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A NOTE ON EXTREMAL VALUES OF THE SCATTERING NUMBER

Peter Dankelmann, Wayne Goddard*, Charles A. McPillan and Henda C. Swart

Abstract. Let c(H) denote the number of components of graph H . The scattering
number of a graph G is the maximum of c(G − S) − |S| taken over all cut-sets
S of G. In this note we explore the minimum and maximum scattering number
for several families. For example, we show that the minimum scattering number
of a triangle-free graph on n vertices is approximately −n/3. We also consider
the scattering number of some graph products.

1. INTRODUCTION

The scattering number of a graph was defined by Jung [5]. He introduced it as a
measure related to the hamiltonicity of the graph, but the scattering number is now also
regarded as a measure of the vulnerability of a graph, in the same vein as connectivity,
integrity and toughness. It is most closely related to toughness; indeed Jung called it
the additive dual of toughness.
We will use the notation c(H) to denote the number of components of graph H .

Then the scattering number sc(G) is:

sc(G) = max { c(G− S)− |S| : S ⊆ V and S a cut-set} .

A scatter set is an S which achieves this maximum. We take the view that a set of all
but one vertex is by definition a cut-set, and so the scattering number of the complete
graph Kn is 2 − n. It is unusual to have a graph parameter which can take on both
positive and negative values.
In this note we explore the minimum and maximum scattering number for several

families. For example, we show that the minimum scattering number of a triangle-free
graph on n vertices is approximately −n/3. We also present a couple of results on
graph products. Some of our results correct mistakes in the literature, in particular
from [6, 7].
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2. PRELIMINARIES

Here are some well-known values:

Proposition 1.
(a) [5] For the cycle, sc(Cn) = 0 for n ≥ 4.
(b) [5] For the path, sc(Pn) = 1 for n ≥ 3.
(c) [11] For the complete bipartite graph, sc(Ka,b) = b − a if a ≤ b and b ≥ 2.

The following bounds have been observed:

Proposition 2. For graph G of order n, independence number α and connectiv-
ity κ:

(a) [11] sc(G) ≥ 2α − n,
(b) [11] if G noncomplete then sc(G) ≥ 2 − κ,
(c) [11, 6] sc(G) ≤ α − κ.

There is a useful upper bound:

Proposition 3. [11]. For a graph with order n and minimum degree δ, sc(G) ≤
n − 2δ.

We will also need the simple formula for the disjoint union:

Proposition 4. [5, 4]. For any graphs G and H , sc(G ∪ H) = max(1, sc(G)) +
max(1, sc(H)).

3. EXTREMAL VALUES FOR CLASSES

3.1. Claw-free Graphs and Regular Graphs

Recall that the toughness t(G) of a graph was defined by Chvátal [1] as

t(G) = min
{ |S|

c(G− S)
: S ⊆ V and S a cut-set

}
.

The obvious necessary condition for hamiltonicity is that the graph has toughness at
least 1. The relationship with toughness is the turning point between positivity and
negativity: sc(G) ≤ 0 if and only if t(G) ≥ 1.
The following result corrects typos in [6]:

Theorem 1. For a graph G with connectivity κ, vertex cover number β and
toughness t,

sc(G) ≤

⎧⎪⎨
⎪⎩

κ(
1
t
− 1) if t ≥ 1,

β(
1
t
− 1) if t ≤ 1.
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Proof. By the definition of toughness, c(G−S) ≤ |S|/t for any cut-set S. Hence,
c(G− S)− |S| ≤ |S|(1/t− 1). If t > 1, then (1/t− 1) is negative, and so the bound
is maximized at S as small as possible, viz. a minimum cut-set. If t < 1, the bound is
maximized at S as large as possible, viz. a minimum vertex cover.
We obtain the following as a consequence of Theorem 1 and Proposition 2b:

Corollary 1. If κ ≥ 2 and t = κ/2, then sc = 2 − κ.

For example, the claw-free graphs are known to have toughness half their connec-
tivity [8]. A special case of those is the Cartesian products of two complete graphs.
(The Cartesian product of graphs G and H is G�H with vertex set V (G) × V (H)
and (u1, v1) adjacent to (u2, v2) iff u1 = u2 and v1v2 ∈ E(H) or v1 = v2 and
u1u2 ∈ E(G).)

Corollary 2. [10]. For m, n ≥ 2, sc(Km�Kn) = 4 − m − n.

It also follows that 2−r is the minimum value of the scattering number of r-regular
graphs.

3.2. Triangle-free Graphs

We will need the following special case of Theorem 1 of [2] (where by maximal
we mean that the addition of any edge creates a triangle):

Theorem 2. [2]. If G is a maximal triangle-free graph on n vertices with minimum
degree at least (n + 2)/3, then there exist two nonadjacent vertices u and v such that
N (u) = N (v).

Theorem 3. For a triangle-free graph G of order n ≥ 5, sc(G) ≥ (5− n)/3.

