biguplus S_{1, i}$.
It can be checked in each case that U is an even $p(m-3)$-set and both W_{1} and W_{2} are strong e-subsets.

Similarly to Proposition 3.2, the proof follows by virtue of Lemma 3.1, Propositions 2.3, 2.4, and Theorem 2.6.

Together with Propositions 3.2 and 3.3, we obtain the first main consequence.
Theorem 3.4. Suppose $m=3 e$ is an odd integer with $\operatorname{gcd}(3, e)=1$, and let n be admissible with $\operatorname{gcd}(m, n)=3$ and $n>2 m$. Then there exists a cyclic m-cycle system of K_{n}.

Example 1. A cyclic 69 -cycle system of K_{507} is presented. Given $d=3, e=23$, and $p=3$, we have $m=69, b=2, s=31$, and $n=507$ where $\operatorname{gcd}(m, n)=3$ and so $\frac{n-1}{2}=253$ and $n / d=169$.

Taking $U=[54,155] \biguplus[158,253], W_{1}=\{11,13, \ldots, 33,157\}$, and $W_{2}=\{9,12$, $34, \ldots, 53,156\}$, it follows that $\left[1, \frac{n-1}{2}\right]=([1,10] \backslash\{9\}) \biguplus U \biguplus W_{1} \biguplus W_{2}$. Note that both W_{1} and W_{2} are strong 23-sets.

Let $T_{1} \biguplus S_{3,1}, T_{2} \biguplus S_{3,2}, T_{3} \biguplus S_{4}$ be respectively connection sets defined as

$$
\begin{aligned}
& T_{1} \biguplus S_{3,1}=\{1,4,5\} \biguplus\{54,56\} \biguplus[58,121], \\
& T_{2} \biguplus S_{3,2}=\{2,6,8\} \biguplus\{55,57\} \biguplus[122,155] \biguplus[158,187], \text { and } \\
& T_{3} \biguplus S_{4}=\{3,7,10\} \biguplus[188,251] \biguplus\{252,254\} .
\end{aligned}
$$

It is clear that both $T_{1} \uplus S_{3,1}$ and $T_{2} \biguplus S_{3,2}$ are 3-proper and $T_{3} \biguplus S_{4}$ is 4-proper.
By Proposition 2.4, there are cyclic 69 -cycle systems of $X\left(507, \pm\left(T_{i} \biguplus S_{3, i}\right)\right)$ $(1 \leq i \leq 2)$ and $X\left(507, \pm\left(T_{3} \biguplus S_{4}\right)\right)$, and by Lemma 3.1, there exist cyclic 69 -cycle systems of $X\left(507, \pm W_{i}\right)(1 \leq i \leq 2)$.

Now, by virtue of Theorem 2.6, we obtain a cyclic 69 -cycle system of K_{507}.

$$
\text { 4. } \operatorname{Gcd}(m, n)=\mathrm{d}
$$

Finally, assume $\operatorname{gcd}(m, n)=d$, that is, $e=3$ and $m=3 d$ where $\operatorname{gcd}(3, d)=1$. Note that we just consider $d \geq 11$ because $m \geq 33$. Since d is odd with $\operatorname{gcd}(d, 3)=$ 1 , we have $d=6 a+5$ or $6 a+7$ for $a \geq 1$. If $d=6 a+5$, by Lemma 1.4.(3), $s=5$, $b=5 a+4$, and $n=2 p m+30 a+25$ for $p \geq 0$; in this case, $m \equiv 3($ resp. 1) (mod 4) if $a \equiv 0($ resp. 1) $(\bmod 2)$. Analogously, by Lemma 1.4(2), if $d=6 a+7$, then $s=$ $1, b=a+1$, and $n=2 p m+6 a+7$ for $p \geq 1$, and it follows that $m \equiv 1$ (resp. 3) $(\bmod 4)$ if $a \equiv 0($ resp. 1$)(\bmod 2)$.

Lemma 4.1. Let $m=3 d$ where $d=6 a+5$ or $6 a+7$ for $a \geq 1$ and n admissible with $\operatorname{gcd}(m, n)=d$.
(1) If $d=6 a+5$, then $s=5, b=5 a+4, n=2 p m+30 a+25$ for $p \geq 0$, and $m \equiv 3(\operatorname{resp} .1)(\bmod 4)$ if $a \equiv 0(\operatorname{resp} .1)(\bmod 2)$.
(2) If $d=6 a+7$, then $s=1, b=a+1, n=2 p m+6 a+7$ for $p \geq 1$, and $m \equiv 1$ $($ resp. 3) $(\bmod 4)$ if $a \equiv 0(\operatorname{resp} .1)(\bmod 2)$.

Hence, besides p full base cycles, $5 a+4$ (resp. $a+1$) short base cycles C with $\|D(C)\|=2 e$ will be constructed if $d=6 a+5$ (resp. $d=6 a+7$). Recall that n $=2 p m+2 b e+1=2 p m+d s=d(2 p e+s)$. Assume $b=4 q+r$ where $q \geq 0$ and $0 \leq r \leq 3$ to be the Euclidean division of b by 4 . Let Q, A, B, D, and F be subsets of $\left[1, \frac{n-1}{2}\right]$ defined by
$Q= \begin{cases}{[1,3 p] \bigcup[3 p+1, n / d-2],} & \text { if } p \equiv 1(\bmod 4), \\ ([1,3 p+1] \backslash\{3 p\}) \bigcup\{3 p, 3 p+2\} \bigcup[3 p+3, n / d-3], & \text { if } p \equiv 2(\bmod 4), \\ ([1,3 p+1] \backslash\{3 p\}) \bigcup\{3 p, 3 p+2\} \bigcup[3 p+3, n / d-2], & \text { if } p \equiv 3(\bmod 4), \\ {[1,3 p] \bigcup[3 p+1, n / d-3],} & \text { if } p \equiv 0(\bmod 4),\end{cases}$
$A=\bigcup_{i=0}^{q-1} A_{i}$, where
$A_{i}=\left\{\begin{array}{ll}\{(2 i+1) \cdot n / d-1,(2 i+1) \cdot n / d \\ & +2,(2 i+2) \cdot n / d-2,(2 i+2) \cdot n / d+1\}, \\ \{(2 i+1) \cdot n / d-2,(2 i+1) \cdot n / d \\ +1,(2 i+2) \cdot n / d-1,(2 i+2) \cdot n / d+2\},\end{array} \quad\right.$ if $p \equiv 1$ or $3(\bmod 4), ~(\quad$ if $p \equiv 0$ or $2(\bmod 4), ~$
$B=\bigcup_{i=0}^{q-1} B_{i}$, where
$B_{i}= \begin{cases}\{(2 i+1) \cdot n / d,(2 i+1) \cdot n / d \\ +1,(2 i+2) \cdot n / d-1,(2 i+2) \cdot n / d\}, \\ \{(2 i+1) \cdot n / d-1,(2 i+1) \cdot n / d, & \text { if } p \equiv 1 \text { or } 3(\bmod 4), \\ (2 i+2) \cdot n / d,(2 i+2) \cdot n / d+1\}, & \text { if } p \equiv 0 \text { or } 2(\bmod 4),\end{cases}$
$D=\bigcup_{i=0}^{q-1} D_{i}$, where
$D_{i}=\left\{\begin{array}{cc}{[(2 i+1) \cdot n / d+3,(2 i+2) \cdot n / d-3] \bigcup[(2 i+2) \cdot n / d} \\ +2,(2 i+3) \cdot n / d-2], & \text { if } p \equiv 1 \text { or } 3(\bmod 4), \\ {[(2 i+1) \cdot n / d+2,(2 i+2) \cdot n / d-2] \bigcup[(2 i+2) \cdot n / d} \\ +3,(2 i+3) \cdot n / d-3], & \text { if } p \equiv 0 \text { or } 2(\bmod 4),\end{array}\right.$
$F= \begin{cases}{\left[(2 q+1) \cdot n / d-1, \frac{n-1}{2}\right],} & \text { if } p \equiv 1 \text { or } 3(\bmod 4), \text { and } \\ {\left[(2 q+1) \cdot n / d-2, \frac{n-1}{2}\right],} & \text { if } p \equiv 0 \text { or } 2(\bmod 4) .\end{cases}$
It is easy to see that if $p \equiv 1$ or $3(\bmod 4)$, then $A \cup B \bigcup D=[n / d-1,(2 q+$ 1) $n / d-2]$, and if $p \equiv 0$ or $2(\bmod 4)$, then $A \cup B \bigcup D=[n / d-2,(2 q+1) n / d-3]$. Moreover, F is not empty. An easy verification shows that the union of subsets Q, A, B, D, and F forms a partition of $\left[1, \frac{n-1}{2}\right]$.

Lemma 4.2. The interval $\left[1, \frac{n-1}{2}\right]$ can be partitioned into the union of subsets Q, A, B, D, and F.

In view of the subsets $D_{i}(0 \leq i \leq q-1)$ in D, we can partition it into the union of subsets $D_{i, 1}, D_{i, 2}$, and $D_{i, 3}$ and set $D_{i}^{*}=\bigcup_{i=0}^{q-1} D_{i, 3}$ as follows.

If $p \equiv 1$ or $3(\bmod 4)$, then

$$
\left\{\begin{array}{l}
D_{i, 1}=[(2 i+1) \cdot n / d+3,(2 i+1) \cdot n / d+6] ; \\
D_{i, 2}=[(2 i+2) \cdot n / d+2,(2 i+2) \cdot n / d+5] ; \text { and } \\
D_{i, 3}=[(2 i+1) \cdot n / d+7,(2 i+2) \cdot n / d-3] \bigcup[(2 i+2) \cdot n / d+6,(2 i+3) \cdot n / d-2]
\end{array}\right.
$$

If $p \equiv 0$ or $2(\bmod 4)$, then

$$
\left\{\begin{array}{l}
D_{i, 1}=[(2 i+1) \cdot n / d+2,(2 i+1) \cdot n / d+5] ; \\
D_{i, 2}=[(2 i+2) \cdot n / d+3,(2 i+2) \cdot n / d+6] ; \text { and } \\
D_{i, 3}=[(2 i+1) \cdot n / d+6,(2 i+2) \cdot n / d-2] \bigcup[(2 i+2) \cdot n / d+7,(2 i+3) \cdot n / d-3]
\end{array}\right.
$$

To prove the second main result, we need some auxiliary lemmas. Throughout we will assume d to be an odd prime (≥ 11).