Proof. Let δ denote the minimum degree. We know that sc(G) ≥ 2 − δ by
Proposition 2b. Also, since the neighborhood of a vertex is independent in a triangle-
free graph, we have that sc(G) ≥ 2δ − n by Proposition 2a. Double the first bound
added to the second gives that 3 sc(G) ≥ 4 − n.
Equality requires that δ = (n + 2)/3. Indeed, it follows that for triangle-free G

to have sc(G) = (4 − n)/3, it must be that δ = α = κ = (n + 2)/3. For n = 4,
such a graph is C4. Since adding edges can only decrease the scattering number, we
may assume that G is maximal triangle-free. Then Theorem 2 says that there are two
nonadjacent vertices u and v such that N (u) = N (v). If we let S = N (u), it follows
that c(G − S) ≥ 3 provided n > 4, and thus sc(G) ≥ 3 − δ. Hence for n �= 4,
3 sc(G) > 4 − n and thus sc(G) ≥ (5− n)/3.
The above theorem is sharp in that there are triangle-free graphs with this scattering

number. Let Mm = Cm
3m+2, the complement of the mth power of the (3m + 2)-cycle.

For example, M1 = C5 and M2 is the Möbius ladder shown in Figure 1. This graph
is (m + 1)-regular.
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Fig. 1. A triangle-free graph M2 with smallest scattering number.

We sketch the argument that Mm has the claimed scattering number. We note that
every induced copy F of 2K2 in Mm is a dominating set (that is, every other vertex
is adjacent to a vertex of F ). It follows that if S is a cut-set whose removal produces
more than 2 components, it must be that case that at most one of these components is
nontrivial. If we let T denote the set of vertices of the trivial components of Mm − S,
it is not hard to show that |N (T )| ≥ |T |+ δ − 1 (implicit in [9]). Clearly S ⊇ N (T ).
Hence

c(G− S) − |S| ≤ (|T |+ 1)− (|T |+ δ − 1) = 2− δ.

It follows that sc(Mm) = 1 − m.

3.3. Planar Graphs

The question of whether there is an infinite family of 5/2-tough planar graphs
remains unresolved [3]. In contrast, the question of the minimum scattering number
for planar graphs is readily resolved, since the scattering number is at least 2 − κ
(Proposition 2b) and hence at least −3, since the maximum connectivity of a planar
graph is 5.
A planar graph with scattering number −3 is given by the following. Construct

Hm as follows. Start with vertices x and y, and two cycles A and B of length m.
Say the cycles are a1, . . . , am, a1 and b1, . . . , bm, b1. Then add edges aibi and biai+1

(indices modulo m). Further join x to all of A and y to all of B. The graph H7 is
shown in Figure 2.

Theorem 4. For m ≥ 5, sc(Hm) = −3.

Proof. The graph H5 is the icosahedron—this is 5-connected claw-free, and so by
Corollary 1 has sc(H5) = −3. So, let m ≥ 6.
Let S be a cut-set of Hm. Let S ′ = S −{x, y} and H ′ = Hm −{x, y}. There are

three cases. If both x and y are in S, then |S| = |S ′|+2. Since H ′ is 4-connected and
claw-free, it follows that c(H ′−S ′)−|S ′| ≤ −2 so that c(Hm−S)−|S| ≤ −4. On the
other hand, if neither x nor y is in S, then c(Hm −S) ≤ 2 and so c(Hm −S)− |S| ≤
2 − |S| ≤ −3. So suppose exactly one of x or y is in S, say x. If N (y) ⊆ S, then
c(Hm − S) − |S| ≤ (	m/2
 + 1) − (m + 1) = −	m/2
 ≤ −3. Otherwise, y is not
isolated in Hm − S, and so c(Hm − S) ≤ c(H ′−S ′). Since |S| = |S ′|+ 1, it follows
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that c(Hm − S) − |S| ≤ c(H ′ − S ′) − |S ′| − 1 ≤ sc(H ′) − 1 ≤ −3. Therefore,
sc(Hm) = −3 for m ≥ 5.

Fig. 2. A planar graph H7 with minimum scattering number.

4. PRODUCTS AND THORN GRAPHS

In this section we consider thorn graphs and related product graphs, first considered
in [6, 7].

4.1. Coronas and Thorn Graphs

Recall that the corona cor(G) of a graph G is obtained by adding for each vertex in
G a new end-vertex adjacent only to it. More generally, given a graph G with vertex set
{v1, . . . , vn} and nonnegative integers {p1, . . . , pn}, the thorn graph G∗(p1, . . . , pn)
is obtained from G by adding pi new vertices of degree 1 adjacent to vi for each i.
The corona is the case where all pi = 1.
Kirlangiç and Aytaç [7] established results for some choices of the pi (though their

proofs are incomplete). We give here a succinct formula for the scattering number of
a thorn graph that generalizes results of [7, 6]:

Theorem 5. Consider the thorn graph G∗(p1, . . . , pn) with all pi ≥ 1. Then

sc(G∗) =
n∑

i=1

pi − n + α(G − L),

where L = { vi : pi ≥ 2 } and α is the independence number.