Lemma 4.3. For each i with $1 \leq i \leq 3$, there exists a cyclic m-cycle system of $X\left(n, \pm W_{i}\right)$ where $W_{1}=\{(2 q+1) \cdot n / d-1,(2 q+1) \cdot n / d+2,(2 q+1) \cdot n / d+3\}$, $W_{2}=\{3 p+1,3 p+3,(2 q+1) \cdot n / d-2\}$, and $W_{3}=\{3 p, 3 p+2,(2 q+1) \cdot n / d-2\}$.

Proof. Let $C_{i}(1 \leq i \leq 3)$ be closed m-trails defined as

$$
\begin{aligned}
& C_{1}=[0,(2 q+1) \cdot n / d-1,(4 q+2) \cdot n / d+2]_{(2 q+1) \cdot n / d}, \\
& C_{2}=[0,(2 q+1) \cdot n / d-2,(2 q+1) \cdot n / d+3 p+1]_{(2 q+1) \cdot n / d}, \text { and } \\
& C_{3}=[0,(2 q+1) \cdot n / d-2,(2 q+1) \cdot n / d+3 p]_{(2 q+1) \cdot n / d} .
\end{aligned}
$$

It can be checked that each $C_{i}(1 \leq i \leq 3)$ is an m-cycle of index $(2 q+1) \cdot n / d$ with $\partial C_{i}= \pm W_{i}$. The thesis then follows from Lemma 2.5.

Lemma 4.4. For each i with $1 \leq i \leq 4$, there exists a cyclic m-cycle system of $X\left(n, \pm W_{i}\right)$ where $W_{1}=\{3 p+1,3 p+3,(2 q+1) \cdot n / d-1,(2 q+1) \cdot n / d+$ $2,(2 q+1) \cdot n / d+3,(2 q+1) \cdot n / d+4\}, W_{2}=\{3 p+1,3 p+3,(2 q+1) \cdot n / d-$ $2,(2 q+1) \cdot n / d+1,(2 q+1) \cdot n / d+2,(2 q+1) \cdot n / d+3\}, W_{3}=\{3 p, 3 p+$ $2,(2 q+1) \cdot n / d-1,(2 q+1) \cdot n / d+2,(2 q+1) \cdot n / d+3,(2 q+1) \cdot n / d+4\}$, and $W_{4}=\{3 p, 3 p+2,(2 q+1) \cdot n / d-2,(2 q+1) \cdot n / d+1,(2 q+1) \cdot n / d+2,(2 q+1) \cdot n / d+3\}$.

Proof. For $1 \leq i \leq 4$, let C_{i} be the union of closed m-trails $C_{i, 1}, C_{i, 2}$ given by

$$
\begin{aligned}
& C_{1,1}=C_{3,1}=[0,(2 q+1) \cdot n / d-1,(4 q+2) \cdot n / d+3]_{(2 q+1) \cdot n / d}, \\
& C_{1,2}=[0,(2 q+1) \cdot n / d+2,(2 q+1) \cdot n / d+3 p+3]_{(2 q+1) \cdot n / d}, \\
& C_{2,1}=C_{4,1}=[0,(2 q+1) \cdot n / d+1,(4 q+2) \cdot n / d+3]_{(2 q+1) \cdot n / d}, \\
& C_{2,2}=[0,(2 q+1) \cdot n / d-2,(2 q+1) \cdot n / d+3 p+1]_{(2 q+1) \cdot n / d}, \\
& C_{3,2}=[0,(2 q+1) \cdot n / d+2,(2 q+1) \cdot n / d+3 p+2]_{(2 q+1) \cdot n / d}, \text { and } \\
& C_{4,2}=[0,(2 q+1) \cdot n / d-2,(2 q+1) \cdot n / d+3 p]_{(2 q+1) \cdot n / d}
\end{aligned}
$$

Similarly, we have the thesis by Lemma 2.5 since $C_{i, 1}, C_{i, 2}(1 \leq i \leq 4)$ are m-cycles of index $(2 q+1) \cdot n / d$ and $\partial C_{i}=\partial\left(C_{i, 1} \bigcup C_{i, 2}\right)= \pm W_{i}$ for $1 \leq i \leq 4$.

Lemma 4.5. For each i with $1 \leq i \leq 3$, there exists a cyclic m-cycle system of $X\left(n, \pm W_{i}\right)$ where $W_{1}=\{3 p+1,3 p+3,(2 q+1) \cdot n / d-1,(2 q+1) \cdot n / d+2, \cdots,(2 q+$ $1) \cdot n / d+7\}, W_{2}=\{3 p, 3 p+2,(2 q+1) \cdot n / d-1,(2 q+1) \cdot n / d+2, \cdots,(2 q+1) \cdot n / d+7\}$, and $W_{3}=\{(2 q+1) \cdot n / d-2,(2 q+1) \cdot n / d+1, \cdots,(2 q+1) \cdot n / d+8\}$.

Proof. The thesis follows from Lemma 2.5 by taking $C_{i}=\bigcup_{j=1}^{3} C_{i, j}$ where each $C_{i, j}(1 \leq i, j \leq 3)$ defined as follows is an m-cycle of index $(2 q+1) \cdot n / d$ and $\partial C_{i}= \pm W_{i}$ for $1 \leq i \leq 3$.

$$
\begin{aligned}
& C_{1,1}=C_{2,1}=[0,(2 q+1) \cdot n / d-1,(4 q+2) \cdot n / d+5]_{(2 q+1) \cdot n / d}, \\
& C_{1,2}=[0,(2 q+1) \cdot n / d+2,(2 q+1) \cdot n / d+3 p+3]_{(2 q+1) \cdot n / d}, \\
& C_{2,2}=[0,(2 q+1) \cdot n / d+2,(2 q+1) \cdot n / d+3 p+2]_{(2 q+1) \cdot n / d}, \\
& C_{1,3}=C_{2,3}=[0,(2 q+1) \cdot n / d+3,(4 q+2) \cdot n / d+7]_{(2 q+1) \cdot n / d}, \\
& C_{3,1}=[0,(2 q+1) \cdot n / d+1,(4 q+2) \cdot n / d+4]_{(2 q+1) \cdot n / d}, \\
& C_{3,2}=[0,(2 q+1) \cdot n / d+2,(4 q+2) \cdot n / d+7]_{(2 q+1) \cdot n / d}, \text { and } \\
& C_{3,3}=[0,(2 q+1) \cdot n / d-2,(4 q+2) \cdot n / d+6]_{(2 q+1) \cdot n / d} .
\end{aligned}
$$

Throughout assume $W=\bigcup_{i=0}^{q-1}\left(A_{i} \bigcup D_{i, 1} \bigcup D_{i, 2}\right)$ and $\epsilon=0$ or 1 according to whether $p \equiv 1,3$ or $0,2(\bmod 4)$.

Lemma 4.6. There exists a cyclic m-cycle system of $X(n, \pm W)$.
Proof. For $0 \leq i \leq q-1$ and $1 \leq j \leq 4$, let $C_{i, j}$ be an m-cycle of index $(2 i+1) \cdot n / d$ or $(2 i+2) \cdot n / d$ defined as follows:

If $p \equiv 1$ or $3(\bmod 4)$, then set

$$
\begin{aligned}
& C_{i, 1}=[0,(2 i+1) \cdot n / d-1,(4 i+2) \cdot n / d+3]_{(2 i+1) \cdot n / d}, \\
& C_{i, 2}=[0,(2 i+1) \cdot n / d+2,(4 i+3) \cdot n / d+4]_{(2 i+1) \cdot n / d}, \\
& C_{i, 3}=[0,(2 i+2) \cdot n / d-2,(4 i+4) \cdot n / d+3]_{(2 i+2) \cdot n / d} \text {, and } \\
& C_{i, 4}=[0,(2 i+2) \cdot n / d+1,(4 i+3) \cdot n / d+6]_{(2 i+2) \cdot n / d} .
\end{aligned}
$$

If $p \equiv 0$ or $2(\bmod 4)$, then set

$$
\begin{aligned}
& C_{i, 1}=[0,(2 i+1) \cdot n / d-2,(4 i+3) \cdot n / d+3]_{(2 i+1) \cdot n / d}, \\
& C_{i, 2}=[0,(2 i+1) \cdot n / d+1,(4 i+2) \cdot n / d+3]_{(2 i+1) \cdot n / d}, \\
& C_{i, 3}=[0,(2 i+2) \cdot n / d-1,(4 i+3) \cdot n / d+4]_{(2 i+2) \cdot n / d}, \text { and } \\
& C_{i, 4}=[0,(2 i+2) \cdot n / d+2,(4 i+4) \cdot n / d+6]_{(2 i+2) \cdot n / d} .
\end{aligned}
$$

Let $C=\bigcup_{i=0}^{q-1} \bigcup_{j=1}^{4} C_{i, j}$ be the union of m-cycles $C_{i, j}(0 \leq i \leq q-1$ and $1 \leq j \leq 4$), we then obtain the thesis since in each case $\partial C= \pm W$.

Proposition 4.7. Suppose $m=3 d$ where $d=6 a+5$ for $a \geq 1$ and let n be admissible with $\operatorname{gcd}(m, n)=d$. Then there exists a cyclic m-cycle system of K_{n}.
Proof. Recall that $m \equiv 3($ resp. 1) $(\bmod 4)$ if $a \equiv 0($ resp. 1) $(\bmod 2)$. The proof is split into 4 cases according to whether $a \equiv 0,1,2$, or $3(\bmod 4)$.