Proof. Out of all scatter sets of G∗, let S be a largest scatter set. It is easy to see
that for any graph (except K2) a scatter set cannot contain a vertex of degree 1 (since
removing such a vertex from S cannot decrease the number of components of G− S).
Thus, S ⊆ V (G).
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We claim that S contains all of L. For, if not, adding vi ∈ L to S increases the
number of components of G − S and so c(G − S) − |S| does not decrease. Further,
we claim that if v1 and v2 are adjacent vertices of G−L, then S contains at least one
of them. For, if not, adding v1 to S increases the number of components, as before.
That is, S consists of L and a vertex cover of the graph G − L.
It follows that every end-vertex of G∗ is in a separate component of G∗ − S, and

so c(G∗ − S) =
∑n

i=1 pi. At the same time, S must be the smallest set with the
established properties; that is, S consists of L and a minimum vertex cover of G− L.
This implies that |S| = n − α(G− L), and the result follows.

Corollary 3. [7]. For graph G of independence number α, sc(cor(G)) = α.

Corollary 4. [7]. Consider the thorn graph G∗(p1, . . . , pn) with all pi ≥ 2. Then
sc(G∗) =

∑n
i=1 pi − n.

As a consequence we obtain the formula for the scattering number of binomial
trees. The binomial tree Bi is defined recursively as B0 = K1 and Bi+1 = cor(Bi)
for i ≥ 0. The binomial tree Bi has 2i vertices.

Corollary 5. [6]. For m ≥ 2, the binomial tree has sc(Bm) = 2m−2.

Proof. The treeBm is the corona of the tree Bm−1. The tree Bm−1 has a matching
and hence has independence number half its order.

4.2. Tensor Product

In this section we correct results about the tensor product from [6]. The tensor
product of G and H is G×H with vertex set V (G)× V (H) and (u1, v1) adjacent to
(u2, v2) iff u1u2 ∈ E(G) and v1v2 ∈ E(H).

Theorem 6. If graphs G and H have orders m and n and both have a perfect
matching, then sc(cor(G)× cor(H)) = mn.

Proof. Let F = cor(G)× cor(H). The graphs cor(G) and cor(H) have spanning
subgraphs (m/2)P4 and (n/2)P4. Thus F is a supergraph of F ′ = (mn/4)P4. It
is straight-forward to observe that the scattering number of P4 × P4 is 4. Thus by
Proposition 4, we have sc(F ′) = mn, and so sc(F ) ≤ mn.
On the other hand, let S be the set of themn vertices in V (G)×V (H), and consider

F − S. Consider an end-vertex v′ in cor(G) adjacent to v, and an end-vertex u′ in
cor(H) adjacent to u. Then the vertex (v′, u′) has only one neighbor (v, u) in F , and
that neighbor is in S. Also the vertex (v, u′) has only neighbors of the form (w, u) in
F , and hence its only neighbor outside S is (v′, u). This means that F −S is the union
on mn isolates and mn K2’s. That is, sc(F − S) = 2mn. Hence sc(F ) ≥ mn.

As a consequence we obtain the correct formula for the scattering number of the
tensor product of two binomial trees:
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Corollary 6. sc(Bm × Bn) = 2n+m−2

4.3. Cartesian Products

Finally, we consider results about the Cartesian product. Theorem 3.1 of [7] claims
a formula for the scattering number of the Cartesian product of thorn graphs. But
the formula is incorrect. For example, the theorem claims a negative value for the
Cartesian product of any two coronas. But actually, since every thorn graph has an
end-vertex, the Cartesian product of two thorn graphs has a vertex of degree 2, and
so by Proposition 2b, sc(G∗�H∗) ≥ 0. (It is unclear what proportion of the time
the claimed formula in [7] is correct. Whatever the case, the “proof” is definitely
incomplete).
We were unable to determine a formula for sc(G∗�H∗) in general. One special

case is when G∗�H∗ is hamiltonian, since that implies the scattering number is non-
positive, so that sc(G∗�H∗) = 0. In that regard, here is a partial result.

Theorem 7. If the Cartesian product G�H of graphs G and H is hamiltonian
and has even order, then the Cartesian product of their coronas is also hamiltonian,
and so sc(cor(G)� cor(H)) = 0.

Proof. For any vertex x of G or H , let x′ denote the vertex adjacent to x

introduced in the corona. Partition the vertex set of cor(G)� cor(H) into the quartets
{(x, y), (x′, y), (x, y′), (x′, y′)} for each x ∈ V (G) and y ∈ V (H). Each quartet
induces a 4-cycle. We will build a hamiltonian cycle D of cor(G)� cor(H) that visits
all vertices of a quartet consecutively.
Let C be the hamiltonian cycle of G�H . Say the first two vertices of C are (x1, y)

and (x2, y). Then the hamiltonian cycle D of cor(G)� cor(H) starts the first quartet
at (x1, y) and ends at (x1, y

′). Then it goes to (x2, y
′) and ends that quartet at (x2, y).

The process continues—D traverses the entire quartet for each vertex of C. Eventually
we re-enter the first quartet; since there is an even number of vertices in C, this re-entry
is at (x1, y), and so D is completed.
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