Case 1. $a \equiv 0(\bmod 4)$.
If $p \equiv 0$ or $1(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W$ where $U=[3 p+1, n / d-$ $2-\epsilon] \biguplus B \biguplus D_{i}^{*} \biguplus F$, and $[1,3 p] \cup U=\biguplus_{i=1}^{p}\left(T_{i} \biguplus S_{1, i}\right)$.

If $p \equiv 2$ or $3(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W$ where $U=\{3 p, 3 p+2\} \biguplus[3 p+3, n / d-2-\epsilon] \biguplus B \biguplus D_{i}^{*} \biguplus F$, and $([1,3 p+1] \backslash\{3 p\}) \cup U$ $=\biguplus_{i=1}^{p-1}\left(T_{i} \biguplus S_{1, i}\right) \biguplus\left(T_{p} \biguplus S_{2}\right)$.

By Proposition 2.3, Lemma 4.6, and Theorem 2.6, for each subcase there is a cyclic m-cycle system of K_{n}.

Case 2. $a \equiv 1(\bmod 4)$.
If $p \equiv 1(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=\{(2 q+$ $1) \cdot n / d-1,(2 q+1) \cdot n / d+2,(2 q+1) \cdot n / d+3\}$ and $U=[3 p+1, n / d-2] \biguplus B \biguplus D_{i}^{*}$ $\biguplus\left(F \backslash W^{*}\right) ;[1,3 p] \bigcup U=\biguplus_{i=1}^{p-1}\left(T_{i} \biguplus S_{3, i}\right) \biguplus\left(T_{p} \biguplus S_{4}\right)$.

If $p \equiv 2(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W \biguplus W^{*}$ where W^{*} $=\{3 p, 3 p+2,(2 q+1) \cdot n / d-2\}$ and $U=[3 p+3, n / d-3] \biguplus B \biguplus D_{i}^{*} \biguplus\left(F \backslash W^{*}\right)$; $([1,3 p+1] \backslash\{3 p\}) \cup U=\biguplus_{i=1}^{p}\left(T_{i} \biguplus S_{3, i}\right)$.

If $p \equiv 3(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W \biguplus W^{*}$ where W^{*} $=\{(2 q+1) \cdot n / d-1,(2 q+1) \cdot n / d+2,(2 q+1) \cdot n / d+3\}$ and $U=\{3 p, 3 p+2\} \biguplus[3 p+$ $3, n / d-2] \biguplus B \biguplus D_{i}^{*} \biguplus\left(F \backslash W^{*}\right) ;([1,3 p+1] \backslash\{3 p\}) \cup U=\biguplus_{i=1}^{p}\left(T_{i} \biguplus S_{3, i}\right)$.

If $p \equiv 0(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=\{3 p+$ $1,3 p+3,(2 q+1) \cdot n / d-2\}$ and $U=\{3 p+2,3 p+4\} \biguplus[3 p+5, n / d-3] \biguplus B \biguplus D_{i}^{*}$ $\biguplus\left(F \backslash W^{*}\right) ;[1,3 p] \bigcup U=\biguplus_{i=1}^{p-1}\left(T_{i} \biguplus S_{3, i}\right) \biguplus\left(T_{p} \biguplus S_{4}\right)$.

By utilizing Proposition 2.4, Lemmas 4.3, 4.6, and Theorem 2.6, a cyclic m-cycle system of K_{n} exists.

Case 3. $a \equiv 2(\bmod 4)$.
If $p \equiv 0$ or $1(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=$ $\{3 p+1,3 p+3,(2 q+1) \cdot n / d-1-\epsilon,(2 q+1) \cdot n / d+2-\epsilon,(2 q+1) \cdot n / d+3-\epsilon,(2 q+1)$. $n / d+4-\epsilon\}$ and $U=\{3 p+2,3 p+4\} \biguplus[3 p+5, n / d-2-\epsilon] \biguplus B \biguplus D_{i}^{*} \biguplus\left(F \backslash W^{*}\right)$; $[1,3 p] \cup U=\biguplus_{i=1}^{p-1}\left(T_{i} \biguplus S_{1, i}\right) \biguplus\left(T_{p} \biguplus S_{2}\right)$.

If $p \equiv 2$ or $3(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=\{3 p, 3 p+2,(2 q+1) \cdot n / d-1-\epsilon,(2 q+1) \cdot n / d+2-\epsilon,(2 q+1) \cdot n / d+3-$ $\epsilon,(2 q+1) \cdot n / d+4-\epsilon\}$ and $U=[3 p+3, n / d-2-\epsilon] \biguplus B \biguplus D_{i}^{*} \biguplus\left(F \backslash W^{*}\right)$; $([1,3 p+1] \backslash\{3 p\}) \bigcup U=\biguplus_{i=1}^{p}\left(T_{i} \biguplus S_{1, i}\right)$.

By virtue of Proposition 2.3, Lemmas 4.4, 4.6, and Theorem 2.6, there is a cyclic m-cycle system of K_{n}.

Case 4. $a \equiv 3(\bmod 4)$.
If $p \equiv 1(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=\{3 p+$ $1,3 p+3\} \biguplus\{(2 q+1) \cdot n / d-1,(2 q+1) \cdot n / d+2, \cdots,(2 q+1) \cdot n / d+7\}$ and $U=\{3 p+2,3 p+4\} \biguplus[3 p+5, n / d-2] \biguplus B \biguplus D_{i}^{*} \biguplus\left(F \backslash W^{*}\right)$.

If $p \equiv 0(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=\{(2 q+1)$. $n / d-2,(2 q+1) \cdot n / d+1, \cdots,(2 q+1) \cdot n / d+8\}$ and $U=[3 p+1, n / d-3] \biguplus B \biguplus D_{i}^{*}$ $\biguplus\left(F \backslash W^{*}\right)$.

Then for each subcase, $[1,3 p] \bigcup U=\biguplus_{i=1}^{p}\left(T_{i} \biguplus S_{3, i}\right)$.
If $p \equiv 2(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=\{(2 q+1) \cdot n / d-2,(2 q+1) \cdot n / d+1, \cdots,(2 q+1) \cdot n / d+8\}$ and $U=$ $\{3 p, 3 p+2\} \biguplus[3 p+3, n / d-3] \biguplus B \biguplus D_{i}^{*} \biguplus\left(F \backslash W^{*}\right)$.

If $p \equiv 3(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W \biguplus W^{*}$ where
$W^{*}=\{3 p, 3 p+2\} \biguplus\{(2 q+1) \cdot n / d-1,(2 q+1) \cdot n / d+2, \cdots,(2 q+1) \cdot n / d+7\}$ and $U=[3 p+3, n / d-2] \biguplus B \biguplus D_{i}^{*} \biguplus\left(F \backslash W^{*}\right)$.

Also, for each subcase, $([1,3 p+1] \backslash\{3 p\}) \bigcup U=\biguplus_{i=1}^{p-1}\left(T_{i} \biguplus S_{3, i}\right) \biguplus\left(T_{p} \biguplus S_{4}\right)$.
According to Proposition 2.4, Lemmas 4.5, 4.6, and Theorem 2.6, it follows that for each subcase, there is a cyclic m-cycle system of K_{n}.

Lemma 4.8. Suppose $m=3 d$ where $d=6 a+7$ and $n=42 a+49, a \geq 1$. Then there exists a cyclic m-cycle system of K_{n}.

Proof. Note that if $a \equiv 1($ resp. 0$)(\bmod 2)$, then $m \equiv 3($ resp. 1$)(\bmod 4)$ and $b=a+1$. Let $C_{1, i}, C_{2, i}, C_{3}$ be closed m-trails defined as

$$
\begin{aligned}
& C_{1, i}=[0,17+14 i, 39+28 i]_{14+14 i}, \\
& C_{2, i}=[0,19+14 i, 37+28 i]_{21+14 i}, \text { and } \\
& C_{3}=\left[0, \frac{n-5}{2}, \frac{n+3}{2}\right]_{\frac{n-7}{2} .} .
\end{aligned}
$$

It can be checked that both $C_{1, i}$ and $C_{2, i}\left(0 \leq i \leq\left\lfloor\frac{b}{2}\right\rfloor-1\right)$ are m-cycles of index $14+14 i$ or $21+14 i$, respectively, and C_{3} is an m-cycle of index $\frac{n-7}{2}$. Moreover, $\partial C_{1, i}= \pm W_{1, i}$ where $W_{1, i}=\{17+14 i, 22+14 i, 25+14 i\}, \partial C_{2, i}= \pm W_{2, i}$ where $W_{2, i}=\{16+14 i, 18+14 i, 19+14 i\}$ and $\partial C_{3}= \pm W_{3}$ where $W_{3}=\left\{4,5, \frac{n-5}{2}\right\}$.

Now, set $U=\left[4, \frac{n-1}{2}\right] \backslash Y$ where $Y=\bigcup_{i=0}^{\left\lfloor\frac{b}{2}\right\rfloor-1}\left(W_{1, i} \biguplus W_{2, i}\right)$ if $a \equiv 1(\bmod 2)$ and $Y=\bigcup_{i=0}^{\left\lfloor\frac{b}{2}\right\rfloor-1}\left(W_{1, i} \biguplus W_{2, i}\right) \biguplus W_{3}$ if $a \equiv 0(\bmod 2)$. A routine verification shows that $[1,3] \cup U=T_{1} \biguplus S_{1}$ if $a \equiv 1(\bmod 2)$, and $[1,3] \cup U=T_{1} \biguplus S_{4}$ if $a \equiv 0(\bmod$ 2).

The thesis follows by Propositions 2.3, 2.4, Lemma 2.5, and Theorem 2.6.
Proposition 4.9. Suppose $m=3 d$ where $d=6 a+7$ for $a \geq 1$ and let n be admissible with $\operatorname{gcd}(m, n)=d$ and $n>2 m$. Then there exists a cyclic m-cycle system of K_{n}.
Proof. Recall that $n=2 p m+d s$, so, by the hypothesis on d, we have $n=(6 a+$ $7)(6 p+1)$. If $p=1$, i.e., $n=42 a+49$, the proof is done by Lemma 4.8 , so it is enough to consider the cases where $p>1$. The proof is divided into 2 cases according to whether $a \equiv 0$ or $1(\bmod 2)$. The proof here is similar to those in Proposition 4.7, and to simplify, we just provide the construction methods and leave the details to the reader.

Case 1. $a \equiv 0(\bmod 2)$.
Then $b=4 q+1$ or $4 q+3$.
Subcase 1.1 $b=4 q+1$.
If $p \equiv 1(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=\{(2 q+$ $1) \cdot n / d-1,(2 q+1) \cdot n / d+2,(2 q+1) \cdot n / d+3\}$ and $U=[3 p+1, n / d-2] \biguplus B \biguplus D_{i}^{*}$ $\biguplus\left(F \backslash W^{*}\right)$.

If $p \equiv 0(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=\{3 p+$ $1,3 p+3,(2 q+1) \cdot n / d-2\}$ and $U=\{3 p+2,3 p+4\} \biguplus[3 p+5, n / d-3] \biguplus B \biguplus D_{i}^{*}$ $\biguplus\left(F \backslash W^{*}\right)$.

If $p \equiv 3(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=\{(2 q+1) \cdot n / d-1,(2 q+1) \cdot n / d+2,(2 q+1) \cdot n / d+3\}$ and $U=\{3 p, 3 p+$ $2\} \biguplus[3 p+3, n / d-2] \biguplus B \biguplus D_{i}^{*} \biguplus\left(F \backslash W^{*}\right)$.

If $p \equiv 2(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W \biguplus W^{*}$ where W^{*} $=\{3 p, 3 p+2,(2 q+1) \cdot n / d-2\}$ and $U=[3 p+3, n / d-3] \biguplus B \biguplus D_{i}^{*} \biguplus\left(F \backslash W^{*}\right)$.

Subcase $1.2 b=4 q+3$.
If $p \equiv 1(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=\{3 p+$ $1,3 p+3,(2 q+1) \cdot n / d-1,(2 q+1) \cdot n / d+2, \cdots,(2 q+1) \cdot n / d+7\}$ and $U=$ $\{3 p+2,3 p+4\} \biguplus[3 p+5, n / d-2] \biguplus B \biguplus D_{i}^{*} \biguplus\left(F \backslash W^{*}\right)$.

If $p \equiv 0(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=\{(2 q+1)$. $n / d-2,(2 q+1) \cdot n / d+1, \cdots,(2 q+1) \cdot n / d+8\}$ and $U=[3 p+1, n / d-3] \biguplus B \biguplus D_{i}^{*}$ $\biguplus\left(F \backslash W^{*}\right)$.

If $p \equiv 3(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=\{3 p, 3 p+2,(2 q+1) \cdot n / d-1,(2 q+1) \cdot n / d+2, \cdots,(2 q+1) \cdot n / d+7\}$ and $U=[3 p+3, n / d-2] \biguplus B \biguplus D_{i}^{*} \biguplus\left(F \backslash W^{*}\right)$.

If $p \equiv 2(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=\{(2 q+1) \cdot n / d-2,(2 q+1) \cdot n / d+1, \cdots,(2 q+1) \cdot n / d+8\}$ and $U=$ $\{3 p, 3 p+2\} \biguplus[3 p+3, n / d-3] \biguplus B \biguplus D_{i}^{*} \biguplus\left(F \backslash W^{*}\right)$.

Case 2. $a \equiv 1(\bmod 2)$.
Then $b=4 q$ or $4 q+2$.
Subcase $2.1 b=4 q$.
If $p \equiv 0$ or $1(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W$ where $U=[3 p+1, n / d-$ $2-\epsilon] \biguplus B \biguplus D_{i}^{*} \biguplus F$.

If $p \equiv 2$ or $3(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W$ where $U=\{3 p, 3 p+2\} \biguplus[3 p+3, n / d-2-\epsilon] \biguplus B \biguplus D_{i}^{*} \biguplus F$.

Subcase $2.2 b=4 q+2$.
If $p \equiv 0$ or $1(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=[1,3 p] \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=$ $\{3 p+1,3 p+3,(2 q+1) \cdot n / d-1-\epsilon,(2 q+1) \cdot n / d+2-\epsilon,(2 q+1) \cdot n / d+3-\epsilon,(2 q+$ $1) \cdot n / d+4-\epsilon\}$ and $U=\{3 p+2,3 p+4\} \biguplus[3 p+5, n / d-2-\epsilon] \biguplus B \biguplus D_{i}^{*} \biguplus\left(F \backslash W^{*}\right)$.

If $p \equiv 2$ or $3(\bmod 4)$, then $\left[1, \frac{n-1}{2}\right]=([1,3 p+1] \backslash\{3 p\}) \biguplus U \biguplus W \biguplus W^{*}$ where $W^{*}=\{3 p, 3 p+2,(2 q+1) \cdot n / d-1-\epsilon,(2 q+1) \cdot n / d+2-\epsilon,(2 q+1) \cdot n / d+3-$ $\epsilon,(2 q+1) \cdot n / d+4-\epsilon\}$ and $U=[3 p+3, n / d-2-\epsilon] \biguplus B \biguplus D_{i}^{*} \biguplus\left(F \backslash W^{*}\right)$.

Combining Propositions 4.7 and 4.9, we obtain the second main result.
Theorem 4.10. Suppose $m=3 d$ with d a prime and let n be admissible with $\operatorname{gcd}(m, n)=d$ and $n>2 m$. Then there exists a cyclic m-cycle system of K_{n}.

Example 2. There is a cyclic 111 -cycle system of K_{925}. Taking $m=111$ with d $=37$ and $e=3$, by Lemma 4.1, we have that $s=1, b=6$, and $n=222 p+37$, and letting $p=4$, it follows that $n=925, n / d=25$, and $\frac{n-1}{2}=462$. Note that in this situation, $q=\epsilon=1$.

Then $[1,462]=[1,12] \biguplus U \biguplus W \biguplus W^{*}$ where $W=A_{0} \biguplus D_{0,1} \biguplus D_{0,2}=$ $\{23,26,49,52\} \biguplus[27,30] \biguplus[53,56], W^{*}=\{13,15,73,76,77,78\}$, and $U=\{14,16\}$ $\biguplus[17,22] \biguplus B \biguplus D_{0}^{*} \biguplus\left(F \backslash W^{*}\right)$ where $B=\{24,25,50,51\}, D_{0}^{*}=[31,48]$ $\biguplus[57,72]$, and $F \backslash W^{*}=[74,75] \biguplus[79,462]$.

Since $[1,12] \cup U=\bigcup_{i=1}^{3}\left(T_{i} \biguplus S_{1, i}\right) \biguplus\left(T_{4} \biguplus S_{2}\right)$, by Proposition 2.3, a cyclic 111-cycle system of $X(925, \pm([1,12] \biguplus U))$ exists, and by virtue of Lemmas 4.4 and 4.6, we obtain cyclic 111 -cycle systems of $X\left(925, \pm W^{*}\right)$ and $X(925, \pm W)$.

According to Theorem 2.6, a cyclic 111-cycle system of K_{925} does exist.
Now, by utilizing Theorems 3.4 and 4.10, the thesis of Theorem 1.6 follows.

References

1. B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory Ser. B, 81 (2001), 77-99.
2. A. Blinco, S. El-Zanati and C. Vanden Eynden, On the cyclic decomposition of complete graphs into almost-bipartite graphs, Discrete Math., 284 (2004), 71-81.
3. D. Bryant, H. Gavlas and A. Ling, Skolem-type difference sets for cycle systems, The Electron. J. Combin., 10 (2003), 1-12.
4. D. Bryant and C. Rodger, Cycle decompositions, in: CRC Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz, eds., CRC Press, Boca Raton, FL, 2006, pp. 373-382.
5. M. Buratti, Cycle decompositions with a sharply vertex transitive automorphism group, Matematiche (Catania), 59 (2004), 91-105.
6. M. Buratti and A. Del Fra, Existence of cyclic k-cycle systems of the complete graph, Discrete Math., 261 (2003), 113-125.
7. M. Buratti and A. Del Fra, Cyclic Hamiltonian cycle systems of the complete graph, Discrete Math., 279 (2004), 107-119.
8. H. L. Fu and S. L. Wu, Cyclically decomposing the complete graph into cycles, Discrete Math., 282 (2004), 267-273.
9. A. Kotzig, Decompositions of a complete graph into $4 k$-gons. (Russian) Mat. Fyz. Casopis Sloven. Akad. Vied, 15 (1965), 229-233.
10. R. Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compositio Math., 6 (1938), 251-257.
11. A. Rosa, On cyclic decompositions of the complete graph into $(4 m+2)$-gons, Mat. Fyz. Casopis Sloven. Akad. Vied, 16 (1966), 349-352.
12. A. Rosa, On cyclic decompositions of the complete graph into polygons with odd number of edges (Slovak), Casopis Pest. Mat., 91 (1966), 53-63.
13. A. Rosa, On decompositions of a complete graph into 4 n -gons, Mat. Casopis Sloven. Akad. Vied, 17 (1967), 242-246 (in Russian).
14. N. Shalaby, Skolem and Langford sequences, in: CRC Handbook of Combinatorial Designs, (C. J. Colbourn and J. H. Dinitz eds.), CRC Press, Boca Raton, FL, 2006, pp. 612-616.
15. M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Des., 10 (2002), 27-78.
16. A. Vietri, Cyclic k-cycle system of order $2 k m+k$; a solution of the last open cases, J. Combin. Des., 12 (2004), 299-310.
17. S. L. Wu, Cyclic even cycle systems of the complete graph, J. Combin. Des., 20 (2012), 23-39.
18. S. L. Wu and M. Buratti, A complete solution to the existence problem for 1-rotational k-cycle systems of K_{v}, J. Combin. Des., 17 (2009), 283-293.
19. S. L. Wu and H. L. Fu, Cyclic m-cycle systems with $m \leq 32$ or $m=2 q$ with q a prime power, J. Combin. Des., 14 (2006), 66-81.

Shung-Liang Wu
Department of computer science and information engineering
National United University
Miaoli 36003, Taiwan
E-mail: slwu@nuu.edu.tw

